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We propose the SEIRS compartmental epidemiology model aimed at modeling the
COVID-19 pandemy dynamics. The limit case of no acquired immunity (neither natu-
ral nor via vaccination) is considered mimicking the situation (i) when no effective vaccine
being developed or available yet, and (ii) the virus strongly mutates causing massive re-
infections. Therefore, the only means of suppressing the virus spread are via quarantine
measures and effective identification and isolation of infected individuals. We found both
the disease-free and the endemic fixed points and examined their stability. The basic
reproduction ratio is obtained and its dependence on the parameters of the model is dis-
cussed. We found the presence of the contact rate threshold beyond which the disease-free
fixed point cannot be reached. Using the numeric solution, the approximate analytic so-
lution of the model, characterized by rescaled contact rate, is obtained. Several possible
“quarantine on”/“quarantine off” scenarios are considered and the one combined with flex-
ible adjustment of the identification and isolation rates is found to be the most effective
in bringing the second and consequent waves down. The study can be interpreted as a
reference point for the case when the natural or acquired immunity, as well as vaccination,
are taken into account. It will be a topic of a separate study.
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1. Introduction and the model

The COVID-19 pandemic, which originated in 2019 and continuing its run at the moment of writing, is
a serious multifaceted threat to mankind. Until this day, there are about 30 million registered cases and
about a million deaths related to the disease directly or indirectly [1]. Before January 2021, one had the
situation with the absence of a vaccine, when the only effective way of slowing the pandemic down, and,
consequently, decreasing load on a local medical service, is introducing a set of quarantine measures.
These are aimed at reduction of social contacts within a community and comprise closing down of travel
roots, sport, and cultural mass events, putting on restrictions on indoor factory works, shops, cafes,
outdoor movement, etc. While effective at the initial phases of a pandemic, these measures put a huge
strain on the economy and the normal functioning of a society. Therefore, the need appeared for some
compromised solutions that, on one hand, enable normal functioning of a community, but on the other
hand, keep the pandemic under control [2–4]. In this respect, development of suitable mathematical
models that predict the realistic dynamics of a pandemic depending on the level of imposed or lifted-up
quarantine measures plays a crucial role in developing a successful long-term strategy to defeat the
pandemic. With the introduction of vaccination, this factor is also brought into play and, consequently,
stimulated the appearance of related models. These are, however, beyond the current study and will
be discussed elsewhere.
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Modeling strategies related to COVID-19 are covered in detail in a number of recent reviews [5–7].
A wide set of general epidemiology models, SIR, SEIR, SEIRU , SIRD, SLIAR, ARIMA and
SIDARTHE have been adapted for this purpose, as discussed in Ref. [8]. Most studies make use of
SIR or SEIR epidemiology models modified to describe the peculiarities of this disease. According to
Carletti et al. [9], the dynamics of the COVID-19 outbreak belongs to the simple universality class of
the SIR model and extensions thereof. There are also studies that use multi-group models to account
for population heterogeneity, e.g. the multi-group SEIR [10] and the SEIRA [11] ones.

From the practical point of view, the analysis and prediction of the pandemic outbreak in specific
countries/regions are of much interest and there are many papers devoted to such studies. In particular,
the generalized SEIR model was used to estimate the course of COVID-19 in Chile [12] and in the
UK [13]. A simple mathematical modeling approach, based on the analysis and fitting of available data,
was used to track the outbreaks of COVID-19 in the US [14] and Brasil [15]. The real-life modeling
for the dissemination of the COVID-19 in Italy is performed using the SEIR model that includes a
network of its 107 provinces with the use of precise data for population mobility [16]. An extended
SEIRD model was used to describe the disease dynamics in Germany with the parameter values
identified by matching the model output to the officially reported cases [17]. Two models of the SEIR
type are used to evaluate the role of the latency period of the infection in the dynamics of a COVID-19
epidemic in China [18]. Besides the deterministic epidemiology models, the discrete-time Markov chain
model was proposed that directly incorporates stochastic behavior and for which parameter estimation
is straightforward from available data [19].

One of the characteristic (and rather unusual) feature of the COVID-19 pandemic is the abundance
of asymptomatic cases and cases with mild symptoms, for this and other peculiarities of the disease
outbreak, see Ref. [20]. Such infected individuals are unaware of being a host for the virus but may
actively spread it around. In a real-life situation, a number of asymptomatic infected individuals are
unknown, but their role in the pandemic dynamics can be estimated in mathematical modeling. Some
modeling results predict that asymptomatic cases may lead to both fast outbreaks and large outbreak
sizes [21]. The role of asymptomatic infected individuals is also discussed in detail in Ref. [22] in relation
to the epidemic dissemination in India. The effect can be lessened by performing extensive and prompt
identification of infected individuals by suitable testing protocols, as well as their consequent isolation
Ref. [9].

At the early stages of the COVID-19 dissemination over the globe (beginning of 2020), the main
emphasis was put on its maximal possible slowing down, to prevent an overload of local medical
services. Understanding the early transmission dynamics and evaluating the effectiveness of control
measures is crucial for sustaining the disease dissemination in new areas [23, 24]. One of the first
measures, introduced both intra- and internationally, were travel restrictions, as these should prevent
the dissemination of a virus on a non-local scale. The precise effects of these measures are, however,
unknown, therefore, a number of studies addressed them explicitly.

In particular, the simulations of a global network mobility model based on air traffic in Europe [25]
show that mobility networks of air travel can predict the emerging global diffusion pattern of a pandemic
at the early stages of the outbreak. The effects of travel restrictions, as well as social distancing,
hospitalization, quarantine and hygiene measures on short-and-long-term dynamics of the COVID-19
is examined and combined with data in South Africa during March-May 2020 [26]. By combining a
global network mobility model with a local epidemiology model the simulations predict the outbreak
dynamics of COVID-19 across Europe and the results suggest that unconstrained mobility would
have significantly accelerated the spreading of COVID-19, especially in Central Europe, Spain, and
France [25]. The impact of the other measures, such as school closures, physical distancing, shielding of
people aged 70 years or older, and self-isolation of symptomatic cases, were investigated for the case of
the UK in Ref. [27]. It was suggested that to end the COVID-19 epidemic, social distancing and wearing
masks are absolutely crucial, along with the policy of reducing the transmission period by finding and
isolating patients as quickly as possible through the efforts of the quarantine authorities [28].
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The public-health policies to keep the pandemic under control are also considered in terms of the
SEIRA model in Ref. [11]. The outbreak dynamics of COVID-19 in China and the United States was
quantified by using a global network model with a local epidemic SEIR model. When postulating
that the latent and infectious periods are disease-specific and the contact period is behavior-specific,
this network model predicts that without the massive political mitigation strategies the United States
would have faced a basic reproduction number of about 5.3 and a nationwide pandemic peak [29].
This was found to be a realistic prognosis in the following months after the publication date (May
2020). Scenarios of different containment measures and their impact were analyzed using the SEIR
on a network of 107 provinces in Italy with known population mobility [16]. Results suggest that
the mobility restrictions and reduction of human-to-human interactions have reduced transmission
by about 45%, resulting in the conclusion that verifiable evidence exists to support the planning
of emergency measures. Data collected over disease cases in Hubei province were analysed using
the Bayesian approach [30]. The estimates suggest an early peak of infectiousness, with possible
transmission before the onset of symptoms. Obtained results also indicate that, as the epidemic
progressed, infectious individuals should be isolated quicker, to shorten the window of transmission in
the community. All these studies indicate that strict containment measures, movement restrictions,
and increased awareness of the population might have contributed to interrupt local transmission of
COVID-19 [28, 30].

At further stages of the COVID-19 pandemic, it became quite clear that severe quarantine mea-
sures (while mostly effective in slowing a pandemic down and preventing health systems overload) yield
significant adverse economic consequences. As the COVID-19 pandemic seems to be a long-term affair,
one should seek some compromise solutions of safe ways for relaxing and partial lifting the quarantine
measures. As suggested in Ref. [31], dynamic restrictions, with intervals of relaxed social distancing,
may provide a good option. The authors of this study aimed at finding an ideal frequency and duration
of the periods of quarantine restrictions, mitigation and relaxation by using the multivariate predic-
tion model based on up-to-date transmission and clinical parameters in 16 countries. It was found
that dynamic cycles of 50-day quarantine mitigation followed by a 30-day relaxation reduced transmis-
sion, but cannot reduce hospitalizations below the required limits. This, however, can be achieved by
employing cycles of 50-day suppression followed by a 30-day relaxation. This multi-country analysis
predicts that a combination of quarantine measures and their relaxation can be employed as the effec-
tive strategy for COVID-19 pandemic control. Fusing models from epidemiology and network science,
Block et al. [32] show how to ease lockdown and slow infection dissemination by strategic modification
of people’s contacts. Using the approach of social networking, they evaluated the effectiveness of three
distancing strategies such as: limiting interaction to a few repeated contacts (social bubbles), looking
for similarity across contacts, and strengthening communities via triadic strategies. It was demon-
strated that a strategic social network-based reduction of contact strongly enhances the effectiveness
of social distancing measures while keeping risks lower and this provides a piece of evidence for effective
social distancing mitigating negative consequences of social isolation [32].

The adapted SEIR model was used to investigate the efficacy of two potential lockdown release
strategies, focusing on the UK population as a test case [13]. Ending quarantine for the entire popula-
tion simultaneously was found as a high-risk strategy, and that a gradual re-integration approach would
be more reliable. However, lockdown should not be relaxed until the number of new daily confirmed
cases reaches a sufficiently low threshold. Using optimization methods with adapted SEIR model, it
was found that the optimal strategy is to release approximately half the population 2 − 4 weeks from
the end of an initial infection peak, then wait another 3 − 4 months to allow for a second peak before
releasing everyone else. The extreme “on-off” strategy of releasing everyone, but re-establishing lock-
down if the number of cases raises again, is found to be too risky. The worst-case scenario of a gradual
release is found to be more manageable than the worst-case scenario that used the threshold-based
on-off strategy [13].
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Lopéz et al. explore different post-confinement scenarios by using a stochastic modified SEIR
model that accounts for the dissemination of infection during the latent period and also incorporates
time-decaying effects due to potential loss of acquired immunity, people’s increasing awareness of
social distancing and the use of non-pharmaceutical interventions. Results being obtained suggest that
lockdowns should remain in place for at least 60 days to prevent epidemic growth, as well as a potentially
larger second wave of COVID-19 cases occurring within months. The best-case scenario should also
gradually incorporate workers in a daily proportion at most 50% higher than during the confinement
period. Decaying immunity and particularly awareness and behaviour have 99% significant effects on
both the current wave of infection and on preventing COVID-19 reemergence. Social distancing and
individual non-pharmaceutical interventions could potentially remove the need for lockdowns [33].

One can summarize the findings outlined above by saying that both actuality and complexity of
the COVID-19 pandemic call for employment of the modeling of various types that take into account
COVID-19 characteristic features. From these, we emphasize: (i) abundance of asymptomatic infected
individuals; (ii) absence of effective medication, and (iii) loss of acquired immunity and virus mutation.
While the (i) and (ii) are quite unambiguous, the feature (iii) calls for some discussion. During
the first months of the COVID-19 outbreak, it was widely assumed that after recovery one acquires
immunity and it will be safe for such a person to perform social work in places with a higher risk to be
infected. This belief led to a widely discussed concept of “immunity passports” [34]. It, however, turned
out that such immunity may last 3 − 4 months only, as shown by immuno-diagnostic tests [35–37],
resulting in reported cases of reinfections [35–40]. Reported virus mutations [41–44] and recent reports
on fast spreading, and potentially more dangerous, UK and South African variants [45], contribute
an additional factor to the reinfection scenario. In this case, the classical concept of a recovered and
immunized individual is valid within the time scale of 3−4 months only. There are, however, indications
that the duration of pandemic may be as much as several years and, on this time scale, one needs to
account for a loss of acquired immunity [33] and of mutation of a virus. The vaccination started in
January 2020, it takes a certain time to proceed in full. A vaccine may be inaccessible or in shortage
in certain regions or ineffective against some known or unknown yet variants of a virus. Therefore, it
makes sense to consider the limit case of complete lack of the acquired immunity and no vaccination,
as the reference case for the harshest scenario for the COVID-19 dynamics. This is done in this study.
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Fig. 1. The SEIRS epidemiology model modified
for the COVID-19 dissemination.

The SEIRS compartmental model, suggested in
this study and shown schematically in Fig. 1, con-
tains four groups, marked via their respective frac-
tions of susceptible S, unidentified infected E, iden-
tified infected I and isolated R individuals. Group E
contains individuals within incubation period of the
disease, asymptomatic patients and these with mild
symptoms, they all are transferred from the group S with the contact rate β. The E individuals,
identified as infected by means of the PCR or other tests, are transferred further to the group I of
identified infected individuals with the identification rate α. Then, those identified infected individuals
that are isolated (in hospital or in home), are transferred to the group R with the isolation rate δ.
Therefore, the R group contains isolated infected individuals rather then recovered ones, as in classical
SEIR model. Those infected individuals that are not isolated, and remain in the groups E and I, are
assumed to be contagious. All infected individuals, from the groups E, I and R, regardless of their
identification and isolation status, recover with the same rate γ (this accounts for lack of medication),
and are transferred back to the group S, where they can be infected again (this accounts for complete
lack of immunity). To simplify the model, the birth and death events are not taken into account,
assuming that the fraction of death cases with respect to the total population is small.

The corresponding set of differential equations has the following form:

Ṡ = −β(E + I)S + γ(1 − S), (1)

Ė = β(E + I)S − (γ + α)E, (2)
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İ = αE − (γ + δ)I, (3)

Ṙ = δI − γR, (4)

with an additional constraint of S +E + I +R = 1, which is already used to simplify Eq. (1).
The purpose of this study is to examine the stationary states and the time evolution of such

SEIRS model with the emphasis put on the influence of the quarantine measures and their relaxation
on pandemic dynamics. The study is of a general type with no direct link to a particular country/region
or statistical data of any sort. We, therefore, concentrate on features and tendencies as predicted by
this model and not on practical recommendations that can be used straight away. Section 2 contains the
analysis of the stationary states (fixed points) for the model and analysis of their stability; in section 3
we discuss the early-time spread and the decay dynamics of the disease dissemination by combining
numerical and approximate analytic solutions; in section 4 we consider the effects for quarantine
measures and their relaxation on the dynamics of the COVID-19 pandemic, focusing on the second
wave height, section 5 contains conclusions.

2. Fixed points and their stability

The stationary state (fixed points) for the SEIRS model is given as the solution of the equation set:

−β(E + I)S + γ(1 − S) = 0, (5)

β(E + I)S − (γ + α)E = 0, (6)

αE − (γ + δ)I = 0, (7)

δI − γR = 0, (8)

S + E + I +R = 1. (9)

Eqs. (7) and (8) allow to express E and R via I

E =
γ + δ

α
I, R =

δ

γ
I. (10)

Substituting the first one into Eq. (5) and combining it with Eq. (9) one obtains the set of equations
for S and I in a stationary state

−β(γ + δ + α)IS + (γ + α)(γ + δ)I = 0, (11)

S − 1 +
(γ + δ)(γ + α)

αγ
I = 0. (12)

There are two fixed points. The disease-free (DF) fixed point is

S† = 1, E† = I† = R† = 0 (13)

Then, assuming I 6= 0, we obtain the other, endemic (EN), fixed point

S∗ = min

{
(γ + α)(γ + δ)

β(γ + α+ δ)
, 1

}
, (14)

E∗ =
γ

γ + α
(1 − S∗), (15)

I∗ =
αγ

(γ + α)(γ + δ)
(1 − S∗), (16)

R∗ =
αδ

(γ + α)(γ + δ)
(1 − S∗). (17)

The crossover between two fixed points occurs at S∗ = 1. As far as here the disease dies out, one can
associate the expression

β(γ + α+ δ)

(γ + α)(γ + δ)
= R0 (18)

with the basic reproductive number R0. It is symmetric with respect to the α and δ and reduces to
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the β/γ when α = 0 (the SES model) or δ = 0 (the SE′S model, where E′ = E + I). At fixed γ, R0

is the function of three independent model parameters, the contact β, identification α, and isolation δ
rates. Full differential dR0 of the basic reproductive number can be found easily and reads

1

R0
dR0 =

1

β
dβ − 1

γ + α+ δ

(
δ

γ + α
dα+

α

γ + δ
dδ

)
. (19)

It provides quantitative means on how exactly the infinitesimal decrease dβ < 0 of the contact rate and
the infinitesimal increase of either identification dα > 0 or isolation dδ > 0 rates affect the change dR0

of the basic reproductive number. In practical terms, both options have associated financial burden:
quarantine related economy losses for the first option; and the cost of extensive coverage of population
by medical tests (e.g. PCR) and the isolation costs (control of home isolation and hospital care) for the
second one. Exact monetary expenses for both options depend on many economic and social details
that are country dependent, and their estimation are beyond this study. However, if known, these can
be used to obtain practical estimates for the economic efficiency of both options of reduction of the
basic reproductive number using Eq. (19). Another point to mention is, that the relative, dβ

β , and not
the absolute, dβ change of the contact rate enters Eq. (19). This shows that more strict quarantine
measures (larger magnitude of dβ) are needed in the countries with initially high contact rates β, as
compared to those with a low contact rate, to achieve the same reduction of the basic reproductive
number R0.
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Fig. 2. The 3D plots for the fractions S∗, E∗, I∗ and R∗ as the functions of (α, δ). A series of contact rates β
from 0.1 to the critical value βc (22) are considered, curing rate is fixed at γ = 1/14.

One may find certain “equivalence” between the effects of reduction of β and on the increase of
two other rates, α and δ, when imposing the the condition that the basic reproduction number is
unchanged, dR0 = 0. As follows from Eq. (19), in this case

1

β
dβ =

1

γ + α+ δ

(
δ

γ + α
dα+

α

γ + δ
dδ

)
. (20)
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In a special case of α = δ, one has dβ
β = 2

(2+γ/α)(1+γ/α)
dα
α , which simplifies further to dβ

β = dα
α if

γ ≪ α. In this oversimplified case, the relative infinitesimal change of the contact rate is balanced by
exactly the same relative change of the identification/isolation rate to keep the same value of the basic
reproductive number R0.

Let us find the regions in the parameter space {α, δ, β, γ}, where the DF and EN fixed points exist,
termed thereafter as the DF and EN regions, respectively. These are shown in Fig. 2 as surface plots
for all the fractions with respect to α and δ build at a range of contact rates β. The curing rate is
fixed at γ = 1/14 throughout this study assuming the average curing period of 14 days. The plots are
symmetric with respect to α and δ, as follows from the Eqs. (14)–(17). The plot for S∗ indicates that
S∗ < 1 (the EN fixed point) turns into the S† = 1 (the DF fixed point) at the crossover curve defined
by

(γ + α)(γ + δ)

β(γ + α+ δ)
= 1. (21)

Therefore, the DF region point spans in between this curve and the α = δ = 1 point.
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Fig. 3. DF regions in (α, δ) space.

The area of the DF region shrinks with the
increase of β, as shown by dashed regions in
Fig. 3, and disappears at the critical value

βc =
(γ + 1)2

γ + 2
, (22)

for the contact rate. At γ = 1/14, this value is
βc ≈ 0.554. At the higher contact rate, β > βc,
a DF region disappears. The other plots, for
E∗, I∗ and R∗, in Fig. 2 show the redistribution
of the individuals between respective compart-
ments following changes in the identification α
and the isolation δ rates. These all cross the
z = 0 plane at the same crossover curve (21)
and are equal to zero in the DF region.

Now we will proceed to the question of stability of the fixed points in their respective regions. This
is performed via linear stability analysis based on the Jacobian matrix for the set of equations (1)–(4)

J =




−β(E + I) − γ −βS −βS 0
β(E + I) βS − (γ + α) βS 0

0 α −(γ + β) 0
0 0 δ −γ


 . (23)

The characteristic equation F (λ) = det(J− λ1) = 0 (here 1 is the unit matrix) for the eigenvalues
λi of this matrix can be split into

F (λ) = FR(λ)FSEI(λ) = 0, (24)

where FR(λ) originates from the last row of J and FSEI(λ) — from the first three rows

FR(λ) = λ+ γ, (25)

FSEI(λ) = λ3 +
[
(γ + α) + (γ + δ) + (γ − β(S − E − I))

]
λ2

+
[
(γ + α)(γ + δ) + ((γ + α) + (γ + δ))(γ − β(S −E − I))

]
λ

+ (γ + α)(γ + δ)(γ + β(E + I)) − γβ(γ + α+ δS). (26)

For the fixed point to be stable, the real parts of all eigenvalues λi should be negative. The first
eigenvalue λ1 = −γ is obtained trivially from the FR(λ) = 0 equation and is the same and negative
for both fixed points since curing rate γ is always positive. The rest eigenvalues, λ2, λ3 and λ4, are
the solutions of the FSEI(λ) = 0 equation and differ for the cases of the DF and EN fixed points.
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In particular, for the DF fixed point (13), the characteristic equation FSEI(λ) = 0 for λ2, λ3 and
λ4, simplifies to

FSEI(λ) = (λ+ γ)FDF (λ) = 0, (27)

where

FDF (λ) = λ2 +
[
(γ + α) + (γ + δ) − β

]
λ

+ (γ + α)(γ + δ) − β(γ + α+ δ). (28)

Hence, one of the eigenvalues, λ2 = −γ, is found easily from Eq. (27) and is equal to λ1 and always
negative. Two other eigenvalues, λ3 and λ4, are solutions of the FDF (λ) = 0 equation. The signs of
their real parts of are examined graphically for the simplified case of α = δ to enable visualisation of
the analysis via 3D plots. The results are shown in Fig. 4. The plot on the left shows the discriminant
D of the square equation FDF (λ) = 0, which is found to be positive at all β and α = δ if both rates are
contained within the [0; 1] interval. Therefore, both λ3 and λ4 are real. The plot on the right shows λ3
and λ4 within the DF region (R0 < 1) delimited by a crossover surface shown in red, which is obtained
by translation of the crossover curve (21) along the Z-axis. Both λ3 and λ4 are negative within the
DF region indicating stability of the DF fixed point here. This is found to hold for the more general,
α 6= δ, case (not shown here).

0

0.25

0.5

0.75

1

0.25

0.5

0.75

0

1

2

3

4

5

Discriminant D

D

a d=
b

0

0.25

0.5

0.75

1

0.25

0.5

0.75

-1.5

-1

-0.5

0

Eigenvalues l3,�l4 at R0<1

l4

l3

a d=
b

Fig. 4. Left side: discriminant D of the quadratic equation FDF (λ) = 0 for the eigenvalues λ3 and λ4 at the
DF fixed point. Right side: λ3 and λ4 in the DF region (R0 < 1). The crossover surface is shown in red.

For the case of the EN fixed point (14)–(17), the characteristic equation FSEI(λ) = 0 reads

FSEI(λ) = FEN (λ) = 0,
where

FEN (λ) = λ3 +
[
(γ + α) + (γ + δ) + (γ/S∗ − βS∗)

]
λ2

+
[
(γ + α)(γ + δ) + ((γ + α) + (γ + δ))(γ/S∗ − βS∗)

]
λ

+ γ
[
β(γ + α+ δ) − (γ + α)(γ + δ)

]
(29)

≡ λ3 + aλ2 + bλ+ c = 0, (30)

where a, b and c are the coefficients next to the powers of λ, introduced for the sake of brevity. This
equation can be rewritten in reduced form

µ3 + pµ+ q = 0, (31)

where

p = −a
2

3
+ b, q =

(a
3

)3
, λ = µ− a

3
. (32)
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This enables to use the Cardano formula [46], in which case the solutions, µ2, µ3 and µ4, depend on
the sign of the discriminant

Q =
(p

3

)3
+
(q

2

)2
. (33)
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The sign of Q is examined graphically for the simplified case of α = δ and is found to be positive
within the whole EN region, as shown in Fig. 5, on the left. In this case, one of the solutions, µ2 is
real, whereas two others, µ3 and µ4 are complex, and we will be interested in their real parts only.
The respective expressions are [46]

µ2 = A+B, Re(µ3) = Re(µ4) =
A+B

2
− p

3
, (34)

where
A = −q

2
+ 3
√
Q, B = −q

2
− 3
√
Q. (35)

The real parts of the eigenvalues λi can be found from here according to Eq. (32) and these are shown
within the EN region in the right plot of Fig. 5. One can see that λ2 and the real parts of both λ3 and
λ4 are all negative, hence the EN fixed point is stable in the EN region.

To conclude this section, we found two fixed points, the disease-free and the endemic one and the
respective regions of parameter space where they exist, these are defined by the basic reproductive
number R0. Both fixed points are found to be stable within their respective regions according to the
linear stability analysis. The important outcome of this analysis is that the critical value βc (22) exists
such that the disease-free fixed point exist only if a contact rate β < βc. This indicates that, within
the SEIR model suggested in this study, the contact rate plays a crucial role in the possibility of the
system to achieve a disease-free stationary state.

3. Numeric and approximate analytic solutions

Stationary states of the epidemiology model describe its asymptotic behaviour at large times, and the
possibility of reaching a DF state is of most importance here. However, the time-resolved dynamics of
the disease dissemination is even of higher importance, as it is directly related to the lives losses and
to the load put on medical service. In particular, monitoring the initial phase of the dissemination [17,
23,25,29,30,47] helps to decide on a required measures to bring its dissemination down [6,9,10,22,27].
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The SEIRS model, defined via the set of equations (1)–(4), has no exact analytic solution for its
dynamics, but we will attempt to find a suitable approximate one. We will write the equation for the
total fraction of infected individuals I ′ = E + I +R in the following form

İ ′ = β(I ′ −R)(1 − I ′) − γI ′. (36)

One can see that at R = 0 this equation reduces to the one for the SI ′S model which has an exact
solution. If R 6= 0, the Eq. (36) may be solvable if the fraction of isolated individuals R is some simple
known function of I ′.

To look for suitable choices for such function, we performed numerical integration of Eqs. (1)–(4).
It is done via the second-order integrator

X(t + ∆t) = X(t) + Ẋ(t)∆t+
1

2
Ẍ(t)∆t2 (37)

for each fraction X = {S,E, I,R}, which is applied iteratively starting form the initial state, S(0),
E(0), I(0) and R(0), with the time step ∆t. The latter is chosen equal to one day. The equations are
coupled, as far as both the first derivatives Ẋ , given by Eqs. (1)–(4), and the second derivatives

S̈ = −β(Ė + İ)S − β(E + I)Ṡ − γṠ, (38)

Ë = β(Ė + İ)S + β(E + I)Ṡ − (γ + α)Ė, (39)

Ï = αĖ − (γ + δ)İ , (40)

R̈ = δİ − γṘ (41)

at time instance t depend on all variables S, E, I and R at the same instance t. It has been checked
that the third-order integrator does not provide any evident improvement in accuracy as compared to
the second-order one. To simplify analysis of numeric solution, we exploit the fact that α and δ enter
expression for R0 (18) in a symmetric way and, therefore, we consider the same simplified case of α = δ
as above. The numeric integration can, obviously, be perforemd at any values of α and δ.
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Fig. 6. Scatter plot R vs I ′ obtained from a numerical solution
of the set of equations (1)–(4) at an early-time stage. The con-
tact rate is β = 0.5 and a wide range of α = δ rates is covered.

Let us consider the early-stage dis-
semination of the disease from the al-
most healthy initial state, S(0) = 0.999,
E(0) = 0.001 and I(0) = R(0) = 0, first.
The total number of initially infected in-
dividuals, brought into the system from
somewhere outside, is I ′(0) = 0.001 or
0.1% of total populations then. The nu-
meric integration is performed at various
rates β and α = γ. To look for a suit-
able function that relates R to E′, the
time evolution of both fractions was pre-
sented as the scatter plots, see Fig. 6. As
is seen in the plot, the linear function

R(t) ≈ k(β, α, δ)I ′(t), (42)

provides a very good fit at early times (t < 30) for the case of β = 0.5 and a wide range of α = δ rates.
Fig. 6 contains also the fitting results for the coefficient k(β, α, δ) at various α = δ. Similar findings
obtained at other values of β lead to the approximate fitting function for k(β, α, δ) of the following
form

k(β, α, δ) ≈ [(α+ δ)/2]
3
2

2β
. (43)

Its accuracy is found to be reasonable good in a wide interval from β = 0.1 to 0.5 and α = δ ranging
from 0 to 1. The cases β = 0.1 and 0.5 are shown in Fig. 7, where the approximate expression (43) is
plotted via dashed lines and the results for k(β, α, δ) obtained by numeric integration — via squares.

Mathematical Modeling and Computing, Vol. 8, No. 2, pp. 282–303 (2021)



292 Ilnytskyi J. M.

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
a d=

Fit for the coefficient ( , , )k b a d

b=0.5

b=1.0
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plot.

The approximate expression for R(t)
given by Eqs. (42) and (43), can be sub-
stituted into Eq. (36) now resulting in the
equation

İ ′ = β′I ′(1 − I ′) − γI ′, (44)

where β′ = β(1 − k(β, α, δ)). One recog-
nizes now the equation for the SI ′S model
with the scaled contact rate β′. It is lower
than β as far as part of infected individuals
are isolated in the group R and do not in-
fect susceptible individuals via social con-
tacting. The solution of this equation is

well known

I ′(t) =
I ′(0)(1 − γ/β′)

I ′(0) + (1 − γ/β′ − I ′(0)) exp[−β′(1 − γ/β′)t)]
. (45)
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Fig. 9. Data points: numeric result for the time evo-
lution of the total fraction of infected individuals I ′(t)
starting from an initial state with I ′(0) = 0.999 at
β = 0.2 and a range of α = δ. Lines: approximate

solution given by Eq. (46).

The approximate solution (45) is found to reproduce the early-time dynamics of I ′(t) from the
almost healthy state (I ′(0) = 0.001) rather well and in a wide range of β and α = δ. This is demon-
strated in Fig. 8 for the case of β = 0.5 and α = δ that range from 0 (where the approximate solution
is exact) to 0.6.

Let us now consider the case when the disease decays from the all-infected state with S(0) = 0.001
and E(0) = I(0) = R(0) = 0.333 because of a suitable choice of the model parameters (e.g. as the
result of the quarantine measures, massive testing and efficient isolation of infected individuals). This,
of course, is possible only if the set of β and α = δleads to the reproductive number R0 6 1, where the
latter is given by Eq. (18). Using fit to the numeric integration data, we found that the decay dynamics
of I ′(t) can be approximated well by the exponential function

I ′(t) = I ′(0) exp(−γt) (46)

as demonstrated in Fig. 9 for the case of β = 0.2 and α = δ ranging from 0.1 to 1. At this value for β,
R0 crosses 1 at α = δ ≈ 0.29 and the exponential decay (46) is very accurate, indeed, at α = δ > 0.29
(see respective plots in Fig. 9). The expression (46) is the solution of the equation

İ ′ = −γI ′, (47)
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which is obtained from Eq. (36) at β = 0. This indicates that the γI ′ term prevails over the β(I ′−R)(1−
I ′) one for the decay dynamics of the SEIRS model considered here. Therefore, if the reproductive
number R0 6 1, then the disease can be brought down more quickly only by the increase of a curing rate
γ (by finding effective medication), but not by changing the other parameters related to the contact,
identification and isolation rates of infected individuals.
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Fig. 10. Left frame: Fit of the I ′(t) evolution (shown via symbols) via modified logistic function (48) (shown
via thin black dashed lines) at β = 0.5 and a range of α = δ. Right frame: dependence of the set of fitting

parameters on α = δ.

As an attempt to fit the evolution of I ′(t) both at the early times of an outbreak and at it saturation
in an endemic state, we used the modified logistic function

I ′(t) = I ′∗ [1 + exp(−c(t− t0))]−n , (48)

suggested by Pongkitivanichkul et al. [47] as the result of their analysis of the epidemic data reported
by the World Health Organization, and motivated by the renormalization group framework. Here
I ′∗ = 1 − S∗, where S∗ is given by Eq. (14), c and t0 define a time scale for the I ′(t) evolution,
whereas n is termed in Ref. [47] as an asymmetry in the modified logistic function, which determines
the characteristic of the epidemic at an early stage and is found either equal or less than one. The
fits, performed for the numerical solution of the SEIRS model considered here, are shown at β = 0.5
and a range of α = δ from 0 to 0.6 as black dashed lines in the left frame of Fig. 10. The analytic
form (48) is found to work well at all times, except straightening up the bumps before the plateau is
reached, at α = δ > 0. The dependence of the fitting parameters I ′∗, c, t0 and n on α = δ are shown
in the right frame of the same plot. Leaving out the amplitude I ′∗, discussed above, let us note that
the value of c is found inside the interval from 0.4 to 0.8 without obvious systematic trend, whereas
the characteristic time t0 increases from about 19 to 30 days when α = β raised from 0 to 0.6. The
strongest dependence is found for the asymmetry n, which decreases from 1 down to 0.25 and seems
to saturate at larger α = β. This result is revelant in the context of the role of this parameter for
description of the maturing and the growth-dominated phase of the pandemic, as discussed in Ref. [47].
Deeper analysis is, however, beyond this report and will the subject of the following studies.

To conclude this section, we performed numerical integration of the SEIRS model here and found
that, at early stage of an outbreak, the fraction R of isolated infective individuals is linearly proportional
to the total fraction I ′ = E+ I+R of infected individuals. This enabled us to map the SEIRS model
onto the SI ′S one with effective contact rate β′ < β and obtain the approximate analytic solution for
the SEIS model valid at the early time of the outbreak. The decay dynamics is found to be dominated
by the recovery rate γ, which is fixed in this model. The evolution of I ′(t) in the whole time interval
can be fitted well with the modified logistic function of Pongkitivanichkul et al. [47] leading to the
possibility of further analysis of the outbreak merits.
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4. The effects of quarantine measures and of their relaxation

In the previous section we considered both the early-time dissemination and the decay of the disease as
described by the SEIRS model that reflects characteristic features of the COVID-19 virus. Numeric
solution (37) is a quick and efficient way to do such analysis for any particular choice of the model
parameters β, α, δ and γ. On a top of this, we also obtained approximate analytic solutions (45) and
(46) at α = δ for the early-time dissemination, for the decay regimes and the fit to the modified logistic
function (48). This analysis is performed assuming that the evolution of the system occurs at fixed
values for all model parameters β, α, δ and γ, i.e. for the case of a standard compartmental model. In
the real life, the governments and societies react dynamically on the virus dissemination by undertaking
appropriate measures, these can be mimicked via so-called “forced compartmental models” [48] with
some of the model parameters considered dependent on time. The exact form of such dependencies
can be tuned according to the available statistical data, Ref. [49] being a good example.

During the initial stages of the COVID-19 pandemic, the only means to slow it down was to
introduce quarantine measures, both locally (closure of sporting and cultural mass attendance events,
hotel service, social distancing, etc.) and globally (cancellation of international flight and train services,
closure of tourism, etc.) [11, 16, 25–30]. However, at the subsequent stages of the pandemic, the
societies became aware of related economic implications. The focus shifted gradually to addressing
the questions when and to which extend the quarantine measures can be relaxed to revive economy
but, simultaneously, to keep the dissemination of the disease under control [13, 31–33]. We discuss
the effects of a quarantine and of it relaxation in terms of forced SEIRS model in this section. We
must disclaim and remind again that this model reproduces the extreme case when no immunity can
be acquired against the disease (both naturally and via vaccination), and that we do not aim on
reproducing any particular case (country, town) or provide practical aids with numbers. Instead, we
examine the general effects and trends related to quarantine depending on the model parameters set.

We start from discussing the effect of introducing permanent quarantine measures on the dynamics
of the disease dissemination. The following algorithm is used. We start from the state with a small
fraction of unidentified infected individuals E0 (supposedly brought to the unaware community from
outside), whereas forth I and E are initially equal to zero. At early times the dissemination of disease
is unrestricted and is characterised by a “normal” contact rate β, being characteristic for a given
community. When, at a certain time instance, the fraction of newly identified individuals per day, İ,
reaches chosen quarantine threshold value of ∆, the community is switched into a quarantine mode,
characterised by a lower contact rate β2 < β. This means the use of the step-like function for the
contact rate β(t).

For reading convenience, we display all fractions in % of the total population. We present the
results for three separate cases of α = δ = 0.05, 0.1 and 0.2, which model poor, intermediate and
high identification and isolation rates, respectively. All other parameters, E0 = 0.001%, β = 0.25,
β2 = 0.05 − 0.25 and ∆ = 0.01%, are the same in all cases. We also remark that the findings are
similar at other values of β if the other rates are scaled accordingly. For the sake of brevity, we display
the dynamics of the isolated infected fraction R only, which is important as an estimate of a strain put
on the medical care system. The unidentified infected fraction, E, cannot be evaluated in a real life,
whereas the identified infected fraction, I, can be interpreted as the “transit” state for the individuals
that are identified as infected but not isolated yet and, hence, of a lesser importance. In any case, the
behaviour of both E and I is found to follow closely that of R.

The top plot in Fig. 11 shows the case of a low identification and isolation rates, α = δ = 0.05
and various quarantine levels, from a very strict one, β2 = 0.05 = β/5, to a no quarantine being
introduced, β2 = 0.25 = β. As one can see in this plot, the decay of the R fraction to zero at
long times is possible only at a very strict quarantine measures, β2 = 0.05. Twofold increase of the
identification and isolation rates to α = δ = 0.1 (see, middle plot in Fig. 11), enables to achieve this at
less strict quarantine measures characterised by a higher contact rate β2 = 0.1. Yet another twofold
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increase of α = δ up to 0.2 (shown in a bottom plot in Fig. 11) increases threshold value of β2 further, up
to 0.15. This demonstrates that the strictness of quarantine measures in the SEIRS model is inversely
proportional to the identification and isolation rates. Let us also note that at β2 < β2,th, the dynamics
of the R changes very weakly upon further decrease of β2. This indicates that imposing quarantine
measures stronger than these characterised byβ2,th has no point, as it only increases associated financial
burden with no real benefit of better control the pandemic.
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Fig. 11. Top frame: time evolution of R(t), as affected by introducing the quarantine measures of various
severity (β2 ranges from 0.05 up to 5), at very low identification and isolation rates α = δ = 0.05. Middle and

bottom frames: the same for higher values of α = δ = 0.1 and α = δ = 0.2, respectively.

Exact expression for the threshold value, β2,th, at which R has a zero stationary state, can be
obtained from the equation R0 = 1, where R0 is given by Eq. (18)

β2,th(α, δ) =
(γ + α)(γ + δ)

γ + α+ δ
. (49)

Given that this expression is symmetric with respect to α and δ, we analyse β2,th(α, δ) as a function of
one of its arguments while another is fixed plus the special case of α = δ which is exploited throughout
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this study. This is done in Fig. 12, and we see that the decrease of one of its arguments (in this case
this is δ) below 0.2 decreases β2,th(α, δ)essentially regardless of the value of the other argument. With
respect to this, the special case of α = δ turns to be quite optimal, as: (i) the curve for β2,th(α, δ = α)
is relatively high approaching the case when one of the arguments equals to 1 and (ii) the value of
both arguments can be kept balanced without much demand on either identification or isolation rate
to stay very high. In the special case α = δ, the dependence of β2,th(α, δ = α) on α is close to linear.
Indeed, the expansion of Eq. (49) at small γ yields linear dependence in α

β2,th(α, δ) ≈ 3

4
γ +

α

2
. (50)

This expression provides simple means of evaluation of minimum required quarantine measures de-
pending on the current identification and isolation rates.
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We will switch now to the issues when and
how the quarantine measures can be relaxed
while keeping the disease dissemination under
control, where we follow closely the ideas from
Ref. [13]. In particular, the quarantine mea-
sures (contact rate is reduced to β2) are intro-
duced if the fraction of newly identified infected
individuals per day are İ > ∆. However, if, as
the result of quarantine measures, the disease
dissemination decays and İ 6 ε, where ε can
be termed as the quarantine relaxation thresh-
old, then the quarantine is relaxed. Relaxation
means reversion of the contact rate back to β, a
“normal life” one. Hence, the square saw func-

tion is used for the contact rate β(t) with its period given by the ∆ and ε threshold values.
We concentrate here on the resulting dynamics for the R fraction depending on the choice for ε

for the same set of parameters: β = 0.25, α = δ = 0.2 and a range of β2 as shown previously in the
bottom frame of Fig. 11. The results are shown in Fig. 13. Top plot in this figure represents relatively
early relaxation of quarantine measures, ε = 10−3%. This results in a wave-like oscillations for R with
no time intervals where R drops essentially below 0.1%. With the decrease of ε down to 10−5%, such
intervals appear and are of approximate duration of 50− 60 days (see, middle plot in the same figure).
With the further decrease of ε down to 10−7%, their duration increase about twice, to about 100 days
(see, bottom plot there). Therefore, lowering the quarantine relaxation threshold ε about two orders
of magnitude increases the length of the almost disease-free time intervals about twice. During these
intervals, the economics works normally and can be essentially revived. Let us also remark that the
threshold value for quarantine contact rate β2,th = 0.156 for the given choice of α = δ = 0.2. And, as
follows from the middle and bottom all plots in Fig. 13, duration of the almost disease-free intervals
is maximal when β2 ≈ 0.8β2,th and decays when β2 decreases. This indicates, that, at least within
this model, an optimal quarantine contact rate β2 exists such that it leads to the longest disease-free
interval when the quarantine measures are relaxed. This contact rate is lower but close to the threshold
contact rate β2,th.

The height of the second and all the following waves for the disease dissemination in Fig. 13 is found
to be the same. This is the consequence of the fact, that the only way to bring the disease down in the
SEIRS model is to transfer infected individuals into the R fraction, where they are isolated and do not
dissemination infection further. That is why the values of the α and δ rates should be sufficiently high,
as far as they drive this transfer. From the practical point of view, if the following waves of a pandemic
appear, then one seeks the ways to bring their height down. The first way to achieve this is to take
into account the immunity factor (permanent or temporal), acquired either naturally or via vaccination
in a course of the disease dissemination. Immunised individuals will be resilient to the disease and
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will not dissemination it further. This factor is beyond the scope of this study and is a subject for a
future work. Another ways of bringing the consequent waves down is to dynamically adjust quarantine
threshold and/or the identification and isolation rates. These approaches are discussed below.
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Fig. 13. Top frame: time evolution of R(t) in the the periodic “quarantine on” — “quarantine off” scenario at
fixed α = δ = 0.2 and relatively large threshold value ε. Middle and bottom frames: the same at more moderate

and low threshold value ε, as indicated in the figures.

The following procedure is used for dynamic adjustment of the quarantine threshold ∆. The same
basic algorithm is used as discussed with relation to Fig. 13. On a top of that, the quarantine threshold
∆n for the nth wave obey the geometric progression

∆n =
∆0

kn∆
, (51)

∆1 = 0.01%, as used above, and k∆ is the threshold factor. This means that for each subsequent
wave the quarantine measures are introduced earlier than for the previous one. The result of numeric
solution is shown in the top frame of Fig. 14 at various threshold factors k∆. One can see that the
height of the second and of the following waves decrease and the effect is stronger for larger k∆. At
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Fig. 14. Top frame: time evolution of R(t) in the periodic “quarantine on” — “quarantine off” scenario at fixed
α = δ = 0.2 using dynamic changes in ε according Eq. (51) at various k∆ indicated in the figure. Bottom frame:
the same but using fixed ε and dynamic change of α = δ according to Eq. (52) with the parameters provided in

the figure.

large times, however, ∆ → 0 and the quarantine must be introduced instantly with no periods of its
relaxation. Therefore, this approach may be interpreted as a bit artificial or, at least, impractical.
The other way to bring the following waves down is by dynamic adjustment of the identification α
and isolation δ rates. This might be more realistic, as it reflects the fact that with the progress of the
pandemic community became more aware of it and more relevant tests are developed and available,
as well as more hospital space in allocated for isolation of infected individuals. Following previous
findings, especially these shown in Fig. 12, we consider the case of δ = α as the most optimal one and
restrict our analysis to it. Dynamic adjustment of relevant rates are given by logistic function:

α(t) = αmin + (αmax − αmin)
(
1 − e−t/τ

)
, δ(t) = α(t), (52)

where αmin = α(0), αmax = α(∞) and τ is the time constant that provides a timescale for the increase
of α and δ. The case of αmin = 0 and αmax = 0.4 is shown in the bottom of Fig. 14 at various time
constants τ . As one can see, prompt reaction of a community (τ 6 90 days) completely eliminates
the second and the following waves, whereas the sloppy reaction with higher τ leads to wide and high
second wave, which height is comparable to (at τ = 150 days) or higher then (at τ = 160 days) the
first wave. One can see that quite moderate increase of τ from 130 to 160 results in quite dramatic
increase of the second wave height. One can conclude that the dependence of the height for the second
and the following waves of the disease dissemination depends non-linearly on the model parameters
related to identification and isolation of infected individuals. Consequently, slow and inefficient testing
measures can be dangerous resulting in broad and high second and the following waves of the disease
dissemination.
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5. Conclusions

We propose here the SEIRS compartmental epidemiology model that is based on some characteristic
features of the early COVID-19 outbreak as follows: an abundance of unidentified (asymptomatic or
with mild symptoms) infected individuals, the absence of medication and actively mutable virus leading
to possible reinfection. Both naturally acquired immunity and vaccination are not taken into account,
meaning that the model describes either the early stages of outbreak or the situation with no or limited
access to the vaccine. The model contains four compartments: susceptible S, unidentified infected E,
identified infected I and isolated infected R individuals. All types of infected individuals recover only
in a natural way with the same average recovery time and with the possibility of reinfection. Model
parameters involve: the contact β, identification α and isolation δ rates, as well as fixed curing rate γ.

We found two stationary states (fixed points) for the set of differential equations of the model: the
disease-free and the endemic one. They exist in their respective restricted regions of the parameter
space because of the limitations for all fractions to stay positive and do not exceed 1. The linear
stability analysis indicates the stability of both fixed points within their respective regions. Simple
expressions obtained for the fractions S∗, E∗, I∗ and R∗ in the endemic fixed point enable us to
discuss the ways to bring the number of infected individuals in a stationary state down via changing
the model parameters. This can be achieved by lowering the contact rate β and/or by the increase
of the identification α and isolation δ rates. However, if β equals or exceeds the critical value βc, the
disease-free fixed point can not be achieved at any combination of α and δ. This justifies the need for
lowering the contact rate β (quarantine measures) to control the dissemination of COVID-19.

Analytic solution of the SEIRS is not possible, therefore, we employed a numeric solution to
examine the dynamics of the disease dissemination at various sets of model parameters. The numeric
solution provides a piece of evidence that, during the early-time evolution, the R fraction is linearly
proportional to the E fraction. This simplifies the differential equations by bringing the model to the
class of the SIS model with rescaled contact rate β′ and enables an approximate analytic solution for
the SEIRS model at early times of its spread. A similar analysis is performed for the decay of the
disease, given the suitable choice of the model parameters. The exponential decay is found, governed
solely by the curing rate γ. Both approximate solutions do agree well with the results of the numeric
one, within their respective regions of validity. Both approximate solutions provide simple analytic
expressions for the estimates of system dynamics at an early stage and at its decay. The numeric
solution can also be fitted well by a modified logistic function, as suggested in some previous works.

The effects of quarantine and of its relaxation are modelled via turning the model into a forced
compartmental one, with the step-wise switching between the “normal life” contact rate β and that
during a quarantine, β2 < β. The numeric solution can be used only in this case. The switch into a
quarantine mode is performed if the fraction of newly identified infected individuals per unit time, İ
exceeds a quarantine threshold ∆. At fixed values of α and δ, the contact rate β2,th exist such that the
disease decays only if the contact rate is lower than β2,th. It increases with the increase of the α and
δ rates. Therefore, less strict quarantine measures are possible if more extensive testing of population
and prompt isolation of infected individuals are undertaken. However, we also found that the optimal
quarantine contact rate β2 is about 0.8β2,th and the further decrease of β does not lead to faster decay
of disease. This indicates no need for over-strong quarantine measures.

If, as the result of quarantine measures, İ is reduced below ε (the quarantine relaxation threshold),
then we restore the normal life contact rate β. Application of this algorithm of periodic switching
on/off of a quarantine results in the wave-like behaviour for all the fractions of infected individuals. At
fixed values of α, δ and of both thresholds ∆ and ε, the waves height are determined by the quarantine
threshold ∆ only, whereas their separation in time — by its relaxation threshold ε. Therefore, one way
to suppress the consequent waves of the disease in the SEIRS model is: to fix identification α and
isolation δ rates and to decrease ∆ (undertake quarantine measures earlier) each time a quarantine is
renewed. More realistic situation is, however, when both α and δ are small at the beginning of the
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pandemic (no testing algorithms, equipment and required chemicals available) but gradually increase
thereafter until the reasonable saturation for their values is reached. We modeled this scenario assuming
quarantine on/off switch with fixed thresholds ∆ and ε and the time-dependent α and δ rates using
a logistic function. It is found that the heights of the second and of following waves of the disease
dissemination in such scenario depend critically on the time scale of the growth of α and δ. The
dependence is rather non-linear, where a small increase of the time scale results in a dramatic increase
of the waves’ height with the possibility of the second wave being broader and higher than the first
one. This shows the importance of the need for the prompt introduction of testing and increasing the
hospital level of readiness to avoid the wide and high second and following waves of the pandemic.

We did not adjust or fine-tune intentionally this modeling study for a particular coun-
try/region/town and preferred to stand on rather general grounds. In this way, the study concentrates
on the general effects and disease behaviour patterns that are found at a certain set of model param-
eters. It, of course, can be tuned for some special case given the relevant statistical data is available,
but, in our view, the cellular automaton, geography-based modeling and network-based approaches
suit this purpose much better. We see, however, the option for a synergy between the SEIRS model
developed here and above mentioned approaches and plan to do this in the following studies, as well
as take into account the effects of immunity.
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Моделювання пандемiї COVID-19 у границi вiдсутностi набутого
iмунiтету
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Запропоновано компартментну епiдемiологiчну модель SEIRS з метою моделювання
поширення пандемiї COVID-19. Розглянуто граничний випадок вiдсутностi iмунiтету
до захворювання (чи набутого в результатi подолання захворювання, чи як наслiдок
вакцинацiї), який реалiзується коли: (i) вакцина ще не розроблена, не протестована
або недоступна та (ii) вiрус швидко мутує, спричиняючи випадки масової реiнфекцiї.
У цiй границi єдинi доступнi способи стримування поширення вiрусу це: карантин-
нi заходи (локдаун) та ефективна iдентифiкацiя та iзоляцiя iнфiкованих iндивiдiв.
Знайдено фiксовану точку, що характеризується повним подолання захворювання та
ендемiчну фiксовану точку, дослiдженi умови стабiльностi обох. Отримано та про-
аналiзовано вираз для базового репродуктивного числа, як функцiї параметрiв мо-
делi. Знайдено граничне значення параметру контактностi iндивiдiв, за перевищен-
ня якого фiксована точка iз повним подоланням захворювання є недосяжною. Ви-
користовуючи чисельний розв’язок диференцiальних рiвнянь, отримано вираз для
ефективного параметру контактностi, використання якого уможливило отримання
наближеного аналiтичний розв’язку для запропонованої моделi. Розглянуто низку
можливих сценарiїв для впровадження та послаблення локдауну, з яких сценарiй iз
гнучким пiдбором параметрiв iдентифiкацiї та iзоляцiї iнфiкованих хворих виявився
найуспiшнiшим для пониження другої та подальших хвиль пандемiї. Дослiдження
може розглядатись як старт для складнiших моделей iз врахуванням присутностi
iмунiтету, як природнього, набутого внаслiдок перенесеного захворювання, так i в
результатi вакцинацiї. Це буде предметом подальших дослiджень.

Ключовi слова: епiдемiологiя, компартментнi моделi, звичайнi диференцiальнi
рiвняння, COVID-19.
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