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Within the framework of the concept of micromechanics, a method for taking into account
the effect of surface energy for a thin interface micro-inclusion in the bimaterial under
conditions of longitudinal shear has been proposed. The possibility of non-ideal contact
between inclusion and matrix is provided, in particular, tension contact. This significantly
extends the scope of applicability of the results. A generalized model of a thin inclusion
with arbitrary elastic mechanical properties was built. Based on the application of the
theory of functions of a complex variable and the jump function method, the stress field in
the vicinity of the inclusion during its interaction with the screw dislocation was calculated.
Several effects have been identified that can be used to optimize the energy parameters of
the problem.
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1. Introduction

The use of nanocomposites with specific properties in engineering and technology has significantly
shifted the interest from the study of objects at the macro-level (100 − 10−1 m) and micro-level
(10−3 − 10−6 m) to the nano-level (10−9 m) [1–4]. The main difficulty in modeling nanostructures
in comparison with the macro-level requires the construction of complex constitutional laws [2]. Such
modeling is mainly based on the concept of “representative volume element” (RVE) [2–4] to clarify the
classical continuum model by certain related relations characterizing the presence and basic properties
of structural heterogeneities. In particular, taking into account the influence of the surface mechanics
of the structural boundaries of the composite components becomes more noticeable on a nanoscale.
One of the ways of such accounting was empirical when a scaling law [5–7] with its scale was developed
based on various studies of the effect of surface tension and surface energy [8–13]. This allowed for
an approximate consideration of changes in basic non-dimensional mechanical properties depending
on the characteristic size of the nanoscale. A considerable amount of work has been devoted to the
consideration of surface stresses and energy [5,8–10,12–15]. In particular, most of them use Eshelby’s
theory of ellipsoidal heterogeneity [6, 7, 11, 16, 17]. However, the phenomenon of “polynomial conser-
vatism”, according to which if the infinity of the stress field is a polynomial of some order, then inside
the inclusion the stress field is characterized by polynomials of the same order, essentially limits the
analysis of the stress-strain state (SSS) inside the inhomogeneity. Several works are devoted to the
analysis of the influence of surface stresses on cracked medium [18]. The proposed general theory is
suitable for any type of loads (on infinity, concentrated forces, moments, dipoles, and dislocations, the
inclusion is located not in a homogeneous matrix, and lies on the boundary of two different media,
it may have an arbitrarily variable small thickness and physically nonlinear mechanical properties).
This study is designed to investigate, within the framework of the micromechanics concept, the effect
of surface stresses in a thin interphase linear elastic inclusion and its vicinity, whose SSS is formed by
force factors and dislocations.
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2. Formulation of the problem

Let us consider the antiplane deformation of the structure consisting of a cross-section of two half-spaces
with an elastic constant G1, G2 by a plane xOy perpendicular to the direction z of its longitudinal
shear. The flat cross-sections of the half-spaces form two half-places Sk (k = 1, 2) and the interface
between them corresponds to the abscissa axis L ∼ x. There is a thin inclusion 2h (h ≪ a) with
orthotropic mechanical properties Gin

y , Gin
x along the segment (Fig. 1).
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Fig. 1. Geometry and loading scheme of the problem.

The magnitude and direction of action of external force factors implementing longitudinal shift of
the array change quasistatically and provide for the presence of evenly distributed at infinity stresses
σ∞yz = τ , σ∞xzk = τk, concentrated forces of intensity Qk, screw dislocations with Burgers vector com-
ponent bk at points z∗k ∈ Sk (k = 1, 2). To ensure straightness, the material interface at infinity must
meet the condition τ2G1 = τ1G2. We consider the ideal contact between the half-space along the line
L′′ = L/L′

w1(x,+0) = w1(x,−0), σyz2(x,+0) = σyz1(x,−0), x ∈ L′′ (1)

and between the inclusion banks and the matrix along L′ accept the conditions of contact with addi-
tional tension:

win(x,±h) = w(x,±h), σinyz(x,±h) = σyzk(x,±h) − Tk, k =

{
2
1

}

, (2)

where σyz, w are the components of stress tensor and displacement vector, additional surface tenses
Tk may be dependent on both the SSS intensity and the material properties of the bulk and inclusion.
The upper index “in” indicates the SSS components in the inclusion area. Hereinafter the “+” sign
corresponds to the value of k = 2 and “−” sign corresponds to the value of k = 1.

3. Thin inclusion model

We consider that the presence of a thin inclusion in the bulk is modeled by a SSS perturbation — a
jump of the components of the stress f3 and displacement f6 vectors on L′ [19–24]:

σrz(x, y) = σ0rz + σ̂rz(x, y), r =
{
x, y
}
,

w(x, y) = w0(x, y) + ŵ(x, y), (3)
[
σyz
]

h
∼= σ−yz − σ+yz = f3(x),

[
∂w

∂x

]

h

=
∂w−

∂x
− ∂w+

∂x
=
[σxz
G

]

h
≡ σ−xz
G1

− σ+xz
G2

= f6(x), x ∈ L′; (4)

f3 = f6(x) = 0, if x ∈ L′. Hereinafter it is denoted: [ϕ]h = ϕ(x,−h) − ϕ(x,+h), 〈ϕ〉h =
ϕ(x,−h) +ϕ(x,+h); the upper indexes “+” and “−” correspond to the limit values of functions at the
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upper and lower edges of the line; the values marked with the index “0” at the top, characterize the
corresponding values in a bulk without inhomogeneities at the corresponding external load (homoge-
neous solution) [24], and the values marked with the symbol “∧” at the top are the perturbations of
the main SSS field.

The mathematical model of a thin inclusion and layers of thin coverage is presented as the so-called
interaction conditions [19, 24], which are equivalent to the conditions of nonideal contact between the
matrix surfaces adjacent to the inclusion.

The main relations for any inclusion material are equilibrium conditions

∂σinxz
∂x

+
∂σinyz
∂y

+ ρF in = 0, (5)

constitutive dependence of deformations on stresses of the kind

σinxz = Gin
x

∂win

∂x
, σinyz = Gin

y

∂win

∂y
(6)

and thinwallness ratio

∂win

∂y
(x, h) +

∂win

∂y
(x,−h) ∼= win(x, h) − win(x,−h)

h
= − [win]h

h
(7)

Then, taking into account (5)–(7), the model of a thin orthotropic inclusion is described quite
accurately by two equations:

Gin
x

2

〈
∂win

∂x

〉

h

− σinxz(−a) − 1

2h

∫ x

−a

[
σinyz
]

h
(ξ)dξ + F in

aver(x, h) = 0, (8)

−
[
win
]

h

h
=

〈σinyz〉h
Gin

y

, (9)

where F in
aver(x, h) = ρ

2h

∫ h
−h

∫ h
−a F

in(ξ, y)dξdy ρ is the density of the inclusion material and F in. Sub-
stitution of boundary conditions (2) taking into account (3) in the model (8), (9) allows to obtain a
system of constitutive equations for solving the problem:

∫ x

−a
f3(ξ)dξ = −Nxz(−a) + ωin

x

〈
∂w

∂x

〉

h

+ (x+ a)(T1 − T2) + 2hF in
aver(x, h), (10)

∫ x

−a
f6(ξ)dξ = −[w]h(−a) + h

〈
σyzk
Gk

〉

h

− ωin
y

{
〈σyzk〉h − T1 − T2

}
. (11)

Here ωin
x = hGin

x , ωin
y = h/Gin

y , Nxz(−a, x) = 2hσinxz(−a).
The adequacy of the model (10)–(11) is verified by particular cases:

A) h→ 0,
[
∂w
∂x 0,h

]

→ 0, [w]0,h → 0;

B) Gin
y → 0:

∫ x
−a[σyz]h(ξ)dξ +Nxz(−a) − (x + a)(T1 − T2) − 2hF in

aver(x, h) = 0;

C) Gin
y → ∞ :

∫ x
−a(ξ)dξ + w(−a) − h

〈
σ0
yz

Gk

〉

h
= 0 or [w]h → 0;

D) Gin
y → ∞ :

〈
∂w
∂x

〉

→ 0, [w]h → 0;

E) Gin
y → 0: 〈σyzk〉h → T1 + T2;

F ) Gin
y → Gk : [w]h = h

Gin
y

(T1 + T2).

Also, the constructed model generalizes the known models of “surface layer” [8,10,14,25] for the case
of an open contour, as well as, as a special case, the model of interphase crack with surface tension [18].
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4. Construction of integral equations using the jump function method

Applying the method [19–24] to solve the problem, one can obtain dependencies according to which
the stress tensor components and derivatives of displacement vectors inside the infinite plane as well
as on the line are equal to

σ±yzk(x) = mpkf3(x) − Cg6(x) + σ0±yzk(x),

σ±xzk(x) = mCf6(x) + pkg3(x) + σ0±xzk(x),

∂w±

∂y
(x) = mpf3(x) − p3−kg6(x) +

σ0±yzk(x)

Gk
,

∂w±

∂x
(x) = mp3−kf3(x) − pg6(x) +

σ0±xzk(x)

Gk
,

σyz(ς) + iσxz(ς) = σ0yz(ς) + iσ0xz(ς) + ipkg3(ς) − Cg6(ς) k =

{
2
1

}

, (12)

(ς = x+ iy ∈ Sk; r = 3, 6; k = 1, 2)

where

gr(ς) ≡
1

π

∫

L′

fr(x)dx

x− ς
, sr(x) ≡

∫ x

−a
fr(x)dx, C = G3−kpk, pk = pGk, p =

1

G1 +G2
.

By substituting (12) in the model (10)–(11) we obtain a system of singular integral equations
(SSIE).

{

α1f6(x) + β1g3(x) − δ1s3(x) = F3(x),

α2f3(x) + β2g6(x) − δ2s6(x) = F6(x),
(13)

α1 = p2 − p1, β1 = 2p, γ1 = a/ωin
x ,

F3(x) = γ1

{

Nxz(−a) − (x+ a)(T1 − T2) − 2hF in
aver(x, h)

}

−
〈
σ0xzk
Gk

〉

h

,

α2 = p2 − p1, β1 = 2C −Gin
y , γ2 = a/ωin

y ,

F6(x) = γ2

{

[w](−a) − h

〈
σ0yzk
Gk

〉

h

}

+ 〈σ0yzk〉h − T1 − T2,

with additional conditions of balance
∫ a

−a
f3(ξ)dξ = Nxz(a) −Nxz(−a) + 2hρF in

aver(a, h) + 2a(T1 − T2),

∫ a

−a
f6(ξ)dξ = [w]h(a) − [w]h(−a). (14)

If besides, the materials of the matrix are identical, the SSIE (13) is separated into two independent
equations {

β1g3(x) − δ1s3(x) = F3(x),

β2g6(x) − δ2s6(x) = F6(x).
(15)

To assess the impact of the inclusion on SSS, it is convenient to analyze some characteristics, in
particular, energy and stress intensity factors. The expression for the inclusion deformation energy is

W d =

∫

L′

(
σyz2(x, h)w(x, h) − σyz1(x,−h)w(x,−h)

)
dx, (16)
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and it can be somewhat simplified for the case of soft inclusion.

W d = W d
0 +W d

L, W d = −1

2

∫

L′

〈σyzk〉h(x)[w]h(x)dx, (17)

where

W d
L = −1

2
(T2 + T1)

∫

L′

[w]h(x)dx, W d
0 = −1

2

∫

L′

〈σinyz〉h(x)[w]h(x)dx,

where W d
0 is deformation energy of the direct inclusion, W d is deformation energy in the matrix,

W d
L is deformation energy at the inclusion-matrix boundary. And if (11) is taken into account, the

expressions for the energy can be written as

W d
0 =

ωin
y

2

∫

L′

〈
σinyz
〉2

h
(x)dx, W d

L =
ωin
y

2
(T2 + T1)

∫

L′

〈
σinyz
〉

h
(x)dx, (18)

The generalized stress intensity factors (SIF) are introduced into consideration by the expression [24]

K31 + iK32 = lim
r→0(θ=0)

√
2πr(σyz + iσxz) (19)

It is also possible to use the above method to determine the forces acting on a dislocation with
Burgers vector b in a point z∗k by the Peach–Koehler formulas [2, 24],

Fx(z∗k) = bσ̂yz(z∗k), Fy(z∗k) = −bσ̂xz(z∗k) (20)

The method [24, 26] can be applied to the SSIE solution (13)–(14). As a result of the application
of this technique SSIE (15) is reduced to a system of linear algebraic equations to the unknown
coefficients of the decomposition of the jump functions fr(x) in series of orthogonal polynomials of
Jacobi or Chebyshev.

5. Numerical analysis

For an illustration of the research technique, we will make a detailed analysis of the problem solution
for a particular case of elastic characteristics equality of half-spaces (G1 = G2 = G, T1 = T2 = T ) and
the presence of b intensity dislocation at a point z2 = x2 + iy2. Thereinafter, the calculations were
carried out for dimensionless values

b̃ = b/πa, x̃2 = x2/a, ỹ2 = y2/a, T̃2 = T̃1 = T/G, G̃in = Gin/G, σ̃yz = σyz/G,

W̃ d = W̃ d/a2G, W̃ d
in/a

2G, K̃31 = K31/G
√
πa, K̃32 = K32/G

√
πa,

F̃x = Fx/aπG, F̃y = Fy/aπG.

In this case, the forces of additional surface tension were taken both constant and dependent on the
elastic properties of the inclusion in the form T̃2 = T̃1 = kT (Gin)α.

Figures 2, 3 illustrate the effect of surface tension on the energy of deformation W̃ d of the matrix
and the inclusion W̃ d

in in the range of changes in coordinates (x̃2, ỹ2) of the point of application of the
dislocation for a soft inclusion. The main tendencies for strain energy change are as follows: 1) in
general, the appearance of additional surface tension reduces the strain energy intensity and stress
fields in the vicinity of the soft inclusion; 2) rapid decrease of the dislocation effect with its distance
from the inclusion axis to the SSS field and, consequently, the strain energy; 3) the presence of a local
energy extremum when the dislocation point x̃2 is shifted approximately to 1.5a along the inclusion
axis (Fig. 3).
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ỹ2=1

α=0

G̃in=0.01
0.2

0.3

0.3

0.3

0.35

0.350.5

1

10.8 1.20.9
0

2

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

1.1 1.3 1.51.4

ỹ
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Fig. 5. Change of the stress field
σ̃yz in the vicinity of the switch-on

tip when a tension appears.

Fig. 6. Change of the stress field
σ̃yz in the vicinity of the switch-on

tip when a tension appears.

The effect of tension on the stress field σ̃yz in the vicinity of the switch-on is shown in Figs. 4–8.
The appearance of a surface tension reduces the intensity of a field σ̃yz especially appreciably in a soft
range of G̃in (Figs. 4–6). It was found out that the surface tension significantly affects only by K̃31

reducing it while K̃32 practically does not change (Figs. 7, 8). At the same time, the distance from
the inclusion of a dislocation location point perpendicular to its axis is expected to reduce K̃31, while
there is an extremum K̃32 at an approximate height a. Changing the location point of a dislocation
along the inclusion axis significantly affects both SIFs, decreasing K̃31 to an extremum at a distance
of about half a length of the inclusion length from its tip and increasing K̃32 to an extremum above
the inclusion tip (Fig. 8).

The forces acting on a dislocation (Figs. 9–12) significantly depend on the location application co-
ordinates and mechanical properties of the inclusion. Thus, regardless of the stiffness, there is a local
extremum F̃x, F̃y when the dislocation is located approximately above the inclusion tip (Figs. 11, 12).
At the same time, the inclusion has almost no effect on dislocation already at an altitude of ap-
proximately (Figs. 9, 10). The effect of tension on F̃x, F̃y is noticeable only for a soft inclusion. All
calculations were performed in the Scilab system.
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6. Conclusions

The proposed rather simple and mathematically correct methodology allowed us to construct a model
of a deformable thin linear interphase inclusion introduced with tension into the matrix. Some effects
from the presence of surface tension on SSS in the matrix and inclusion in the presence of dislocation
have been revealed. In particular, the appearance of surface tension reduces the intensity of deformation
energy and stress fields in the vicinity of the inclusion. There are certain combinations of mechanical
inclusion parameters and dislocation location, when the extremes of strain energy, stress intensity
coefficients, and forces acting on the dislocation are well expressed.

The above effects can be used for SSS optimization in the problem under consideration.
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Вплив поверхневих напружень на антиплоске деформування
бiматерiалу з тонким мiжфазним мiкровключенням

ПiскозубЙ. З.1,2

1Українська академiя друкарства,
вул. Пiдголоско, 19, 79020, Львiв, Україна

2Iнститут прикладних проблем механiки i математики
iм.Я.С.Пiдстригача НАН України,

вул. Наукова, 3-б, 79060, Львiв, Україна

У межах концепцiї мiкромеханiки запропоновано методику врахування впливу по-
верхневих напружень для тонкого мiжфазного мiкровключення у бiматерiалi за умов
поздовжнього зсуву. При цьому передбачено можливiсть неiдеального контакту мiж
включенням та матрицею, зокрема контакту з натягом. Це значно розширює сфе-
ру застосовностi результатiв. Побудовано узагальнену модель тонкого включення з
довiльними пружними механiчними властивостями. На основi застосування теорiї
функцiї комплексної змiнної та методу функцiй стрибка проведено розрахунок поля
напружень в околi включення при його взаємодiї з гвинтовою дислокацiєю. Виявлено
ряд ефектiв, якi можуть бути використанi для оптимiзацiї енергетичних параметрiв
задачi.

Ключовi слова: мiкронеоднорiдностi, бiматерiал, поверхневi напруження, неiде-
альний контакт, функцiї стрибка, дислокацiї.
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