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Calculations of characteristics of stars with axial rotation in the frame of polytropic model
are based on the solution of mechanical equilibrium equation – differential equation of sec-
ond order in partial derivatives. Different variants of approximate determinations of inte-
gration constants are based on traditional in the theory of stellar surface approximation,
namely continuity of gravitational potential in the surface vicinity. We proposed a new
approach, in which we used simultaneously differential and integral forms of equilibrium
equations. This is a closed system and allows us to define in self-consistent way integration
constants, the polytrope surface shape and distribution of matter over volume of a star.
With the examples of polytropes n = 0 and n = 1, we established the existence of two
rotation modes (with small and large eccentricities). It is proved that the polytrope sur-
face is the surface of homogeneous rotational ellipsoid for the case n = 0. The polytrope
characteristics with n = 1 in different approximations were calculated as the functions
of angular velocity. For the first time it has been calculated the deviation of polytrope
surface at fixed value of angular velocity from the surface of associated rotational ellipsoid.
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1. Introduction

Axial rotation is a factor which is inherent to all stars of different types, as well as to the majority
of celestial bodies and their systems. It is well known that normal stars of early spectral classes are
characterized by high angular velocity, and stars of late classes (older than F5) have a small angular
velocity and are surrounded by planets. For example, the stars of classes B5÷F0 have angular velocity
which exceeds 10−5 s−1 [1], while the angular velocity of the Sun is 3 · 10−6 s−1. The angular velocity
of neutron stars (pulsars) are 10 s−1 6 ω 6 4 · 103 s−1 [2].

The fundamentals of the polytropic model of stars in the frame of model without axial rotation were
developed in the following works: Lane [3], Emden [4], Fowler [5], Eddington [6] and others. In the
fundamental work of Milne [7], authors for the first time studied the influence of axial rotation of stars
on their characteristics — density distribution, temperature, and mass, within the frame of Eddington
model which corresponds to the polytropic model with the index n = 3. In ten years, Chandrasekhar
used the Milne method and received approximate numerical solutions of mechanical equilibrium of stars
within the frame of polytropic model for indices n = 1.0, 1.5, 2.0, 3.0, 4.0 and calculated dependence
of geometrical characteristics, mass, volume on the angular velocity for the case of small velocities. The
results obtained by him correspond to the perturbation theory of the first order relative to the squared
angular velocity [8]. In this work, in essence, a pure mathematical problem was solved and that became
a traditional approach for later works, which were performed over last century. In the later work of
James [9], the author calculated numerically equatorial and polar radii, mass and moment of inertia
relative to the axis rotation for the polytrope models in much wider range of angular velocities. For
a long time, the results received by him were considered as standards. However, this publication does
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not contain any data about solutions of equilibrium equation, on the basis of which it would be possible
to calculate other characteristics of rotational polytrope. Kopal [10] noted that in the particular case
n = 1 the equilibrium equation is a linear differential equation and its angular and radial variables
are separable, therefore its solutions are the products of spherical Bessel functions on the Legendre
polynomials. However, Kopal has not found the general solution which corresponds to the boundary
conditions and requires the calculation of the set of integration constants. Such solution was found
in the work of Williams [11] in the form of expansion and including the polynomial P8(cos θ). In the
work [12], the author generalized the Milne approach by more detailed description of the peripheral
region and used fitting parameters for merging the solutions at the boundary between inner region
and periphery. The obtained approximations for solutions are linear relative to the squared angular
velocity, and fitting parameters and integration constant do not depend on angular velocity.

General approximation which is used in the works [8,11,12] for finding of integration constants are
traditional approximation in the theory of stellar surface. It assumes that the gravitational potential
in periphery region is formed by distribution of matter in inner region and has a standard multipole
form. It is considered that the influence of matter distribution in periphery region on the formation
of gravitational potential inside periphery is negligibly small due to the small matter density. The
gravitational potential in inner region determines the solution of mechanical equilibrium equation.
Continuity condition of potential on the separation surface allows us to find integration constants.
With this purpose, in the work [8] the author choses the separation surface in the form of sphere with
Emden radius. The sphere with the radius smaller than the Emden radius was used in the work [12]
to find the integration constant and fitting parameters. In the work [11], the separtion surface was
chosen in the form of rotational ellipsoid, that yielded opportunity to find integration constants (at
n = 1) as functions of angular velocity.

In the work [13], the integration constant for the case n = 0 was found in self-consistent way
assuming that the surface of rotational polytrope is the surface of rotational ellipsoid. This method
improves slightly the Chandrasekhar solution for n = 1 (in the region of small velocities).

The results obtained in the work [9] for the polar and equatorial radii, as well as critical angular
velocity, at which instability occurs, played role of standards for approximate calculations performed
in the works [11, 12].

A new method for finding solutions of the differential stellar equilibrium equation with axial ro-
tation in the polytropic model was proposed in our works [14–16]. We represent the solutions in the
form of multicomponent expansions, and the set of integration constants we determine using the in-
tegral form of equilibrium equation. As a result, the set of integration constants is determined by a
system of linear algebraic equations, and integration constants are functions of angular velocity. In the
works [14–16], we used a self-consistent approach assuming that the polytrope surface is the surface
of rotational ellipsoid with two parameters (equatorial radius and eccentricity) calculated numerically
by the iterative procedure.

Inspite of the century-long history of a study of stars in the frame of polytropic model, this approach
still has its methodological and applied meaning. The polytropic model is a good zero approximation
in the theory of white dwarfs [17,18], in the theory of main sequence stars [19,20], circumstellar disks,
giant planets, neutron stars and black holes [21]. In the works performed in the XXI century, the main
focus is not on methodological details of finding the solutions of equilibrium equation as a differential
equation of second order in partial derivatives, but the applied aspects are mostly considered. As an
example of research area is a search for parameters of polytropic equation of state for specific observed
stars with high angular velocities, that is, the construction of polytropic models of stars with known
observable characteristics. However, the preassigned index value n = 1 (as in the works [19, 20]) of
polytropic models does mean restriction, which reduces the value of such approach.

In present work we represent an improved approach developed in the works [14–16]. Here we
generalize the self-consistent approach (the method of trial functions) and specify the system of linear
equations for integration constants and demonstrate advantages of the use of the integral form of
equilibrium equation. The geometrical characteristics of rotational polytropes, mass, and moment of
inertia have been calculated as the functions of angular velocity.
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2. General relations

The single-phase model of a star is generally accepted in the polytropic theory. It is based on the
polytropic equation of state

P (r) = Kρν(r) = Kρ1+1/n(r), (1)

where P (r) is the pressure at point with radius-vector r, ρ(r) is the local density in this point, and
constants K, n are the parameters of the model.

Using non-inertial reference system, with the presence of rotation the equilibrium equation of model
is written in the form [22]

∇P (r) = −ρ(r) {∇Φgrav(r) + ∇Φc(r)}, (2)

where

Φgrav(r) = −G
∫
ρ(r′)dr

′

|r− r′| (3)

is the gravitational potential inside a star, and Φc(r) is the centrifugal potential. Let the axis Oz of
spherical coordinate system coincides with the axis of rotation then

Φc(r) = −1

2
ω2r2 sin2 θ. (4)

Here θ is the polar angle, ω is the angular velocity of the reference frame, which is considered to be
constant. Substituting expressions (1), (3) and (4) in equation (2) and taking into account the identity

(
1 +

1

n

)
ρ1/n−1(r)∇ρ(r) = (1 + n) ∇ρ1/n(r), (5)

we get the equilibrium equation in the form of differential equation

K(1 + n)∆ρ1/n(r) = −4πGρ(r) +
1

2
ω2∆(r2 sin2 θ), (6)

which determines the density distribution. In the presence of axial symmetry and symmetry relative
to the equatorial plane in the density distribution (ρ(r) = ρ(r, θ) = ρ(r, π − θ)) the Laplace operator
is written in the form

∆ = ∆r +
1

r2
∆θ, ∆r =

1

r2
· ∂
∂r

(
r2
∂

∂r

)
, ∆θ =

∂

∂t
(1 − t2)

∂

∂t
, (7)

where t = cos θ, moreover ∆(r2 sin2 θ) = 4. Let us introduce dimensionless variables

ξ = r/λn, Yn(ξ, θ) = [ρ(r, θ)/ρc]
1/n, (8)

where ρc is the matter density in stellar center. In the dimensionless form equation (6) takes the form

∆ξ,θ Yn(ξ, θ) = Ω2 − Y n
n (ξ, θ), (9)

if the scale of length λn and the dimensionless angular velocity Ω are determined by relations

K(1 + n) = 4πGλ2n ρ
1−1/n
c , Ω = ω(2πGρc)

−1/2, (10)

and

∆ξ,θ = ∆ξ +
1

ξ2
∆θ, ∆ξ =

1

ξ2
· ∂
∂ξ

(
ξ2
∂

∂ξ

)
. (11)

According to the definition (8) Yn(0, θ) = 1, the condition ∂Yn(ξ, θ)/∂ξ = 0 at ξ = 0 corresponds to
the solutions regularly in the vicinity ξ = 0. The important conclusion follows from these boundary
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conditions: the asymptotics of the equation solutions (9) at ξ ≪ 1 and fixed value Ω do not depend
on the polytropic index

Yn(ξ, θ) = Y0(ξ, θ). (12)

In the case of large values Ω, it is possible a non-monotonic dependence Yn(ξ, θ) on the variable
ξ in the equator vicinity, which leads to leakage of matter. The conditions of stellar stability in the
equator vicinity

Yn

(
ξ,
π

2

)
= 0,

∂

∂ξ
Yn

(
ξ,
π

2

)
= 0 (13)

determines the maximum value of the parameter Ωmax(n) and its corresponding value of the equatorial
radius ξmax

e (n). It is obviously that at Ω < Ωmax(n) instead of conditions (13) the following conditions
are satisfied

Yn

(
ξ,
π

2

)
= 0,

∂

∂ξ
Yn

(
ξ,
π

2

)
< 0. (14)

According to the definition (8), the physical meaning has only positive solutions of the equation (9),
which is two-dimensional differential equation of second order in partial derivatives with two dimen-
sionless parameters n,Ω > 0.

The equation (9) can be considered as a equation for dimensionless gravitational potential, created
by the distribution of the dimensionless matter density (4π)−1{Ω2 − Y n

n (ξ, θ)}. In this regard, it can
be rewritten in integral form

Yn(ξ, θ) = 1 +

∞∑

i=1

C2lξ
2lP2l(t) −

1

4π

∫ {
Ω2 − Y n

n (ξ′, θ′)
}
Q(ξ, ξ′) dξ′, (15)

where C2l are integration constants, P2l(t) are the Legendre polynomials of 2l-th order, the kernel of
the equation is

Q(ξ, ξ′) = |ξ − ξ′|−1 − (ξ′)−1, (16)

and the integration is performed over the stellar volume. Taking into account the identity

∆ξ,θ

{
ξnPn(t)

}
= 0, (17)

we see, that equations (9) and (15) are equivalent.
The gravitational potential inside a star (3) is related to the dimensionless potential

Φn(ξ) = Φn(ξ, θ) = − 1

4π

∫
Y n
n (ξ′, θ′)

|ξ − ξ′| dξ′ (18)

by expression
Φgrav(r) = 4πGρcλ

2
nΦn(ξ). (19)

Therefore, equation (15) can be rewritten in terms Yn(ξ, θ) and Φn(ξ, θ), namely

Yn(ξ, θ) + {Φn(ξ, θ) − Φn(0, 0)} = 1 +

∞∑

l=1

C2l ξ
2lP2l(t) + Ω2

{
Φ0(ξ, θ) − Φ0(0, 0)

}
, (20)

where Φ0(ξ, θ) is determined by expression (18) at Yn(ξ′, θ′) ≡ 1. From the equation (2), which is
rewritten in the dimensionless form follows the relation

∂

∂ξ

{
Φn(ξ, θ) + Yn(ξ, θ)

}
=

Ω2

3
ξ {1 − P2(t)}. (21)

Using equality (20), equality (21) can be rewritten in such form [7]:

∂

∂ξ

{ ∞∑

i=1

C2l ξ
2lP2l(t) + Ω2

[
Φ0(ξ, θ) − Φ0(0, 0)

]
}

= ξ
Ω2

3

(
1 − P2(t)

)
. (22)
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The difference of potentials Φ0(ξ, θ)−Φ0(0, 0) are calculated by integration over volume of the polytrope
with index n. Using expansion in the series of kernel Q(ξ, ξ′) for the Legendre polynomials and
performing integration with respect to the variables −1 6 t′ 6 1, 0 6 ξ′ 6 ξ0(t

′), where ξ0(t
′) is the

root of equation Yn(ξ, θ) = 0 at fixed θ and determines the equation of polytrope surface with a given
index n, we obtain the relation

Φ0(ξ, θ) − Φ0(0, 0) =
ξ2

6
+
ξ2

2
P2(t)I2 +

∞∑

l=2

P2l(t) ξ
2lI2l,

I2 = −
∫ +1

−1
P2(t′) ln[ξ0(t

′)] dt′,

I2l = (l − 1)−1 1

4

∫ +1

−1
P2l(t

′)
[
ξ0(t

′)
]2−2l

dt′ at l > 2.

(23)

Substituting expansion (23) into equation (22), we find that

C2 = −Ω2

6
(1 + 3I2), C2l = −Ω2I2l at l > 2. (24)

As a result, the integral equation (15) takes the form

Yn(ξ, θ) = 1 +
Ω2ξ2

6

(
1 − P2(t)

)
+

1

4π

∫
Y n
n (ξ′, θ′)Q(ξ, ξ′) dξ′. (25)

The system of equations (9) and (25) are closed, it does not require any additional information
and determines the general solution Yn(ξ, θ) that corresponds to conditions in the center and on
configuration surface. We solve this system in the self-consistent way, which correctly describes the
polytrope surface, unlike in works [7, 8, 12].

3. The Emden equation

As was shown from the results of works [7–9,11,14–16], maximum values of the parameter [Ω
(n)
max]2 are

significantly less than one, therefore, the rotation plays role of correction at calculation the polytrope
characteristics. The influence of rotation appears the most strongly on change of geometrical poly-
trope parameters, but these changes do not exceed 40%. Because of this the zero approximation of
equation (9) is the Emden equation [4]

∆ξ yn(ξ) = −ynn(ξ), (26)

which describes the polytrope model without rotation with spherical symmetry of density distribution.
Equation (26) corresponds to the boundary conditions yn(0) = 1, dyn/dξ = 0 at ξ = 0, as well as
the condition yn(ξ) > 0. By integrating with respect of the angular variables of the kernel Q(ξ, ξ′) of
equation (25) at Ω = 0, we transform it to such form

yn(ξ) = 1 +

∫ ξ

0

{
(ξ′)2

ξ
− ξ′

}
ynn(ξ′) dξ′. (27)

The properties of equation solutions (26), (27) are illustrated by known analytical expressions at
n = 0, 1 and 5 [22]

y0(ξ) = 1 − ξ2/6, ξ1(0) =
√

6;

y1(ξ) =
sin ξ

ξ
, ξ1(1) = π;

y5(ξ) =
{

1 + ξ2/3
}−1/2

, ξ1(5) = ∞.

(28)
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Here ξ1(n) is the dimensionless polytrope radius, the smaller root of equation y(ξ) = 0 at fixed value
of index n. The condition ∫ ξ1(n)

0
ynn(ξ)

(
ξ − ξ2

ξ1(n)

)
dξ = 1 (29)

is a kind of normalization condition. Because of that the subintegral function yn(ξ) is a decreasing
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yn(ξ)

Fig. 1. The Emden solutions of equation for the poly-
tropic index 0 6 n 6 3.0.

positive function of ξ, from equality (29) it fol-
lows that ξ1(n) is a monotonically increasing func-
tion of index n. Dependence of functions yn(ξ)
on index n were calculated numerically and are
illustrated in Fig. 1. These are alternating or os-
cillating functions, which have physical meaning
in the range 0 6 ξ 6 ξ1(n), moreover the poly-
trope index can change continuously in the range
0 6 n 6 5. In the region of small values of vari-
able ξ the Emden functions are represented by
expansions

yn(ξ) = 1− 1

3!
ξ2+

n

5!
ξ4−n(8n− 5)

3 · 7!
ξ6+. . . , (30)

from which we can see that with accuracy ξ2 the asymptotics of functions yn(ξ) are the same, and
it confirms the condition (12). Let us adduce here main characteristics of the polytropic stars in the
Emden model. The mass

M(n, 0) =

∫

V
ρ(r)dr = 4π λ3n ρc β2(n),

β2(n) =

∫ ξ1(n)

0
ξ2ynn(ξ) dξ = ξ21(n)

∣∣∣∣
dyn
dξ

∣∣∣∣
ξ=ξ1(n)

,

(31)

the volume of a star and its radius

V (n, 0) =
4π

3

(
λnξ1(n)

)3
, R(n, 0) = λnξ1(n); (32)

moment of inertia relative to the axis of rotation

I(n, 0) =
8π

3
ρc λ

5
n β4(n), β4(n) =

∫ ξ1(n)

0
ξ4 ynn(ξ) dξ. (33)

The gravitational energy

W (n, 0) = −G
2

∫
ρ(r1) dr1

∫
ρ(r2) |r1 − r2|−1dr2 (34)

after integrating with respect to the angular variables and transition to the dimensionless variables

and using equation (26) it is reduced to such form

W (n, 0) = −48λ5n π
2G ρ2c

1

1 + n
Jn,

Jn =

∫ ξ1(n)

0
ξ2yn+1

n (ξ) dξ =
n+ 1

(5 − n) ξ1(n)
β22(n), n < 5.0.

(35)

The total energy (gravitational and inner) equals [22]

E(n, 0) = W (n, 0) + U(n, 0) = 16π2Gλ5n
n− 3

(5 − n) ξ1(n)
β22(n). (36)

It follows that in single-phase model the polytropic star is stable at n 6 3.

Mathematical Modeling and Computing, Vol. 8, No. 2, pp. 338–358 (2021)



344 Vavrukh M. V., Dzikovskyi D. V.

Table 1. The parameters of the Emden polytropic models.

n 0 0.25 0.5 1.0 1.5 2.0 2.5 3.0

ξ1(n) 2.4495 2.5921 2.7527 3.1416 3.6538 4.3529 5.3553 6.8969

β2(n) 4.8990 4.2579 3.7887 3.1416 2.7141 2.4111 2.1872 2.0182

β4(n) 17.6371 15.5178 14.0352 12.1567 11.1197 10.6110 10.5197 10.8516

Dependence of the parameters ξ1(n), β2(n), β4(n) on the polytropic index (0 6 n 6 3) is shown in
Table 1 According to the formulae (31), (33) mass and moment of inertia of polytrope with index n at
the presence of rotation can be represented in the form

M(n|Ω) = M(n|0) η(n|Ω), I(n|Ω) = I(n|0) ζ(n|Ω), (37)

where

η(n|Ω) = (2β2(n))−1

∫ 1

−1
dt

∫ ξ0(t)

0
ξ2 Y n

n (ξ, θ) dξ,

ζ(n|Ω) =

(
4

3
β4(n)

)−1 ∫ 1

−1
dt (1 − t2)

∫ ξ0(t)

0
ξ4 Y n

n (ξ, θ) dξ.

(38)

Here ξ0(t) determines the polytrope surface of index n.

4. The rotational polytrope n = 0

Equations (9) and (25) in general case are two-dimensional, twoparametric and nonlinear, since the
index n can take arbitrary interval values (0 ÷ 5). In the case n = 0, n = 1 equations are linear,
which allows to find approximate solutions in analytical form. It makes them important also in a
methodological sense.

The polytrope n = 0 describes a model with constant density. Therefore, in this case the problem
reduced to determine the surface shape of rotational polytrope. According to equation (25) and
relations (18) and (23) the condition Y0(ξ, θ) = 0 is integral equation

1 − 1

6
ξ2 +

Ω2

6
ξ2 − P2(t)

6
ξ2
(

Ω2 + 3I2

)
−
∑

l>2

ξ2lP2l(t)I2l = 0. (39)

It is easy to see, in the approximation I2l = 0 at l > 2 the root of equation (39) ξ0(t) can be
represent in the form of function, which describes the surface of rotational ellipsoid. For the purpose
of self-consistent determination of ellipsoid parameters we choose a trial function in the form

ξ
(0)
0 (t|Ω) = ξ(0)e

{
1 +

e20
1 − e20

t2
}−1/2

. (40)

From equation (39) in the mentioned approximation

ξ
(0)
0 (t|Ω) = 61/2

{
1 − Ω2 + P2(t)

[
Ω2 + 3I

(0)
2

]}−1/2

. (41)

Equating the right sides of equations (40) and (41), we find equatorial radius

ξ(0)e = 61/2
{

1 − 3

2

(
Ω2 + I

(0)
2

)}−1/2

(42)

and the relation between eccentricity and angular velocity

e20 +

[
3e20 −

9

2

]
I
(0)
2 =

3

2
Ω2. (43)
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Using expression (40) for self-consistent calculation I
(0)
2 , we find

I
(0)
2 = I

(0)
2 (e0) =

2

3
+

1 − e20
e20

−
√

1 − e20
e30

arcsin e0. (44)

Expression (43) is known as the Maclaurin formula [23]. Dependencies of functions e0(Ω) and I
(0)
2 (Ω) ≡

I
(0)
2 (e0(Ω)) on the angular velocity are shown in Figs. 2 and 3.
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Fig. 2. Dependence of eccentricity e0(Ω) on angular
velocity Ω.

According to the expression (44) at small

values of eccentricity I
(0)
2 (e) = 2e2/15 +

8e4/105 + . . .. In this approximation from the
Maclaurin formula it follows, that at small an-
gular velocities e2 = 15Ω2/4 + . . ., and because
of that

I
(0)
2 (Ω) =

1

2
Ω2 +

45

56
Ω4 + . . . . (45)

It can be seen in Fig. 2, eccentricity is an
ambiguous function of angular velocity. The
maximal value of angular velocity Ωmax =
0.47399 . . ., at which instability occurs, corre-
sponds to eccentricity e(Ωmax) = 0.92995 . . ..
In the region of large values of eccentricity
(e(Ωmax) 6 e 6 1) and small angular velocities

I
(0)
2 (Ω) ≈ 2

3
− Ω2 − Ω4 + . . . , (46)

which leads to the asymptotics

ξ
(0)
0 (t|Ω) ∼=

√
2

{
Ω4

2
+ t2

}−1/2

, ξe(Ω) → 2

Ω2
+ . . . , ξp(Ω) →

√
2, (47)

which corresponds to the disk of constant thickness and large radius. Dependence ξ
(0)
e (Ω) and ξ

(0)
p (Ω)

on angular velocity is shown in Fig. 4.
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ity at small value of eccentricity, dashed curve corre-
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Fig. 4. Dependence of equatorial ξ
(0)
e (Ω) and polar

ξ
(0)
p (Ω) radii on angular velocity Ω (the dashed-dot

curve corresponds to small velocity).
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What is the polytrope surface for n = 0?

As can be seen from above, in the approximation I2l = 0 at l > 2 the surface of polytrope n = 0 is
the surface of rotational ellipsoid and is determined by expression (40). In Section 5 of this work it is
shown, that the polytrope surface n = 1 deviates from the surface of rotational ellipsoid and the value
of this deviation increases with increasing calculation accuracy. Due to the fact that in equation

1 +
Ω2ξ2

6

(
1 − P2(t)

)
+

1

4π

∫
Q(ξ, ξ′) dξ′ = 0, (48)

1 2 3

ξp ξ ξe

θξ

Fig. 5. Space regions in which gravitational potential
has different representation. Solid curve shows the
meridional section of the polytrope surface, which is

in the region 2.

which determines the polytrope surface n = 0, in-
tegration over vector ξ′ is performed within this
surface, then the equation (48) is nonlinear inte-
gral equation. as was shown in Fig. 5. And this
equation can have solution, which is different from
expression (40). To clarify this question, we ap-
plied iterative method of finding of equation so-
lution (48), in which zero approximation for the
surface ξ0(t) is different from (40). For this pur-
pose we used expansions of gravitational potential
in equation (48) for the Legendre polynomials in
regions 1 (0 6 ξ 6 ξp), 2 (ξp 6 ξ 6 ξe) and
3 (ξe < ξ), where ξp is the minimal distance from
the origin to the surface, ξe is the maximal, Solid
curve represents the polytrope surface ξ = ξ0(t

′).
In the region 1 the potential Φ0(ξ, θ) − Φ0(0, 0)
determined by formulas (23). In the region 3 we
have standard multipole expansion of potential of

external gravitational body,

1

4π

∫
Q(ξ, ξ′) dξ′ = −1

2

∫ 1

0
ξ20(t′) dt′ +

∑

l>0

P2l(t)

(2l + 3)ξ2l+1

∫ 1

0
P2l(t

′)[ξ0(t′)]2l+3dt′. (49)

In the region 2 the potential is superposition of expressions (23) and (48) and written in the form

Φ0(ξ, θ) − Φ0(0, 0) = −1

2

∫ 1

t
ξ20(t′) dt′ +

∑

l>0

P2l(t)

(2l + 3)ξ2l+1

∫ 1

t
P2l(t

′)(ξ0(t′))2l+3dt′

+

∫ t

0

{
−ξ

2

6
+ ξ2P2(t)P2(t′) ln

(
ξ0(t′)
ξ

)
−
∑

l>2

P2l(t)ξ
2l

2(l − 1)

P2l(t
′)

[ξ0(t′)]2l−2

}
dt′

+ ξ2
∫ t

0

{∑

l>1

P2l(t)P2l(t
′)

2l + 3
+
∑

l>2

P2l(t)P2l(t
′)

2(l − 1)

}
dt′.

(50)

At the pole point (at t = 1) expression (50) continuously turns into expression (23), and in the vicinity
of equator (t = 0) it turns into (49). Expression (50) determines the potential on sphere of radius ξ
both inside the polytrope and outside it in the region 2. Each sphere of radius ξ crosses the polytrope
surface in the circle of radius (1− t2)1/2ξ0(t). Putting in expression (50) ξ = ξ0(t), we obtain the value
of gravitational potential on the sphere surface at a point with coordinates θ, ξ0(θ), or at points on the
polytrope surface with coordinates t, ξ0(t).

Substituting expression (50) in equation (48) we obtained equation, the root of which determines
the meridional section of the polytrope surface ξ0(t) at fixed Ω. We solve this equation by the iterative
method. In zero approximation only taken into account those terms of equation (48), in which appear
P2(t) and P2(t′). Found in this way the root ξ̃0(t) used for the next accounting terms, in which appear
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the Legendre polynomials of higher order. In Fig. 6 is shown the solution ξ̃0(t) at Ω = 0.45 (curve 1),
as well as solutions, which correspond to accounting in the first order of perturbation theory of the
terms with P4(t) (curve 2), P6(t) (curve 3) and P8(t) (curve 4). As was shown in Figure, there is a very
good convergence on influence of the multipole terms of equation (48). To estimate the convergence,
we use second term of equality (50)

Ξ(t) =
∑

l>2

P2l(t)

(2l + 3)ξ2l+1

∫ 1

t
P2l(t

′)(ξ0(t
′))2l+3 dt′. (51)
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Fig. 6. The meridional section of the polytrope surface
at Ω = 0.45. Curve 1 corresponds to accounting the
terms with P2(t), curve 2: P2(t) and P4(t), curve 3:

P2(t)–P6(t), curve 4: P2(t)–P8(t).

Fig. 7. The meridional section of the polytrope sur-
face at different values of angular velocity Ω. Curve 1
corresponds to Ω = 0.1, curve 2: Ω = 0.2, curve 3:

Ω = 0.3, curve 4: Ω = 0.45.

In the vicinity of equator, where t is a small value

Ξ(t) ≈
∑

l>2

P2l(t)

(2l + 3)ξ2l+1

∫ 1

0
P2l(t

′)[ξ(0)e ]2l+3

{
1 +

e2

1 − e2
(t′)2

}−l−3/2

dt′ =

=
∑

l>2

(−1)l
P2l(t)[ξ

(0)
e ]2l+3e2l(1 − e2)1/2

ξ2l+1(2l + 1)(2l + 3)

≈ [ξ(0)e ]2
∑

l>2

|P2l(0)|e2l(1 − e2)1/2

(2l + 1)(2l + 3)

(52)

is expansion in powers of eccentricity, and all terms of the sum are positive. The solution, which
corresponds to curve 4 is used for finding of solution in next iterations. The results of such calculation
for several values of angular velocity 0.1 6 Ω 6 0.45 are shown in Fig. 7.

Table 2. Dependence of polar and equatorial radii with
index n = 0 on angular velocity Ω.

Ω ξp(Ω) ξe(Ω) ξp(Ω) [13] ξe(Ω) [13]

0.1 2.4310 2.4777 2.4220 2.4959

0.2 2.3744 2.5708 2.3712 2.5746

0.3 2.2744 2.7645 2.2733 2.7709

0.4 2.1130 3.1926 2.1115 3.2021

0.45 1.9826 3.7136 1.9745 3.7587

In Table 2 it is shown the value of polar and
equatorial radii of polytrope n = 0, calculated
by us, as well as found in work [13], for the
same values Ω, as in Fig. 7. As it turned out,
the polytrope surface at any values Ω, which
calculated by iterative method, is approaching
the surface of rotational ellipsoid, which is de-
fined by formula (40), with increasing number
of multipole terms in expansion of gravitational
potential. Therefore, the solution determined by formula (40) is precise and unique.
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5. Polytrope n = 1

This model occupies an important place in general theory, because it manages to work out approximate
methods of finding solutions of equation (9) for any n. With the help of substitution

Y1(ξ, θ) = y1(ξ) + Ω2

{
ϕ(ξ, θ) +

ξ2

4
sin2 θ

}
, (53)

where y1(ξ) = sin ξ/ξ is the Emden function for n = 1, equation (9) is reduced to equation for function
ϕ(ξ, θ), which do not depend on parameter Ω:

∆(ξ, θ)ϕ(ξ, θ) + ϕ(ξ, θ) = −1

4
ξ2 sin2 θ. (54)

Solution of corresponding homogeneous equation in which variables are separated, can be represented
in the form

ϕ(ξ, θ) =

∞∑

l=1

α2l j2l(ξ)P2l(t), (55)

where

j2l(ξ) = ξ2l
∞∑

s=0

1

s!

(
−ξ

2

2

)s

{[4l + 1 + 2s]!!}−1 (56)

are the spherical Bessel functions of first kind [24], P2l(t) are the Legendre polynomials on t = cos θ,
α2l are integration constants.

Particular solution of equation (54) we represent in the form

ϕpart(ξ, θ) =

∞∑

l=2

b2l
[
ξ sin θ

]2l
. (57)

Using the equality
∆(ξ, θ) {ξ sin θ}2l = (2l)2{ξ sin θ}2l−2, (58)

we find the coefficients
b2l = (−1)l−1 2−2l (l!)−2. (59)

Therefore,
1

4
ξ2 sin2 θ + ϕpart(ξ, θ) = 1 − J0(ξ sin θ), (60)

where

J0(z) =
∞∑

i=0

(−1)i
(
z2

4

)i

(i!)−2 (61)

is the Bessel function of an integer (zero) order [24]. Thus the solution of equation (9) at n = 1 takes
the form

Y1(ξ, θ) = j0(ξ) + Ω2

{
1 − J0(ξ sin θ) +

∞∑

l=1

α2l j2l(ξ)P2l(t)

}
. (62)

The function J0(ξ sin θ) has such expansion for the Legendre polynomials [24]

J0(ξ[1 − t2]1/2) =
∞∑

l=0

D2l j2l(ξ)P2l(t), D2l = (4l + 1)(2l)! 2−2l(l!)−2. (63)

Because of solution (62) can be written also in the form of an ordinary expansion for the orthogonal
functions

Ỹ1(ξ, θ) = j0(ξ) + Ω2

{
1 − j0(ξ) +

∞∑

l=1

a2l j2l(ξ)P2l(t)

}
, (64)

where a2l are new integration constants (a2l = α2l − D2l). Representations (62) and (64) are quite
equivalent. In fact, at practical calculation it is necessary to restrict accounting the finite number of
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terms (1 6 l 6 l0), therefore, the calculated polytrope characteristics are somewhat different from each
other. Representation (62) can be considered as a result of selected summation of series (64). Note
that the J0(z) has a very accurate analytical approximations [24], and

1

2

∫ +1

−1
J0
(
z[1 − t2]1/2

)
dt = j0(z). (65)

Using expression (12) and equating the asymptotics of functions Y0(ξ, θ) and Ỹ1(ξ, θ) at ξ ≪ 1 (with
accuracy to ξ2), we find, that

a2(Ω) = −5

2

{
1 +

3

Ω2
I2(Ω)

}
, (66)

where I2(Ω) corresponds to the polytrope with index n = 0 is an ambiguous function of Ω. Therefore,
in the region of small angular velocities and small eccentricities according to expression (45)

a2(Ω) = −25

4

{
1 +

27

28
Ω2 + · · ·

}
. (67)

In the region of small angular velocities and eccentricities, which are close to one,

Ω2a2(Ω) → −5(1 − Ω2 + . . .). (68)
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Fig. 8. The meridional section of the polytrope sur-
face with index n = 1 at fixed value of angular velocity
Ω = 0.2. Curve 1 corresponds to approximation (67),

curve 2: approximation (68).

If we restricted the approximation a2l = 0 at l > 2
in expansion (64), then in mode (67) the poly-
trope surface is the surface of rotational ellipsoid,
which is close to the Emden sphere. Instead, in
mode (68) the polytrope surface is the surface of
strongly compressed rotational ellipsoid, indicat-
ing the formation of disk structure. Boundary
forms of the meridional section of the polytrope
surface with index n = 1 at small angular veloci-
ties, which correspond to formulae (67) and (68),
are shown in Fig. 8.

Since Y1(ξ, θ) in form (62) or (64) is the solu-
tion of equation (26) at n = 1, then this provides
an alternative opportunity to determine integra-
tion constants. Let us show it on the example of
expansion (64). Substituting it in equation (25),
we reduce the last one to the following form

(1 − Ω2) j0(ξ) + Ω2
∑

l>1

a2l j2l(ξ)P2l(t) = 1 − Ω2 − Ω2
{

Φ0(ξ, θ) − Φ0(0, 0)
}

+
1

4π
(1 − Ω2)

∫
Q(ξ, ξ′) j0(ξ′) dξ′ +

Ω2ξ2

6

(
1 − P2(t)

)

+
1

4π
Ω2
∑

l>1

a2l

∫
Q(ξ, ξ′) j2l(ξ

′)P2l(t
′) dξ′.

(69)

Integration over vector ξ′ is performed over the volume of polytrope. Therefore,

1

4π

∫
Q(ξ, ξ′) j0(ξ′) dξ′ =

∫ ξ

0
j0(ξ′)

{
(ξ′)2

ξ
− ξ′

}
dξ′

+
1

2

∑

l>1

P2l(t) ξ
2l

∫ +1

−1
P2l(t

′)
∫ ξ0(t′)

π
j0(ξ′) (ξ′)1−2ldξ′,

(70)

where ξ0(t
′) determines the equation of the polytrope surface. Taking into account the following, the
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j0(ξ) satisfies equation (27), and taking into account expression (23), we rewrite equality (69) in such
form

∑

l>1

a2l j2l(ξ)P2l(t) = −P2(t)
ξ2

6
(1 + 3I2) −

∑

l>2

P2l(t) ξ
2lI2l

+
∑

l>1

L2l ξ
2lP2l(t) +

1

4π

∑

l>1

a2l

∫
Q(ξ, ξ′) j2l(ξ

′)P2l(t
′) dξ′.

(71)

Herewith I2l are determined by formulae (23), and

L2l =
Ω−2

2

∫ +1

−1
P2l(t

′)
∫ ξ0(t′)

π
j0(ξ′)(ξ′)1−2l dξ′dt′. (72)

As noted above, in approximation (40) the coefficients I2l = 0 at l > 2. However L2l and in this
approximation are nonzero, although in our previous publications [14–16] they were not taken into
account, as well as I2l.

Calculation of the last term on the right side of equality (71) are carried out by expansion of kernel
Q(ξ, ξ′) for the Legendre polynomials,

1

4π

∫
Q(ξ, ξ′) j2l(ξ

′)P2l(t
′) dξ′ = P2l(t)(4l + 1)−1ξ−1−2l

∫ ξ

0
(ξ′)2+2lj2l(ξ

′) dξ′

+
1

2
P2l(t) ξ

2l

∫ +1

−1
P 2
2l(t

′) dt′
∫ ξ0(t′)

ξ
j2l(ξ

′) (ξ′)1−2ldξ′

+
1

2

∞∑

m=1

P2m(t) ξ2m(1 − δm,l)

∫ +1

−1
dt′P2l(t

′) P2m(t′)
∫ ξ0(t′)

π
j2l(ξ

′)(ξ′)1−2m dξ′,

(73)

where δm,l is the Kronecker symbol, and ξ0(t
′) determines the surface equation. Integration with

respect to the variable ξ′ in the first two terms of right side of equality (73) is performed in analytical
form,

ξ−1−2l

∫ ξ

0
(ξ′)2+2lj2l(ξ

′) dξ′ = ξ j2l+1(ξ);

∫ ξ0

ξ
j2l(ξ

′) (ξ′)1−2ldξ′ = −ξ1−2l
0 j2l−1(ξ0) + ξ1−2lj2l−1(ξ),

(74)

where ξ0 ≡ ξ0(t
′). Taking into account relation

j2l(ξ) = [4l + 1]−1ξ
{
j2l+1(ξ) + j2l−1(ξ)

}
, (75)

we see, that the sum of first two terms of right side of equality (73) can be rewritten in the form

P2l(t)j2l(ξ) − P2l(t) ξ
2l

{∫ 1

0
P 2
2l(t

′) ξ1−2l
0 (t′) j2l−1(ξ0(t

′)) dt′
}
. (76)

As a result, the terms of equation (71), in which j2l(ξ) appear explicitly, are mutually compensated
and remain only the terms of type ξ2lP2l(t), ξ

2mP2m(t).
Comparing the coefficients at the same products ξ2lP2l(t) in equation, we obtain the system of

linear inhomogeneous algebraic equations for integration constants a2l

a2S2,2 + a4S2,4 + . . .+ a2l0S2,2l0 = −1

6
(1 + 3I2) + L2,

a2S4,2 + a4S4,4 + . . .+ a2l0S4,2l0 = L4 − I4;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a2S2l0,2 + a4S2l0,4 + . . . + a2l0S2l0,2l0 = L2l0 − I2l0 .

(77)
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Matrix elements S2l,2l, S2m,2l are determined by expressions

S2l,2l =

∫ 1

0
P 2
2l(t) ξ

1−2l
0 j2l−1(ξ0) dt;

S2m,2l = −
∫ 1

0
P2m(t)P2l(t) dt

∫ ξ0

π
(ξ′)1−2mj2l(ξ

′) dξ′.

(78)

After integration with respect to the variable ξ′ non-diagonal elements are also reduced to single
integrals

S2,4 =

∫ 1

0
P2(t)P4(t) ξ−1

0

{
j3(ξ0) + 2ξ−1

0 j2(ξ0)
}
dt,

S2,6 =

∫ 1

0
P2(t)P6(t) ξ−1

0

{
j5(ξ0) + 4ξ−1

0 j4(ξ0) + 8ξ−2
0 j3(ξ0)

}
dt.

(79)

At small values of angular velocity in zero approximation in expressions (78), (79) it is enough to
replace ξ0(t) on dimensionless Emden radius with ξ1 = π, resulting

S2l,2l ⇒ S
(0)
2l,2l = (4l + 1)−1ξ1−2l

1 j2l−1(ξ1);

S2l,2m ⇒ S
(0)
2l,2m = 0 at l 6= m.

(80)

In such approximation I2l = L2l = 0 at l > 1,

a
(0)
2 = −5

6
π2, a

(0)
2l = 0 at l > 2, (81)

which coincides with the result of work [8]. In this work the approximate solution of equilibrium
equation is presented in the form

Y Ch
1 (ξ, θ) = y1(ξ) + Ω2

{
ψ0(ξ) + a2 P2(t)ψ2(ξ)

}
, (82)

and integration constant a2 found by the Milne method [7] from condition of continuity of the gravita-
tional potential on the Emden surface ξ = ξ1(1) = π. At the same time functions ψ0(ξ) and ψ2(ξ) found
by numerical integration of the corresponding linear differential equations in the region 0 6 ξ 6 ξ1(1).
Equation of the polytrope surface found from condition Y Ch

1 (ξ, θ) = 0, which at y1(ξ1) = 0 takes the
form

(dy1/dξ)ξ=ξ1(ξ0 − ξ1) + Ω2{ψ0(ξ1) + a2 ψ2(ξ1)P2(t)} ≃ 0. (83)

According to formula (63) ψ0(ξ1) = 1 − j0(ξ1) = 1, ψ2(ξ1) = j2(ξ1) = 3/π2, therefore [8]

ξ0(t) ≈ π

{
1 + Ω2

[
1 − 5

2
P2(t)

]}
. (84)

In the work [15] we solved the system of equations (77) by method of numerical iterations at
l0 = 3. Herewith integration over the polytrope volume performed within the rotational ellipsoid (see
form. (40)) with some eccentricity and equatorial radius, which were found self-consistently. In zero
iteration constants a2l chosen in the form (81). In the frame of i-th iteration

Y
(i)
1 (ξ, θ) = j0(ξ) + Ω2

{
1 − j0(ξ) +

3∑

l=1

a
(i)
2l P2l(t) j2l(ξ)

}
, (85)

equatorial ξ
(i)
e (Ω) and polar ξ

(i)
p (Ω) radii are determined numerically from condition Y

(i)
1 (ξ, θ) = 0, and

eccentricity — from condition ei(Ω) = {1 − [ξ
(i)
p (Ω)/ξ

(i)
e (Ω)]2}1/2. Coefficients of matrix S

(i)
2l,2l, S

(i)
2l,2m

are determined by formulae (78) at ξ
(i)
0 (t) = ξ

(i)
e (Ω){1 + t2e2i (Ω) [1 − e2i (Ω)]−1}−1 and used for next

iteration. Found in this way constants a2l(Ω) for some value Ω1 are used as zero approximation for
Ω2 = Ω1 +∆Ω. Herewith the coefficients L2l in equations (77) were neglected, and I2l = 0 at l > 2 due
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to the approximation of the rotational ellipsoid model. The results of calculations for dependencies of
equatorial and polar radii, eccentricity, mass and moment of inertia of polytrope on angular velocity
were shown in Table 3. Note, that the used algorithm is applicable to the description of typically
ellipsoidal configurations, for which are typical not very large eccentricities. In Table was shown,
that the maximal value of angular velocity Ωmax(1) approximately equals to 0.246 . . ., and eccentricity
varies within 0 6 e 6 0.7868 . . .. Rotation leads to the relative increasing equatorial radius, that
does not exceed 41%, and the relative decreasing of polar radius does not exceed 14.3%. Increasing of
total mass due to rotation does not exceed 26%, but moment of inertia relative to the axis of rotation
increase almost in 2 times. As was shown in Table, taking into account terms a2lP2l(t)j2l(ξ) at l > 2 is
insignificant in the region 0 < Ω 6 1/3Ωmax(1), which determines the scope of the results of works [7,8]
and other. Also note, that expansion (64) is alternating, which testifies to its convergence, even in
the region 2/3 < Ω/Ωmax < 1 coefficients a2(Ω), a4(Ω), a6(Ω) are commensurate with each other for
modulo.

Table 3. Dependence of the model characteristics with index n = 1 on angular velocity according to represen-
tation (64) in approximation a2l = 0 at l > 4 and L2l = 0 for l > 1.

Ω e(Ω) ξp(Ω) ξe(Ω) a2(Ω) a4(Ω) a6(Ω) η(n,Ω) ζ(n,Ω)

0.01000 0.02739 3.14112 3.14230 −8.22784 0.00610775 −8.02713 · 10−6 1.00023 1.00062
0.02000 0.05478 3.13971 3.14443 −8.23739 0.02449 −0.000128907 1.00092 1.00249
0.03000 0.08219 3.13734 3.14799 −8.25338 0.055325 −0.000656943 1.00207 1.00563
0.04000 0.10961 3.13402 3.15302 −8.27594 0.0989151 −0.00209575 1.00369 1.01006
0.05000 0.13706 3.12973 3.15955 −8.30523 0.155695 −0.0051788 1.00580 1.01583
0.06000 0.16455 3.12447 3.16765 −8.34151 0.226242 −0.0108998 1.00839 1.02298
0.07000 0.19208 3.11820 3.17737 −8.38505 0.311294 −0.020555 1.01150 1.03158
0.08000 0.21967 3.11092 3.18880 −8.43625 0.411773 −0.0358001 1.01513 1.04172
0.09000 0.24733 3.10259 3.20205 −8.49557 0.52881 −0.0587258 1.01933 1.05351
0.10000 0.27507 3.09318 3.21725 −8.56357 0.663789 −0.0919578 1.02410 1.06707
0.11000 0.30291 3.08266 3.23456 −8.64098 0.818398 −0.13879 1.02951 1.08256
0.12000 0.33087 3.07097 3.25416 −8.72865 0.9947 −0.203359 1.03557 1.10016
0.13000 0.35900 3.05807 3.27632 −8.82768 1.19523 −0.290887 1.04237 1.12011
0.14000 0.38731 3.04388 3.30131 −8.93941 1.42314 −0.408009 1.04994 1.14270
0.15000 0.41586 3.02832 3.32953 −9.06557 1.68239 −0.563239 1.05839 1.16830
0.16000 0.44471 3.01127 3.36147 −9.20840 1.97802 −0.767633 1.06782 1.19736
0.17000 0.47394 2.99259 3.39779 −9.37084 2.31667 −1.03579 1.07834 1.23047
0.18000 0.50367 2.97208 3.43938 −9.55694 2.70721 −1.3874 1.09014 1.26843
0.19000 0.53407 2.94946 3.48752 −9.77240 3.16206 −1.84985 1.10343 1.31232
0.20000 0.56538 2.92430 3.54414 −10.02570 3.69946 −2.46274 1.11855 1.36371
0.21000 0.59802 2.89594 3.61237 −10.33050 4.3481 −3.28708 1.13597 1.42496
0.22000 0.63273 2.86321 3.69793 −10.71110 5.15825 −4.42644 1.15648 1.50007
0.23000 0.67114 2.82368 3.81334 −11.21930 6.23501 −6.09077 1.18158 1.59696
0.24000 0.71852 2.77019 4.00008 −12.01930 7.90279 −8.92229 1.21544 1.73805
0.24100 0.72446 2.76320 4.02826 −12.13670 8.14357 −9.35381 1.21980 1.75727
0.24200 0.73086 2.75562 4.06018 −12.26860 8.41224 −9.84267 1.22449 1.77830
0.24300 0.73793 2.74724 4.09737 −12.42040 8.71955 −10.4124 1.22964 1.80179
0.24400 0.74604 2.73767 4.14281 −12.60320 9.0861 −11.1087 1.23546 1.82894
0.24500 0.75612 2.72593 4.20403 −12.84440 9.5632 −12.0491 1.24249 1.86270
0.24600 0.77450 2.70593 4.33124 −13.32470 10.4868 −14.0363 1.25413 1.92196
0.24601 0.77507 2.70536 4.33555 −13.34070 10.5167 −14.1062 1.25445 1.92369
0.24602 0.77563 2.70481 4.33977 −13.35610 10.5455 −14.1737 1.25477 1.92537
0.24603 0.77626 2.70418 4.34461 −13.37360 10.5784 −14.2512 1.25512 1.92728
0.24604 0.77702 2.70344 4.35043 −13.39470 10.6177 −14.3446 1.25554 1.92955
0.24605 0.77800 2.70249 4.35808 −13.42230 10.669 −14.4675 1.25608 1.93248
0.24606 0.77959 2.70100 4.37053 −13.46670 10.7512 −14.6673 1.25693 1.93714
0.24607 0.78685 2.69478 4.42985 −13.66320 11.1084 −15.5733 1.26065 1.95773
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Table 4. Dependence of the model characteristics with index n = 1 on angular velocity according to represen-
tation (64) in approximation a2l = 0 and L2l = 0 at l > 3.

Ω e(Ω) ξp(Ω) ξe(Ω) a2(Ω) a4(Ω) η(n,Ω) ζ(n,Ω)

0.01000 0.02740 3.14112 3.14230 −8.22626 0.00305293 1.00023 1.00062

0.02000 0.05477 3.13971 3.14443 −8.23103 0.0122298 1.00092 1.00249

0.03000 0.08211 3.13735 3.14798 −8.23900 0.0275852 1.00207 1.00563

0.04000 0.10947 3.13404 3.15299 −8.25022 0.0492111 1.00369 1.01005

0.05000 0.13679 3.12979 3.15949 −8.26474 0.0772383 1.0058 1.01580

0.06000 0.16406 3.12459 3.16751 −8.28265 0.111839 1.00839 1.02292

0.07000 0.19132 3.11842 3.17711 −8.30402 0.153229 1.01149 1.03147

0.08000 0.21851 3.11130 3.18835 −8.32899 0.201673 1.01513 1.04152

0.09000 0.24567 3.10320 3.20131 −8.35768 0.257487 1.01931 1.05317

0.10000 0.27276 3.09413 3.21608 −8.39027 0.32105 1.02408 1.06652

0.11000 0.29980 3.08407 3.23277 −8.42695 0.392803 1.02945 1.08170

0.12000 0.32678 3.07301 3.25152 −8.46795 0.473268 1.03548 1.09886

0.13000 0.35369 3.06094 3.27247 −8.51353 0.563055 1.04221 1.11819

0.14000 0.38056 3.04784 3.29583 −8.56402 0.662877 1.04969 1.13989

0.15000 0.40737 3.03369 3.32181 −8.61978 0.773574 1.05798 1.16424

0.16000 0.43413 3.01847 3.35069 −8.68124 0.896136 1.06716 1.19153

0.17000 0.46085 3.00216 3.38279 −8.74892 1.03173 1.07731 1.22215

0.18000 0.48754 2.98472 3.41852 −8.82344 1.18177 1.08855 1.25656

0.19000 0.51422 2.96611 3.45838 −8.90554 1.34793 1.10099 1.29532

0.20000 0.54093 2.94628 3.50303 −8.99612 1.53227 1.1148 1.33915

0.21000 0.56770 2.92519 3.55328 −9.09629 1.73734 1.13016 1.38894

0.22000 0.59459 2.90275 3.61026 −9.20745 1.96635 1.14732 1.44585

0.23000 0.62169 2.87887 3.67547 −9.33137 2.22345 1.16657 1.51142

0.24000 0.64911 2.85344 3.75110 −9.47041 2.51415 1.18832 1.58773

0.25000 0.67706 2.82630 3.84047 −9.62772 2.84613 1.21311 1.67772

0.26000 0.70588 2.79723 3.94905 −9.80780 3.2307 1.24172 1.78576

0.27000 0.73624 2.76593 4.08725 −10.01740 3.68631 1.27531 1.91880

0.28000 0.76981 2.73197 4.28026 −10.26740 4.24909 1.31586 2.08937

0.29000 0.81612 2.69556 4.66457 −10.56940 5.04888 1.3676 2.32692

0.29100 0.82627 2.69274 4.78049 −10.59160 5.18552 1.37363 2.35676

0.29110 0.82808 2.69267 4.80312 −10.59110 5.20549 1.3742 2.35965

In Table 4 was shown the results of calculation of the polytrope characteristics with n = 1 as
functions of angular velocity by taking into account coefficients L2l (see form. (72)) in approximation
a2l = 0 at l > 3. In this approximation the maximal value of angular velocity is approximately
0.291 . . ., which is very close to the result of work [9], in which the numerical integration of equilibrium
equation was performed. Taking into account of coefficients L2l significantly changes the polytrope
characteristics at n = 1. Comparison of found integration constants a2(Ω) and a4(Ω) indicate better
convergence of expansion (64) than in approximation, that do not take into account coefficients L2l.
The constant a2(Ω) for modulo and a4(Ω) significantly decreased. In general, in both variants of
calculation the dependence of integration constants on angular velocity is significant, as can be seen
in Tables 3 and 4. Taking into account of coefficients L2l practically does not affect the value of polar
radius, but increase equatorial radius, as well as mass (approximately on 9%) and moment of inertia
(on 20%).

Results which are shown in Table 4, concerned mode (67), which correspond to ellipsoidal structures.
The distribution of dimensionless density at maximal value of angular velocity Ωmax for several values
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of angle θ is shown in Fig. 9. Built according to Table 4 the meridional section of the polytrope surface
at Ω = Ωmax is shown in Fig. 11 (solid curve 2). Curve 1 corresponds to the surface of corresponding
auxiliary rotational ellipsoid (with the same polar and equatorial radii, as the curve 2).
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Fig. 9. The distribution of dimensionless density at
Ω = Ωmax for several values of angle θ according to for-
mula (64) in approximation a2l = 0 at l > 3. Curve 1
corresponds to θ = 0◦, curve 2: θ = 45◦, curve 3:

θ = 90◦.

Fig. 10. Dependence of equatorial radius ξe(Ω) on an-
gular velocity Ω for polytrope with n = 1 in different
approximations. Curve 1 is built according to results of
works [7,8], curve 2 corresponds to our results. Curve 3

is built according to results of work [13].
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Fig. 11. The meridional section of the polytrope sur-
face with index n = 1 at Ω = Ωmax. Curve 1 is auxil-
iary and corresponds to formula (40), which determines
the surface of ideal rotational ellipsoid, which has two
common points with the polytrope surface. Curve 2 is
built according to formula (64). Dashed curve is the

polytrope section without rotation.

Fig. 12. The meridional section of the polytropes
surface with index n = 1 taking into account L4 at
I4 = 0. Curve 1 corresponds to formula (40), which
determines the surface of rotational ideal ellipsoid at
Ω1 = 0.2. Curve 2: the same, but angular velocity
Ω2 = 0.2911. Curve 3 is built according to formula (64)
at Ω2 = 0.2911. Crosses correspond to formula (64) at

Ω1 = 0.2.

In Fig. 10 is shown dependence of equatorial radius on angular velocity in different approximations.
Curve 1 corresponds to the Milne–Chandrasekhar approximation, curve 2 is built according to Table 4,
curve 3 are results of work [13], which differs from result [8] by numerical calculation of the constant
a2 (a2l(Ω) = 0 at l > 2). Curve 2 practically coincides with the results of work [9], so we do not cite it.

More accurate calculation of constants a2l near Ωmax(1)

Above the polytrope characteristics n = 1 obtained in the assumption, that its surface is the surface of
rotational ellipsoid, parameters of which ξe(Ω) and e(Ω) calculated by self-consistent iterative method.
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As is shown in Fig. 12, such assumption is valid in large region angular velocity change, but near
the maximal Ωmax(1) it disturbed, and the polytrope surface deviates from the ellipsoid surface. It
follows, that in this region we should continue the iterative process, using as a starting approximation
the expression ξ0(t|Ω), which corresponds to the curve 3,

ξ0(t|Ω) = ξ
(0)
0 (t|Ω) − f1(t|Ω), (86)

where ξ
(0)
0 (t|Ω) is determined by formula (40), and f1(t|Ω) is deviations from the ellipsoid surface.

According to definition (23)

I2l = I2l(Ω) = [ξ(0)e (Ω)]1−2l

∫ 1

0
P2l(t)f1(t|Ω)

{
1 +

e2

1 − e2
t2
}l−1/2

dt+ . . . (87)

is nonzero for all l > 2,

I2 = I2(Ω) =

∫ 1

0
P2(t) ln

{
1 +

e2

1 − e2
t2
}
dt

− 2[ξ(0)e (Ω)]−1

∫ 1

0
P2(t)f1(t|Ω)

{
1 +

e2

1 − e2
t2
}1/2

dt+ . . . .

(88)

At calculation of matrix elements S2l,2l, S2m,2l in formulae (78), (79) we have to replace ξ0 → ξ0(t|Ω).
The similar replacement should be performed in formula (72) at calculation L2l.

Table 5. Dependence of the model characteristics with index n = 1 on angular
velocity according to representation (64) in approximation a2l = 0, L2l = 0 and

I2l = 0 at l > 3.

Ω ξp(Ω) ξe(Ω) a2(Ω) a4(Ω) η(n,Ω) ζ(n,Ω)

0.20000 2.94687 3.50320 −8.98933 1.59343 1.11479 1.33906

0.22000 2.90373 3.61084 −9.19960 2.06831 1.1473 1.44578

0.24000 2.85493 3.75306 −9.46517 2.68564 1.18836 1.58803

0.26000 2.79905 3.95638 −9.81871 3.53297 1.24214 1.78836

0.28000 2.73203 4.32440 −10.35970 4.88079 1.3191 2.10863

0.28284 2.72087 4.42030 −10.47160 5.17286 1.33351 2.17436

The results of calcula-
tion of constants a2l(Ω),
as well as the associ-
ated ellipse, which lim-
its the top of the poly-
trope surface and has 2
common points with its
surface (ξp(Ω) and ξe(Ω))
are shown in Table 5. In
Fig. 13 is shown depen-
dence of function f1(t|Ω)
on cosine of polar angle t at Ω = 0.2828 . . . (Ω2 = 0.08). This function (at L4 6= 0, I4 6= 0) can be
represented by such Padé approximant

f1(t|Ω) = {a0 + a2t
2 + a4t

4 + a6t
6}{b0 + b2t

2 + b4t
4 + b6t

6}−1, (89)

where

a0 = 6.44749 · 10−6, a2 = 0.681324, a4 = 6.08271, a6 = −6.76694,

b0 = 0.142974, b2 = 3.62191, b4 = 17.6817, b6 = 18.1559.

As was shown in Fig. 13, the deviation value of the polytrope surface from associated ellipsoid is the
higher, the more accurate calculated integration constants a2l(Ω) are.

6. Conclusions

The solutions of differential equilibrium equation for the polytrope model with axial rotation usu-
ally are represented in the form of expansions for the Legendre polynomials, then the prob-
lem of calculation of integration constants arises (1 constant in works [7, 8], . . . , 4 constants in
work [11]). For this purpose traditionally one has used the condition of continuity of gravitational
potential on the stellar surface. At this, the gravitational potential outside the star is written
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in the form

∑

l>0

B2lξ
−1−2lP2l(t), (90)

but calculation of coefficients B2l are not ex-
pected. Although equation (25) is relation be-
tween the solution Yn(ξ, θ) and created by it grav-
itational potential in each point (and on its sur-
face), this relation is self-consistent. Our ap-
proach yields an opportunity for detailed consider-
ation of density distribution also in the vicinity of
the surface at calculation of integration constants.

In the case of models n = 0 and n = 1, the
equilibrium equation is linear, which allows us to
combine analytical calculations with numerical.
Model n = 0 corresponds to the object with con-
stant density and the problem reduces to study
the polytrope surface, which determines integral
equation (25). We have approved that the poly-
trope surface with n = 0 is the surface of rota-
tional ellipsoid. Obtained by us the values of po-
lar and equatorial radii as functions of angular
velocity are very close to results of work [13].

For the polytrope n = 1 we obtained the sys-
tem of linear algebraic inhomogeneous equations
for calculation of integration constants with con-
sistent consideration of multicomponent terms,
which are proportional to P2l(t) at l > 1 as in
expression (64), and in equations (77). Numeri-
cal calculation were performed in approximation
P2l(t) = 0 for l > 3. The polytrope characteristics
as functions of angular velocity Ω were calculated.
It was shown that the polytrope surface at arbi-

trary Ω can be represented as the function of the surface of the associated rotational ellipsoid (which
has common with the polytrope surface the polar and equatorial radii) and some correction f1(t|Ω),
which depends on the cosine of polar angle t and angular velocity Ω. In works [8,9,11,12] are given only
dependences of polar and equatorial radii calculated in different approximations, and the polytrope
is considered as an inhomogeneous rotational ellipsoid. In works [19, 20] are performed calculation of
star α Eri in the frame of polytropic model n = 1 numerically at the value of angular velocity, which
is close to observed. As can be seen in the figures given there, the polytrope surface in the vicinity of
the equator has behavior, which is similar to obtained by us at large values Ω.

Table 6. Dependence of polar and equatorial radii of polytrope n = 1 on square
angular velocity Ω2 in different approximations.

Ω2 ξp(Ω) ξe(Ω) ξp(Ω) [9] ξe(Ω) [9] ξp(Ω) [11] ξe(Ω) [11]

0.02 3.04597 3.29936 3.04590 3.29940 3.04589 3.29834

0.04 2.94687 3.50320 2.94610 3.50320 2.94615 3.49750

0.06 2.84175 3.79676 2.83970 3.79480 2.83952 3.77439

0.08 2.72087 4.42030 2.71940 4.37970 2.71751 4.27332

In this regard, it is
worth noting work [11].
Following the work [10],
the solution of the me-
chanical equilibrium equa-
tion in work [11] is rep-
resented in form (64),
and in practical calcula-

tions taking into account terms with accuracy to P8(t) including. Although for calculation of integration
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constants in this work the author used traditional idea about continuity of gravitational potential on
the polytrope surface, author also calculated constants B2l in expansion (90), considering it suitable
for the polytrope surface, although it is known that such expansion coincides absolutely only outside
sphere with ξe (see [25]). Author calculated values ξp(Ω), ξe(Ω) for the same values of squared dimen-
sionless angular velocity, as in work [9]: Ω2 ≡ 0.02, 0.04, 0.06, 0.08. Obtained results are very close to
ones of work [9]: at Ω2 = 0.08 the deviation is 2.43% (see Table 6). However, the author of work [11]
did not study the surface shape n = 1. Using obtained by him values of integration constants, we
calculated function f1(t|Ω) of polytrope n = 1 at Ω = 0.2828 . . . (Ω2 = 0.08), as is shown in Fig. 14.
Here, the curve 3 is built in approximation a2l = 0 for l > 3, and the curve 4 is built in approximation
a2l = 0 for l > 5. Although the deviation of the polytrope surface fW1 (t|Ω) on the surface of associated
ellipsoid according to work [11] is slightly less than in our calculations, we observe similar regularity:
function fW1 (t|Ω) is the higher, the more accurate the solution of the equilibrium equation is. The
maximal value fmax

1 (Ω) = 0.5 a4Ω2.
Our analysis allows us to say, that the polytrope of rotational ellipsoid n = 1 deviates from the

surface of the associated ellipsoid. The reliability of this conclusion is ensured by the use of two dif-
ferent methods of calculation of integration constants, which determine the solution of the equilibrium
equation. Moreover, this explains the deviation of the curves 1, 2 and 3, 4: integration constant a4(Ω)
in work [11] at Ω2 = 0.08 are almost 2 times less than in Table 5.
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Метод iнтегральних рiвнянь у полiтропнiй теорiї зiр з осьовим
обертанням. I. Полiтропи n = 0 i n = 1

Ваврух М. В., Дзiковський Д. В.

Львiвський нацiональний унiверситет iменi Iвана Франка,
вул. Кирила i Мефодiя, 8, 79005, Львiв, Україна

Розрахунки характеристик зiр з осьовим обертанням у рамках полiтропної моделi
грунтуються на розв’язку рiвняння рiвноваги — диференцiального рiвняння другого
порядку в частинних похiдних. Рiзнi варiанти наближеного визначення сталих iнте-
грування заснованi на традицiйному в теорiї зоряної поверхнi наближеннi, а саме:
умовi неперервностi гравiтацiйного потенцiалу в околi поверхнi. Нами запропоновано
новий пiдхiд, в якому одночасно використовуються диференцiальна та iнтегральна
форми рiвняння рiвноваги. Ця замкнута система дозволяє самоузгоджено визначити
сталi iнтегрування, форму поверхнi полiтропи та розподiл речовини за об’ємом зорi.
На прикладi полiтропи n = 0 i n = 1 встановлено iснування двох режимiв обертання
(з малими та великими ексцентриситетами). У випадку n = 0 доведено, що поверхня
полiтропи є поверхнею однорiдного елiпсоїда обертання. Розраховано характеристики
полiтропи n = 1 у рiзних наближеннях як функцiї кутової швидкостi. Вперше розра-
ховано вiдхилення поверхнi полiтропи при заданому значеннi кутової швидкостi вiд
поверхнi асоцiйованого елiпсоїда обертання.

Ключовi слова: зорi-полiтропи, неоднорiднi елiпсоїди, осьове обертання, рiвняння
механiчної рiвноваги, стабiльнiсть зiр.
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