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The article presents the results of the numerical simulation of the Maxwell fluid flow in the
system supplying hydrodynamically active polymer in the boundary layer of a streamlined
object. The case of slow flow is considered. In this case, the inertial terms can be neglected,
the velocities, stresses, and stream functions can be written as the decomposition by
Weisenberg number, and we can assume that the Weissenberg number is less than one.
The established features of the behaviour of the Maxwell fluid flow with a longitudinal
velocity gradient and the manifestation of the effects of elastic deformations are crucial
for understanding processes taking place in the system supplying hydrodynamically active
polymer in the boundary layer of a streamlined object. Understanding the nature of
the effects of elastic deformations in the supplying system makes it possible to offer a
hydrodynamic calculation of the modes of polymer solution injection into the boundary
layer without any negative manifestations of the effects of the elastic deformations. The
results of the numerical simulation confirmed the conception on the deformation-stress
state of macromolecules (fluid elements) in polymer solution converging flow, based on the
data previously obtained from experimental decisions concerning the hydrodynamic field
structure in the input area of a slot and other openings.
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1. Introduction

Among the accepted methods of artificial impact on the boundary layer, aimed at reducing hydrody-
namic resistance of friction the objects moving in the water, it is the method of supplying a water-
soluble polymer where scientists have achieved the best practical advances [1–3]. Positive results
obtained from experiments with objects moving in the water create the basis for research develop-
ments aimed at improving and upgrading systems supplying a polymer solution into the boundary
layer; which, in particular, involves designing highly efficient compact plants for mixing a polymer
solution directly at underwater crafts or floating facilities and supplying it into their boundary layer,
without any noticeable deterioration in their overall design characteristics [2, 4–6].

However, after supplying the boundary layer of the streamlined objects with water-soluble polymers,
the actual reduction of the friction resistance level is far from the results that were either theoretically
predicted or obtained in the experiments with the same objects moving in a pre-prepared solution in
a polymer pool [2, 5]. That restricts applying polymer additives on the moving in the water objects
in order to reduce their friction resistance. Therefore, it is essential to address the technical issues
aimed at increasing the velocity of underwater crafts or floating facilities and their energy efficiency
by supplying a polymer solution into the boundary layer. That is primarily relevant for upgrading
systems supplying polymer solutions into the boundary layer of the objects moving in the water.
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In all experiments to our knowledge, the researchers have not yet sufficiently considered the hydro-
dynamics of polymer solutions that takes place in the constitutive elements of systems supplying the
boundary layer of streamlined objects with polymer solutions. They believed that it was impossible to
observe any significant ‘anomalies’ while the polymer solutions flow through slots or other openings;
i.e. polymer solutions flowing into the boundary layer of the streamlined object, the hydrodynamic
impact on the polymer system cannot have a noticeable influence on the Toms effect. Their conclusions
based on the analysis of the data obtained during the study of shear laminar flows for which the elastic
deformation effects are negligible [6].

In a typical hydraulic supplying system, as shown in [2, 7], the flow is complex and combines a
superposition of shear flow and predominantly longitudinal (stretching) flow. With such flows, the
effects of the elastic deformation become so essential, that neglecting them results in polymer additives
not being fully utilized, especially with objects moving in the water at high velocities [4]. Ultimately,
that increase the polymer overrun costs and reduce its efficiency, therefore reducing the time the object
moving in the water is in afterburning [2, 5].

Hence, significant resources for increasing the efficiency of polymer systems are not limited only to
developing and enhancing polymers [1, 4, 7] but should also concern improving supplying systems and
optimizing hydrodynamic modes of polymer solution flow into the boundary layer of objects moving
in the water [2, 5, 6]. It is proven in [2, 5] that the correct choice of the supplying system design and
hydrodynamic modes for polymer solution flow into the boundary layer of streamlined objects can
increase the efficiency of the reducing turbulent friction by more than 25%, compared to previously
obtained data.

Determining the optimal flow mode of the polymer solution in the supply systems is one of the
most comprehensive challenges that must be dealt with when designing systems for supplying polymer
to the boundary layer of streamlined objects with regards to the negative manifestation of the effects
of elastic deformations. Hydrodynamic flow modes through the constitutive elements of the supplying
system are calculated, based on the condition satisfying the inequality:

ε̇θc 6 Decr, (1)

where θc is relaxation time of the polymer solution; ε̇ is longitudinal velocity gradient [8–10].
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Fig. 1. Profiles of θc/θ0 for varying
[η]0 ·C for different PEO concentra-
tion in solution, MPEO: 1) 4 · 106,

2) 2.5 · 106.

Expression (1) should be interpreted as the Deborah number
because the inverse value of the longitudinal gradient of velocity
is nothing but the time scale of the stream [8]. Thus, the calcula-
tion covers calculating the relaxation time (characteristic time) of
the polymer solution and the longitudinal velocity gradient tak-
ing place in the outlet slot of the system supplying polymer to
the boundary layer of the streamlined object. According to the
experimentally obtained data, the critical Deborah number for
water solutions of polyethylene oxide (PEO) is 2.5 [5].

We obtained the following equation to define the characteristic
relaxation time of the polymer solution (viscoelastic fluid) (2) [10]:

θc =







θ0e
k at k < 1,

θ0
ek

2/3

k1/3
at k > 1,

(2)

where [η]0 is characteristic viscosity, C is concentration of polymer
in solution, аnd [η]0 ·C = k. Dependence θc/θ0 on [η]0 ·C for PEO
of two different molecular masses in the water as shown in Fig. 1.

The solid line shows the course of the dependence obtained for equation (2). We can see that the
points obtained during the experiments for the corresponding concentration regions lie satisfactorily
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on the estimated curve. So, substituting the known molecular characteristics of the polymer into
equation (2) we can calculate the relaxation time of polymer solutions. The effect of temperature in
this equation is taken into account by the temperature dependence θ0 and k.

At the same time, research literature to our knowledge doesn’t highlight any analytical equations
for calculating a longitudinal velocity gradient in the input area of the slot in the system supplying
polymer to the boundary layer of a streamlined object. To calculate the longitudinal velocity gradient
of the polymer solution flow in the sub-slot chamber of the supplying system, it is necessary, taking
into account its viscoelastic properties, to analyze the flow of the hydrodynamically active polymer
solution through the slot.

2. Problem statement

Hydrodynamically active polymer solutions possess viscoelastic properties [11–13]. Therefore, when
polymer solution flows through the slot, to evaluate deformation characteristics of the flow (stream
functions, distributions of the longitudinal velocity gradient and normal stress) resulting in manifesta-
tion of abnormal (compared with the behaviour of the ordinary fluid) effects, we can use a well-known
Maxwell’s fluid model [11–14] with the Jaumann derivative [15].

We chose this model because, according to Lodge [14], the study of non-linear, non-permanent, from
the view of Lagrange, currents of viscoelastic fluids doesn’t add any new information to the already
obtained by studying homogeneous or quasi-homogeneous shear deformations. In his opinion, “. . . the
only reason for detailed calculations of different types of non-linear currents is to make sure that they
are practically implemented.” This Lodge’s statement can be interpreted in such a way, that there is
no need for new rheological equations to describe convergent flows (in the input area of the slot); it’s
enough to use the equations of a steady Couette flow [11], or, at least, to determine whether they can
explain the features of the convergent flow in the sub-slot chamber of the system supplying polymer
into the boundary layer of the object moving in the water.

3. Solution

To describe steady streamflow in the incompressible environments, we use the following classical equa-
tions [8, 15]:
– the continuity equation

V i
,i = 0, (3)

H ′

h′

x1

x2

Fig. 2. The shape of the slot and
Cartesian coordinates.

– the Cauchy motion equation

ρVkV i
,k = −gikP,k + T ij

,k , (4)

where gik is metric tensor, and T ij
,k is determined by covariant

differentiation T ij:

T ij
,k =

∂T ij

∂xk
+
{
i
k m

}
Tmj +

{
i
k m

}
T im,

where
{
i
k m

}
are the Christoffel symbols expressed by the depen-

dence:
{
i
k m

}
=

1

2
giℓ
(
∂gkℓ
∂xm

+
∂gmℓ

∂xk
− ∂gkm

∂xℓ

)

.
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Having designated θc to relaxation time and ηc — to viscosity, we can write the structural rheological
equation of the Maxwell’s fluid model [4, 11–13,15, 16]:

T ij + θc
DjT

ij

Dt
= 2ηcD

ij , (5)

where Dj

Dt is the Jaumann derivative described by the equation

DjT
ij

Dt
=
∂T ij

∂t
+ VkT ij

,k −W i
kT

kj − T ikW j
k ,

in which

Dkm =
1

2
(Vk,m + Vm,k) ,

Wkm =
1

2
(Vk,m − Vm,k) .

Analyze the case, where the incompressible fluid moves between two parallel planes and flows
through the slot which length is considerably longer than width. The flow is flat and stationary. Fig. 2
shows the shape of the slot of the sub-slot chamber of the system supplying polymer into the boundary
layer of the streamlined object and Cartesian coordinates.

The components of the metric tensor in Cartesian coordinates are:

g11 = g22 = 1 ,
g12 = g21 = 0.

The Christoffel symbols
{
i
k m

}
equal zero since the components of the metric tensor gik are not

coordinate-dependent. Let us express this in a dimensionless form, introducing the following quantities
into equations (3), (4) and (5):

x∗1 =
x1

H ′
, x∗2 =

x2

H ′
,

V ∗
1 =

V1

ū
, V ∗

2 =
V2

ū
,

T ∗
11 =

H ′

ηcū
T 11, T ∗

22 =
H ′

ηcū
T 22, (6)

T ∗
12 =

H ′

ηcū
T 12, T ∗

21 =
H ′

ηcū
T 21,

P ∗ =
H ′

ηcū
P,

where ū is average flow velocity; 2H ′ is slot width. Considering transformations (3), (4), (5), they are
reduced to:

∂V∗
1

∂x∗1
+
∂V∗

2

∂x∗2
= 0, (7)

Re

(

V∗
1

∂V∗
1

∂x∗1
+ V∗

2

∂V∗
1

∂x∗2

)

= −∂P
∗

∂x∗1
+
∂T ∗

11

∂x∗1
+
∂T ∗

12

∂x∗2
, (8a)

Re

(

V∗
1

∂V∗
2

∂x∗1
+ V∗

2

∂V∗
2

∂x∗2

)

= −∂P
∗

∂x∗2
+
∂T ∗

21

∂x∗1
+
∂T ∗

22

∂x∗2
, (8b)
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T ∗
11 + We

{

V∗
1

∂T ∗
11

∂x∗1
+ V∗

2

∂T ∗
11

∂x∗2
− 1

2

(
∂V∗

1

∂x∗2
− ∂V∗

2

∂x∗1

) (

T ∗
12 + T ∗

21

)}

= 2
∂V∗

1

∂x∗1
, (9a)

T ∗
22 + We

{

V∗
1
∂T ∗

22

∂x∗1
+ V∗

2
∂T ∗

22

∂x∗2
+

1

2

(
∂V∗

1

∂x∗2
− ∂V∗

2

∂x∗1

) (

T ∗
12 + T ∗

21

)}

= 2
∂V∗

2

∂x∗2
, (9b)

T ∗
12 + We

{

V∗
1

∂T ∗
12

∂x∗1
+ V∗

2

∂T ∗
12

∂x∗2
+

1

2

(
∂V∗

1

∂x∗2
− ∂V∗

2

∂x∗1

)(

T ∗
11 − T ∗

22

)}

=
∂V∗

1

∂x∗2
+
∂V∗

2

∂x∗1
, (9c)

T ∗
21 + We

{

V∗
1

∂T ∗
21

∂x∗1
+ V∗

2

∂T ∗
21

∂x∗2
+

1

2

(
∂V∗

1

∂x∗2
− ∂V∗

2

∂x∗1

)(

T ∗
11 − T ∗

22

)}

=
∂V∗

1

∂x∗2
+
∂V∗

2

∂x∗1
, (9d)

where Re = ρūH′

ηc
is the Reynolds number; We = θcū

H′ is the Weissenberg number.
If we restrict ourselves to a flow in which the inertial terms can be neglected, then the left side of

equation (8) will equal zero. Applying the continuity equation (7), we introduce the stream function:

V∗
1 =

∂ψ

∂x∗2
, V∗

2 = − ∂ψ

∂x∗1
. (10)

If we assume that the fluid flow at the supplying system input area has the Poiseuille velocity
profile, the velocity on the surface of the solid wall (adhesion condition) equals zero, and the flow
velocity is constant, the boundary conditions will take the following form:

x∗1 = −∞, V∗
1 =

3

2

(
1 − x∗22

)
, V∗

2 = 0, (11a)

x∗1 = 0, 0 6 x∗2 6 h∗, V∗
1 = V∗

0 V∗
2 = 0, (11b)

x∗1 = 0, h∗ 6 x∗2 6 1, V∗
1 = V∗

2 = 0, (11c)

x∗2 = 0,
∂V∗

1

∂x∗2
= V∗

2 = 0, (11d)

x∗2 = 1, V∗
1 = V∗

2 = 0, (11e)

where V∗
0 = const, determined by the expendable velocity; h∗ is dimensionless value, equals h′

H′ ; 2h′ is
slot width.

It is necessary to solve equations (7), (8), and (9), according to the boundary conditions (11), to
determine the flow and stress fields, according to the boundary conditions (11). It is not possible to
solve these equations in a general form; therefore, we restrict ourselves to slow flows. In this case, we
can not only neglect the inertial terms but also assume that the Weisenberg number is less than one.

Let us recall that the Weissenberg number characterizes the rate of the viscoelastic properties of
the fluid in a shear flow. In the case under consideration, we have a complex flow with both shear and
longitudinal velocity gradients. As the velocity of the outflow through the supply system slot increases,
as proven in [7], the proportion of the longitudinal (stretching) flow increases, and the shear decreases.
Therefore, it is more appropriate, instead of the Weissenberg number, to use a Deborah number, which
characterizes the rate of viscoelastic properties in a stretching flow [8]. Nevertheless, for stationary
flows, the ratio is De

We = Re0,75 [8, 17], which means that both criteria, We and De, are interconnected
within geometrically similar flows.

Therefore, for restrictions, imposed on this flow, in the same way as in [15], we can write the
velocities, stress, and stream functions as the decomposition by number We:

V∗
i = V(0)

i + WeV(1)
i + We2V(2)

i + . . . ,

P ∗ = P (0) + WeP (1) + We2P (2) + . . . ,

T ∗
ij = T

(0)
ij + WeT

(1)
ij + We2T

(2)
ij + . . . ,

ψ∗ = ψ(0) + Weψ(1) + We2ψ(2) + . . . .

(12)
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Substituting (12) into equations (7), (8), (9), and the boundary conditions (11), we will put the
equation in order with respect to the Weissenberg number. Now we can write down the terms of
equations that do not include the Weissenberg number:

∂V(0)
1

∂x∗1
+
∂V(0)

2

∂x∗2
= 0, (13a)

∂T
(0)
11

∂x∗1
+
∂T

(0)
12

∂x∗2
=
∂P (0)

∂x∗1
, (13b)

∂T
(0)
21

∂x∗1
+
∂T

(0)
22

∂x∗2
=
∂P (0)

∂x∗2
, (13c)

T
(0)
11 = 2

∂V(0)
1

∂x∗1
, T

(0)
22 = 2

∂V(0)
2

∂x∗2
, (13d)

T
(0)
12 =

∂V(0)
1

∂x∗1
+
∂V(0)

2

∂x∗1
, (13e)

T
(0)
21 =

∂V(0)
1

∂x∗1
+
∂V(0)

2

∂x∗1
, (13f)

V(0)
1 =

∂ψ(0)

∂x∗2
, V(0)

2 = −∂ψ
(0)

∂x∗1
. (13g)

Boundary conditions:

x∗1 = −∞, V(0)
1 =

3

2

(
1 − x∗22

)
V(0)
2 = 0,

x∗1 = 0, 0 6 x∗2 6 h∗, V(0)
1 = V∗

0 , V(0)
2 = 0,

x∗1 = 0, h∗ 6 x∗2 6 1, V(0)
1 = V(0)

2 = 0,

x∗2 = 0,
∂V(0

1

∂x∗2
= V(0)

2 = 0,

x∗2 = 1, V(0)
1 = V(0)

2 = 0.

(14)

Considering equation (13), by expressing ∂P (0)

∂x∗
1

, ∂P (0)

∂x∗
2

through ψ(0) and its derivatives and excluding

P (0), we obtain:
(

∂2

∂x∗21
+

∂2

∂x∗22

)

ψ(0) = 0. (15)

For boundary conditions (14) the solution of the equation (15) describes the flow of the ordinary
fluid.

ψ(0) = ψ(0) (x∗1, x
∗
2) .

By substituting equation (12) into equation (9) and grouping the terms with the Weissenberg number
in the first power, we obtain:

T
(1)
11 =

1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(0)
12 + T

(0)
21

)

+ 2
∂V(1)

1

∂x∗1
− V(0)

1

∂T
(0)
11

∂x∗1
− V(0)

2

∂T
(0)
11

∂x∗2
, (16a)

T
(1)
22 = 2

∂V(1)
2

∂x∗2
− 1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(0)
12 + T

(0)
21

)

− V(0)
1

∂T
(0)
22

∂x∗1
− V(0)

2

∂T
(0)
22

∂x∗2
, (16b)

T
(1)
12 =

∂V(1)
1

∂x∗2
+
∂V(1)

2

∂x∗1
− 1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(0)
11 − T

(0)
22

)

− V(0)
1

∂T
(0)
12

∂x∗1
− V(0)

2

∂T
(0)
12

∂x∗2
, (16c)

T
(1)
21 =

∂V(1)
1

∂x∗2
+
∂V(1)

2

∂x∗1
− 1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(0)
11 − T

(0)
22

)

− V(0)
1

∂T
(0)
21

∂x∗1
− V(0)

2

∂T
(0)
21

∂x∗2
, (16d)
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where V(0)
i , T (0)

ij are the velocity and stress components of the terms of equations having the Weissenberg
number in a zero power, respectively; they are known.

In the similar way, converting the continuity equation, the equation of motion and the boundary
conditions, we obtain:

∂V(1)
1

∂x∗1
+
∂V(1)

2

∂x∗2
= 0, (17a)

∂T
(1)
11

∂x∗1
+
∂T

(1)
12

∂x∗2
=
∂P (1)

∂x∗1
, (17b)

∂T
(1)
21

∂x∗1
+
∂T

(1)
22

∂x∗2
=
∂P (1)

∂x∗2
. (17c)

Boundary conditions:
x∗1 = −∞, V(1)

1 = V(1)
2 = 0,

x∗1 = 0, V(1)
1 = V(1)

2 = 0,

x∗2 = 1, V(1)
1 = V(1

2 = 0,

x∗2 = 0, V(1)
1 = V(1)

2 = 0.

(18)

The stream function (10) takes the following form:

V(1)
1 =

∂ψ(1)

∂x∗2
, V(1)

2 = −∂ψ
(1)

∂x∗1
. (19)

Considering(19) and excluding equation (17), we obtain this equation:

(
∂2

∂x∗21
+

∂2

∂x∗22

)2

ψ(1) = 0. (20)

The solution of equation (20) with boundary conditions (18) has the form ψ(1) = 0, consequently,
the terms of the equation with the Weissenberg number in the first power do not affect the velocity
distribution. However, as we can see from equation (16), stress T (1)

11 , T (1)
22 , T (1)

12 , T (1)
21 prove the influence

of the elasticity of the terms of the equation with the Weissenberg number in the first power. By
substituting equation (12) into equation (19), taking into account that V(1)

1 = V(1)
2 = 0, and grouping

the terms containing the Weissenberg number in the second power, we obtain:

T
(2)
11 = 2

∂V(2)
1

∂x∗1
+

1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(1)
12 + T

(1)
21

)

− V(0)
1

∂T
(1)
11

∂x∗1
− V(0)

2

∂T
(1)
11

∂x∗2
, (21a)

T
(2)
22 = 2

∂V(2)
2

∂x∗2
− 1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(1)
12 + T

(1)
21

)

− V(0)
1

∂T
(1)
22

∂x∗1
− V(0)

2

∂T
(1)
22

∂x∗2
, (21b)

T
(2)
12 =

∂V(2)
1

∂x∗2
+
∂V(2)

2

∂x∗1
− 1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(1)
11 − T

(1)
22

)

− V(0)
1

∂T
(1)
12

∂x∗1
− V(0)

2

∂T
(1)
12

∂x∗2
, (21c)

T
(2)
21 =

∂V(2)
1

∂x∗2
+
∂V(2)

2

∂x∗1
− 1

2

(

∂V(0)
1

∂x∗2
− ∂V(0)

2

∂x∗1

)
(

T
(1)
11 − T

(1)
22

)

− V(0)
1

∂T
(1)
21

∂x∗1
− V(0)

2

∂T
(1)
21

∂x∗2
. (21d)

Once in equations (17), (18) and (19) index (1) was substituted by (2), the continuity equations,
the equations of motion, the boundary conditions and the stream function took the same form.
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Therefore, excluding P (2), we obtain:

(
∂2

∂x∗21
+

∂2

∂x∗22

)2
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Since the right-hand side of equation (22) is known, so by solving equation (22) that comprises the
boundary conditions, we will obtain the terms of the equation with the Weissenberg number in the
second power. These terms characterize the distribution of velocities and stresses. It should be noted
that, in contrast to [15], the right-hand side of equation (22) contains derivatives of the order that is
higher than in [15].

4. Results of the numerical simulation of the Maxwell fluid flow through the slot

Figures 3 and 4 visualise the stream function when ordinary (We = 0) and Maxwell (We = 0.1) fluids
flow through the slot. Obviously, as the channel compression ratio decreases, the stream function
experiences an increasing impact at the inlet slot.

When the Maxwell fluid flows through a simulated slotted chamber, there arises the circulation
zone (Fig. 3b) which extends from the right corner of the channel to the slot and occupies a triangular
area. The flow lines form the inlet flow. Consequently, a decrease in the channel compression ratio (as
well as an increase in We) results in the input flooded jet.
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a (h′/H ′ — 0.2)
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b (h′/H ′ — 0.07)

Fig. 3. The stream function, when flowing throughthe slot of the Newtonian fluid.
We = 0, Ψ: 1) 0.125, 2) 0.375, 3) 0.625, 4) 0.875, 5) 0.9715, 6) 1.0.
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Fig. 4. The stream function, when flowing through the slot of the Newtonian fluid.
We = 0, Ψ: 1) 0.125, 2) 0.375, 3) 0.625, 4) 0.875, 5) 0.9715, 6) 1.0, 7) 1.01, 8) 1.1.
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Fig. 5. The distribution of the dimensionless longi-
tudinal velocity gradient along the axis of the fluid
flowing into the slot. 1: h′/H ′ = 0.07, We = 0; 2:
h′/H ′ = 0.2, We = 0; 3: h′/H ′ = 0.2, We = 0.1.

Fig. 5 shows the distribution of the dimension-
less longitudinal velocity gradient along the flow
axis when ordinary (curves 1 and 2) and Maxwell
(curve 3) fluids flow into the slot. We can see that
the maximum value of the velocity gradient in the
flow of an ordinary fluid is reached at the distance
3h′i (x∗1 = 1.5) from the slot for the compression ra-
tios of 0.2 and 0.07, respectively. The flowing fluid
acquires the viscoelastic properties what shifts the
maximum on the curve ε̇∗ = f(x∗1) to the region of
large x1 and decreases the value of ε̇∗max.

A comparison of the experimental data ob-
tained in [1, 7, 18, 19] with the results of the nu-
merical simulations shows that the simulated flow
lines and the distribution of the velocity gradient
correspond to the experimentally obtained results
for relatively low velocities.
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a (We = 0.1, h′/H ′ = 0.07;
T ∗: 1) 5, 2) 7, 3) 45)
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b (∆n: 1) 10−4, 2) 7 · 10−4,
3) 15 · 10−4, 4) 62 · 10−4)

Fig. 6. The distribution of dimensionless normal stresses (a) and isochromes (b)
in the input area of a slot. The angular half-width of the stream (β◦/2): 30◦.

The distribution of dimensionless normal stress for the channel compression ratio of 0.07 and the
Weissenberg number 0.1 is shown in Fig. 6.
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The results properly visualise the experimental data on the distribution of isochromes in the input
area of the slot (Fig. 6b and [20]). As in the polystyrene-bromoform system under consideration both
the polymer and the solvent had the same refractive indices, the obtained lines of equal birefringence
value (isochromes) inside the input flooded jet are proportional to the first difference of normal stresses.

Thus, the simulated flow lines, velocity fields and their gradients, as well as the distribution of
stresses for ordinary and Maxwell fluids flowing through the slot, are at least qualitatively consistent
with the available experimental data under the condition that we limit velocities to relatively low
velocities. They are limited to the flow modes wherein elastic properties are just beginning to emerge.

In general, we should consider the entrance angle in the input area of the slot, by considering the
problem in oblique or curved coordinate systems.

5. Conclusions

1. The obtained results prove that numerical simulation of the convergent Maxwell fluid flow can be
used to calculate the longitudinal gradients in the input area of the slot of the system supplying polymer
solution into the boundary layer of the object moving in the water.
2. The numerical analysis of the flow of the Maxwellian liquid through the slot is crucial for verifying
and evaluating the experimental data characterizing the features of the converging flow of polymer
solutions in the input area of a slot or other opening, as proposed in [6, 19].
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Течiя рiдини Максвелла в системi пiдведення
гiдродинамiчно-активного полiмеру до приграничного шару

обтiчного об’єкта
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1Iвано-Франкiвський нацiональний технiчний унiверситет нафти i газу,
вул. Карпатська, 15, 76019, Iвано-Франкiвськ, Україна

2Унiверситет митної справи та фiнансiв,
вул. Володимира Вернадського, 2/4, 49000, Днiпро, Україна

Наведено результати чисельного моделювання течiї максвеллiвської рiдини в систе-
мi пiдведення гiдродинамiчно-активного полiмеру до приграничного шару обтiчно-
го об’єкта. Розглянуто випадок повiльної течiї, коли iнерцiйними членами можна
нехтувати, а швидкостi, напруження i функцiї течiї можна записати у виглядi роз-
кладання за числом Вейсенберга та вважати, що число Вайсенберга менше одиницi.
Встановленi особливостi поведiнки рiдини Максвелла пiд час протiкання з повздовж-
нiм градiєнтом швидкостi та прояву при цьому ефектiв пружних деформацiй мають
визначальне значення в розумiннi процесiв, якi вiдбуваються в системi пiдведення
полiмерного розчину до приграничного шару обтiчного об’єкта. Розумiння природи
виникнення ефектiв пружних деформацiй в системi пiдведення дозволяє запропону-
вати гiдродинамiчний розрахунок режимiв iнжекцiї розчину полiмеру на поверхню
об’єкта без негативного прояву ефектiв пружних деформацiй. Результати чисельного
моделювання пiдтвердили отриманi з експериментальних рiшень питань про структу-
ру гiдродинамiчного поля у вхiднiй дiлянцi щiлини i короткого капiляру уявлення про
деформацiйно-напружений стан макромолекул (елементiв рiдини) у збiжному потоцi
полiмерного розчину.

Ключовi слова: розчин полiмеру, максвеллiвська рiдина, ефекти пружних дефор-
мацiй, гiдродинамiчне поле, градiєнт швидкостi, щiлина, ефект Томса.
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