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In this paper, we present a new approach for solving large-scale differential Lyapunov
equations. The proposed approach is based on projection of the initial problem onto an
extended block Krylov subspace by using extended nonsymmetric block Lanczos algorithm
then, we get a low-dimensional differential Lyapunov matrix equation. The latter differen-
tial matrix equation is solved by the Backward Differentiation Formula method (BDF) or
Rosenbrock method (ROS), the obtained solution allows to build a low-rank approximate
solution of the original problem. Moreover, we also give some theoretical results. The
numerical results demonstrate the performance of our approach.
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1. Introduction

In this paper, we consider the differential Lyapunov equation (DLE in short) on the time in the interval
[t0, tf ] of the form {

X ′(t) = AX(t) +X(t)AT +BBT ,
X(t0) = X0,

(1)

where the matrix A ∈ Rn×n is assumed to be large, sparse and nonsingular, and B ∈ Rn×s is matrix
full rank, with s≪ n. We assume that the initial condition is given in a factored form as X0 = Z0Z

T
0 .

Differential Lyapunov matrix equations play a fundamental role in many problems in control, filter
design theory, model reduction problems and robust control problems; see, e.g. [1] and the references
therein.

The DLE (1) is equivalent to the following linear ordinary differential equation:

x′(t) = Ax(t) + b, x(t0) = vec(X0), (2)

where A = In ⊗ A + A ⊗ In, b = vec(BBT ) and vec(X) is the vector of Rn×s defined by vec(X) =
[X11,X21, . . . ,Xn1, . . . ,X1s,X2s, . . . ,Xns]

T ∈ Rns. Reasonable size problems, which is given by (2),
is solved by using an integration method. The Kronecker product A ⊗ B = [aijB], where A = [aij].
This product satisfies the properties: (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), (A ⊗ B)T = AT ⊗ BT , and
vec(AXB) = (BT ⊗A)vec(X).

The exact solution of the differential Lyapunov equation (1) is given by the following result.

Theorem 1 (Ref. [1]). The unique solution of the differential Lyapunov equations (1) is defined by

X(t) = e(t−t0)AX0e
(t−t0)AT

+

∫ t

t0

e(t−τ)ABBT e(t−τ)A
T

dτ. (3)

There are several methods for solving small or medium-sized differential Lyapunov matrix equations,
for example BDF method and ROS method [2–4]. For large problems, we propose a new method based
on projection onto extended block Krylov subspaces with an orthogonality Petrov-Galerkin condition;
see, e.g. [3, 5–8].
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During the last years, there is a large variety of methods to compute the solution of large scale
matrix differential equations such as differential Lyapunov equation. For more details see [3,5,6,9]. For
large-scale problems, the effective methods are based on Krylov subspaces. Some methods have been
proposed for solving large matrix equation, see, e.g. [10]. The main idea employed in these methods
is to use an extended Krylov subspace and then apply the Galerkin-type orthogonality condition. The
main idea in this work is using the extended nonsymmetric block Lanczos to solve (1).

Behr et al. [11]. They developed a unifying approach based on the spectral theorem for normal
operators like the Sylvester operator and derived a formula for its norm using an induced operator
norm. In view of numerical approximations, they proposed an algorithm that identifies a suitable
Krylov subspace using Taylor series and use a projection to approximate the solution.

Lang et al. [12]. They proposed efficient algorithms for solving large-scale differential Lyapunov
equations. They focused on methods, based on standard versions of ordinary differential equations,
in the matrix setting. The application of these methods yields algebraic Lyapunov equations with a
certain structure to be solved in every step. The alternating direction implicit algorithm and Krylov
subspace based methods allow to exploit this special structure.

The rest of the paper is organized as follows. In the next section 2, we summarize the steps of the
extended nonsymmetric block Lanczos algorithm to generate the biorthonormal bases and some of the
characteristics of the theory. In section 3, we present a low-rank approximation of the solution of the
differential Lyapunov equation using projection and low-rank approximation (ENBL-ROS and ENBL-
BDF). Finally, Section 4 is devoted to numerical experiments showing the effectiveness of proposed
methods.

Throughout the paper, we use the following notations. The Frobenius inner product of the matrices
X and Y is defined by 〈X,Y 〉F = tr(XTY ), where tr(Z) denotes the trace of a square matrix Z. The
associated norm is the Frobenius norm denoted by ‖ · ‖F .

Let A ∈ Rn×n and B ∈ Rn×s, the extended block Krylov subspace Ke
m(A,B) can be considered as

the subspace of Rn spanned by the columns of the matrices AkB, k = −m, . . . ,m− 1, i.e.,

Ke
m(A,B) = range

{
B,A−1B,AB,A−2B,A2B, . . . , Am−1B,A−mB

}
.

Recall extended block Arnoldi (EBA) [13] algorithm, when it applied to the pair (A,B) (m steps).
EBA is described in Algorithm 1 as follows

Algorithm 1 The extended block Arnoldi algorithm (EBA).
Inputs: A an n× n matrix, B an n× s matrix and m an integer.
Compute the QR decomposition of [B,A−1B], i.e, [B,A−1B] = V1Λ.
Set V0 = [].
For j = 1, 2, 3, . . . ,m

1. Set V (1)
j = Vj(:, 1 : s) and V (2)

j = Vj(:, s + 1 : 2s)

2. Vj = [Vj−1, Vj ]; V̂j+1 = [AV
(1)
j , A−1V

(2)
j ].

3. For i = 1, ..., j

4. Hi,j = V T
i V̂j+1.

5. V̂j+1 = V̂j+1 − ViHi,j.

6. End For i

7. Compute the QR decomposition of U i.e., V̂j+1 = Vj+1Hj+1,j.

End For j.
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The matrix Vm = [V1, . . . , Vm] ∈ Rn×2ms such that their columns form an orthonormal basis of the
extended block subspace Ke

m(A,B). The 2ms× 2ms Hessenberg matrix

Hm := VTmAVm = [Hi,j],

with Hi,j ∈ R2s×2s. Through our algorithm 1 we have the following relations

AVm = Vm+1

[
Hm

Hm+1,mE
T
m

]
,VTmVm = I2ms,

Vm = Vm+1

[
I2sm

02s×2s

]
and VTmB = E1Λ11,

with

Λ =

[
Λ11 Λ12

0 Λ22

]
,

where ETm = [02s×2s(m−1), I2s] ∈ R2s×2ms is the matrix formed with the last 2s columns of the 2ms×2ms

identity matrix I2ms, and Λ11 is the s × s matrix, E1 = [Is, 0s×(2m−1)s]
T is the matrix of the first s

columns of the 2ms× 2ms identity matrix I2ms.

2. The extended nonsymmetric block Lanczos process

Before describing the extended nonsymmetric block Lanczos process, we have to describe the following
procedure which, if applied to V = [v1, . . . , vs], W = [w1, . . . , ws] ∈ Rn×s (that’s as a two-sided
Gram-Schmidt process applied to the two sequences V and W ) allows to obtain biorthogonal blocks
(BIORTHB) V,W ∈ Rn×s. For more details see [14, 15]

Algorithm 2 The BIORTHB algorithm to the pair (V,W ).
Inputs: V,W an n× s matrix.
Set α = wT1 v1, r11 =

√
α, z11 = α

r11
, ṽ1 = v1

r11
, w̃1 = w1

z11
.

For i = 2, 3, . . . , s

1. v = vi et w = wi

2. For j = 1, . . . , i− 1,

3. rji = w̃Tj v and zji = ṽTj w

4. v = v − rjiṽj and w = w − zjiw̃j ;

5. End For j

6. β = wT v, rii =
√
β, zii = β

rii
, ṽi = v

rii
and w̃i = w

zii

End For i.
Outputs: V = [ṽ1, . . . , ṽs] and W = [w̃1, . . . , w̃s].

If s iterations are performed, the above algorithm produces V,W and R = [rji],Z = [zji] ∈ Rs×s

upper triangular matrices such that

V = VR, W = WZ, VTW = Is. (4)

We mention the extended nonsymmetric block Lanczos (ENBL) [14] algorithm when applied to the
triple (A,B,C) for constructing two biorthogonal bases Vm and Wm of the extended block Krylov
subspaces Ke

m(A,B) and Ke
m(AT , C), respectively. ENBL is described in algorithm 3 as follows
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Algorithm 3 The ENBL algorithm to triple (A,B,C).
Inputs: A an n× n matrix, B an n× s matrix, C an n× s matrix and m an integer.
Initialize: W0 = W0 = 02s and N0 = Ñ0 = 02s.
Set U1 = [B,A−1B], S1 = [C,A−TC].

Apply Algorithm 2 to (U1, S1) to get V1 = [v
(1)
1 , v

(1)
2 ], W1 = [v

(1)
1 , v

(1)
2 ] and Λ, Ω such that U1 = V1Λ

and S1 = W1Ω.
Set V2 = [V1] and W2 = [W1].
For j = 1, 2, . . . ,m

1. Set Uj+1 = [Av
(j)
1 , A−1v

(j)
2 ] and Sj+1 = [ATw

(j)
1 , A−Tw(j)

2 ]

2. Set Nj = W T
j−1Uj+1, Cj = W T

j Uj+1 and Ñj = V T
j−1Sj+1, C̃j = V T

j Sj+1.

3. Uj+1 = Uj+1 − VjCj − Vj−1Nj and Sj+1 = Sj+1 −WjC̃j −Wj−1Ñj

4. Apply Algorithm 2 to (Uj+1, Sj+1) to get Vj+1 ,Wj+1, Aj+1, and Ãj+1 such that Uj+1 = Vj+1Aj+1

and Sj+1 = Wj+1Ãj+1.

5. Vj+1 = [Vj, Vj+1] and Wj+1 = [Wj ,Wj+1]

End For m.

Let the matrices biorthonormal basis Vm and Wm (VTmWm = I2ms), and the 2ms × 2ms block
triangular matrices Tm = WT

mAVm and Lm = WT
mA

−1Vm.

Theorem 2 (Ref. [14]). Suppose that m steps of Algorithm 3 have been carried out. Then we have
the following relations

AVm = VmTm + Vm+1Tm+1,mE
T
m = Vm+1

[
Tm

Tm+1,mE
T
m

]
, (5)

A−TWm = WmLTm +Wm+1L
T
j+1,jE

T
m = Wm+1

[
LTm

LTm+1,jE
T
m

]
, (6)

where Lj+1,j = WT
mA

−1Vm+1 and Tj+1,j = WT
mAVm+1.

From Algorithm 2, we obtain WT
mC = E1ω11, where Ω =

[
ω11 ω12

0 ω22

]
and ωlm is the s× s matrix.

3. Low-rank approximate solution

This approach is based on extended block Krylov projection of the differential Lyapunov equation (1).
For more details on extended block Krylov projection method for solving large matrix equations see [3–
5, 10]. When we apply the ENBL algorithm 2 on the triple

(
A,B, B

‖B‖F
)
, we get two biorthonormal

matrices

Vm+1 = [V1, . . . , Vm, Vm+1] ∈ Rn×2(m+1)s and Wm+1 = [W1, . . . ,Wm,Wm+1] ∈ Rn×2(m+1)s.

We then consider low-rank approximate solution of the large differential Lyapunov equation (1)
that have the form

Xm(t) := VmXm(t)VTm. (7)

Let the residual of an approximation Xm(t) of the exact solution X(t) of problem (1) given by

Rm(t) = X ′
m(t) −AXm(t) −Xm(t)AT −BBT , (8)
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be the residual associated with the approximation Xm(t) satisfying the Petrov-Galerkin orthogonality
condition

WT
mRm(t)Wm = 02ms×2ms. (9)

Theorem 3. Let Xm(t) be the matrix function defined by (7), then it satisfies the following low-order
differential Lyapunov equation

X′
m(t) = TmXm(t) + Xm(t)T T

m +BmB
T
m, (10)

where Bm = E1ω11.

Proof. From the equations (7), (9) and

Rm(t) = Vm
(
X′
m(t) − TmXm(t) − Xm(t)T T

m −BmB
T
m

)
VTm,

we obtain the low-dimensional differential Lyapunov equation

X′
m(t) = TmXm(t) + Xm(t)T T

m +BmB
T
m. (11)

�

Now we have to solve the last differential Lyapunov equation (11) by ROS method or BDF method,
see [3, 4, 6].

Next, we give a result that allows us to compute the norm of the residual without forming the
approximation Xm(t) at each step m. The approximation Xm(t) is computed in a factored form only
when convergence is achieved.

Theorem 4. The residual Rm(t) associated with the approximation Xm(t) satisfies the relation

Rm(t) = −Vm+1Tm+1,mE
T
mXm(t)VTm − VmXm(t)EmT

T
m+1,mV

T
m+1. (12)

Proof. We have

Rm(t) = X ′
m(t) −AXm(t) −Xm(t)AT −BBT

= VmX′
m(t)VTm −AVmXm(t)VTm − VmXm(t)VTmAT −BBT ,

since X′
m(t) = TmXm(t) + Xm(t)T T

m +BmB
T
m, so

Rm(t) = Vm
(
TmXm(t) + Xm(t)T T

m +BmB
T
m

)
VTm −AVmXm(t)VTm − VmXm(t)VTmAT −BBT

= VmTmXm(t)VTm + VmXm(t)T T
mVTm −AVmXm(t)VTm − VmXm(t)VTmAT ,

since VmTm = AVm − Vm+1Tm+1,mE
T
m, we obtain

Rm(t) = −Vm+1Tm+1,mE
T
mXm(t)VTm − VmXm(t)EmT

T
m+1,mV

T
m+1,

so the proof is complete. �

Theorem 5. The Frobenius norm of the residual Rm(t) associated with the approximation Xm(t)
satisfies the relation

‖Rm(t)‖F = ‖Tm+1,mE
T
mXm(t)‖F . (13)

Proof. We have

Rm(t) = VmX′
m(t)VTm −AVmXm(t)VTm − VmXm(t)VTmAT −BBT ,
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since W T
m+1Vm = 0, W T

m+1Vm = 0 and W T
m+1B = 0 we obtain

W T
m+1Rm(t)Wm = −Tm+1,mE

T
mXm(t),

since

WT
m+1Rm(t)Wm =

[
WT
mRm(t)Wm

W T
m+1Rm(t)Wm

]
=

[
0

W T
m+1Rm(t)Wm

]
,

which proves the result, since
∥∥Rm(t)

∥∥
F

=
∥∥WT

m+1Rm(t)Wm

∥∥
F
. �

To save memory, the solutionXm(t) = VmXm(t)VTm can be given as a product of two matrices of low-
rank. For that, we consider the singular value decomposition of the 2ms× 2ms matrix Xm = UDUT ,
where D is the diagonal matrix of the singular values of Xm sorted in decreasing order. Let Ul be the
2ms× l matrix of the first l columns of U , corresponding to the l singular values of magnitude greater
than some tolerance dtol. We obtain the truncated singular value decomposition Xm ≈ UlDlU

T
l , where

Dl = diag[λ1, . . . , λl]. Setting Zm = VmUlD1/2
l it follows that

Xm = ZmZ
T
m. (14)

This result is important for large-scale problems to decrease central processing unit (CPU) time
and memory requirements; the approximate solution could be given as a product of low-rank matrices.

We summarize the above method for solving large differential Lyapunov equation (ENBL-BDF or
ENBL-ROS) in following algorithm.

Algorithm 4 The ENBL-... method for solving differential Lyapunov equation
Inputs: A ∈ Rn,n and B ∈ Rn,s an matrix, t0, tf .
Choose a tolerance tol > 0 and an integer mmax.
Initialize: W0 = W0 = 02s and N0 = Ñ0 = 02s.
Set U1 = [B,A−1B], S1 = [B,A−TB].

Apply Algorithm 2 to U1 and S1 to get V1 = [v
(1)
1 , v

(1)
2 ],W1 = [v

(1)
1 , v

(1)
2 ] and Λ, Ω such that U1 = V1Λ

and S1 = W1Ω.
Set V2 = [V1] and W2 = [W1].
For m = 1, 2, . . . ,mmax

1. Set Um+1 =
[
Av

(m)
1 , A−1v

(m)
2

]
and Sm+1 =

[
ATw

(m)
1 , A−Tw(m)

2

]

2. Set Nm = W T
m−1Um+1, Cm = W T

mUm+1 and Ñm = V T
m−1Sm+1, C̃m = V T

mSm+1.

3. Um+1 = Um+1 − VmCm − Vm−1Nm and Sm+1 = Sm+1 −WmC̃m −Wm−1Ñm

4. Apply Algorithm 2 to Um+1 and Sm+1 to compute Vm+1 ,Wm+1, Am+1, and Ãm+1 such that
Um+1 = Vm+1Am+1 and Sm+1 = Wm+1Ãm+1.

5. Vm+1 = [Vm, Vm+1] and Wm+1 = [Wm,Wm+1]

6. Compute the Tm and Bm.

7. Compute Xm(t) solution of low-dimensional differential Lyapunov equation (10).

8. If ‖Rm(t)‖F < tol.

End For m.
Compute the approximate solution Xm in the factored form given by the relation (14).
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The following result shows that the approximation Xm(t) is an exact solution of a perturbed
differential Lyapunov equation.

Theorem 6. Let Xm(t) = VmXm(t)VTm be the approximate solution obtained after running m steps
of the ENBL. Then we have

X ′
m(t) = (A− Fm)Xm(t) +Xm(t)(A− Fm)T +BBT , (15)

where Fm = Vm+1Tm+1,mW
T
m.

Proof. Multiply the left the equation (10) by Vm and from the right by VTm, we obtain

X ′
m(t) =

(
AVm − Vm+1Tm+1,mE

T
m

)
Xm(t)VTm + VmXm(t)

(
AVm − Vm+1Tm+1,mE

T
m

)T −BBT .

On the other hand, since WT
mVm = I2ms, and ETmWT

m = W T
m, we have

X ′
m(t) = (A− Fm)Xm(t) +Xm(t)(A− Fm)T +BBT .

�

Through this result and expression Fm, shows Fm to zero, so the approximate solution Xm(t) is an
exact solution for large-scale differential Lyapunov equation.

The following result indicates that the error matrix Em(t) = X(t) −Xm(t) satisfies a differential
Lyapunov equation.

Theorem 7. Let the matrix function Em(t) verify the following differential Lyapunov equation

E′
m(t) = AEm(t) + Em(t)AT −Rm(t). (16)

Proof.

E′
m(t) = X ′(t) −X ′

m(t)

= AX(t) +X(t)AT +BBT −AXm(t) −Xm(t)AT −BBT −Rm(t)

= A(X(t) −Xm(t)) + (X(t) −Xm(t))AT −Rm(t)

= AEm(t) + Em(t)AT −Rm(t).

�

Notice that from theorem 1, the error Em(t) can be expressed in the integral form as follows

Em(t) = e(t−t0)AEm(t0)e(t−t0)A
T

+

∫ t

t0

e(t−τ)ARm(τ)e(t−τ)A
T

dτ, t ∈ [t0, tf ]. (17)

Next, we give an upper bound for the norm of the error by using the 2-logarithmic norm.

Theorem 8. Assume that the matrix A is such that µ2(A) 6= 0. Then at step m of the ENBL, we
have the following upper bound for the norm of the error Em(t),

‖Em(t)‖2 6 ‖Em(t0)‖2e2(t−t0)µ2(A) + αm
e2(t−t0)µ2(A) − 1

2µ2(A)
, (18)

where αm = maxξ∈[t0,t] ‖Rm(ξ)‖2.

Proof. Using the expression (17) of Em(t), we obtain the following relation

‖Em(t)‖2 = ‖e(t−t0)AEm,0e(t−t0)A
T ‖2 +

∫ t

t0

‖e(t−τ)ARm(τ)e(t−τ)A
T ‖2dτ.
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Therefore, using equation (17) and the fact that ‖e(t−τ)A‖2 6 e(t−τ)µ2(A), we get

‖Em(t)‖2 6 ‖Em,0‖2 e(t−t0)(µ2(A)+µ2(A
T )) + max

ξ∈[t0,t]
‖Rm(ξ)‖2

∫ t

t0

e(t−τ)µ2(A)e(t−τ)µ2(A
T )dτ

6 ‖Em,0‖2 e2(t−t0)µ2(A) + max
ξ∈[t0,t]

‖Rm(ξ)‖2et2µ2(A)
∫ t

t0

e−2τµ2(A)dτ,

so the proof is complete. �

In Figure 1, we computed the upper bound error norm ‖Em(t)‖2 vs number m of iterations, we use
the matrix A obtained from the discretization of the from the Lyapack package [16] using the command
fdm_2d_matrix A = fdm(n0, exy , sin(xy), y2 − x2), and B = rand(n, s).
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Fig. 1. Norm of the upper bound errors vs number m of iterations.

4. Numerical experiments

In this section, we report some experimental results. All the numerical experiments have been coded
in MATLAB 2018b, PC-Intel(R) Core(TM) i3, 4 GB of RAM. We compare the performance of the
extended block Arlondi and new methods with equal-sized approximation spaces. In our experiments,
we used 4 methods listed in Table 1. The time interval considered was [0, 1] and the initial condition
X0 = 0n×n. The results are shown in Table 2, we give the number of iterations (Iter), the residual

Table 1. The methods.

EBA-BDF Extended block Arlondi and BDF method
ENBL-BDF Extended nonsymmetric block Lanczos and BDF method
EBA-ROS Extended block Arlondi and ROS method
ENBL-ROS Extended nonsymmetric block Lanczos and ROS method

norm (Res.norm), and the CPU time in seconds (CPU time) required for convergence, we use s = 2,
and tol = 10−15. In this example [6], we set A = (M − dtK)−1M , and B = dt(M − dtK)−1F , where
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the matrices M and K are given by:

M =
1

6n




4 1
1 4 1

. . .
. . .

. . .
1 4 1

1 4



, K = −αn




2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2



.

The entries of the n × s matrix F and the s × n matrix C were random values uniformly distributed
on [0, 1]. In our experiments we used dt = 0.1, α = 0.5 and s = 2 for different values of n.

Table 2. Runtimes in seconds, the residual norms and iterations for each method.

Test Problem Method CPU time Iter Res.norm
EBA-ROS 2.80 30 5.28977 × 10−15

n = 2500 ENBL-ROS 1.28 9 6.87600 × 10−17

EBA-BDF 2.51 30 8.51644 × 10−14

ENBL-BDF 1.25 9 8.5535 × 10−16

EBA-ROS 12.83 30 6.4430 × 10−14

n = 4600 ENBL-ROS 7.42 9 1.37058 × 10−16

EBA-BDF 12.28 30 3.56598 × 10−13

ENBL-BDF 7.38 9 9.65655 × 10−16

EBA-ROS 19.12 30 1.03065 × 10−13

n = 8100 ENBL-ROS 11.67 9 3.03288 × 10−16

EBA-BDF 18.77 30 3.40216 × 10−12

ENBL-BDF 15.24 11 2.39502 × 10−16

EBA-ROS 28.68 30 7.97113 × 10−14

n = 10000 ENBL-ROS 17.60 9 4.4548 × 10−16

EBA-BDF 28.25 30 3.3338 × 10−12

ENBL-BDF 21.33 11 7.83282 × 10−16

We used a constant timestep h = 0.1. In Figure 2, we chose a size of 5600 × 5600, for the matrices
A, we plotted the Frobenius norms of the residuals at final time tf versus the number of iterations.
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Fig. 2. Residual norm vs number m iterations.

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 526–536 (2021)



The extended nonsymmetric block Lanczos methods for solving large-scale differential Lyapunov . . . 535

5. Conclusion

In this paper, we presented new iterative method for solving large-scale differential Lyapunov matrix
equations. The proposed method is based on the extended nonsymmetric block Lanczos algorithm and
the Backward Differentiation Formula method (BDF) or Rosenbrock method (ROS). The numerical
experiments show that the proposed new approach is effective for large and sparse problems.
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Розширений несиметричний блок методiв Ланцоша для
розв’язування великомасштабних диференцiальних рiвнянь

Ляпунова

Садек Л., Талiбi Алауї Г.

Кафедра математики, Факультет наук, Чуайб Дуккалi унiверситет, Ель Джадiда, Марокко

У статтi представено новий пiдхiд до розв’язання великомасштабних диференцiаль-
них рiвнянь Ляпунова. Запропонований пiдхiд базується на проектуваннi початко-
вої задачi на розширеному блоцi пiдпростору Крилова, використовуючи розшире-
ний несиметричний алгоритм Ланцоша. У результатi отримується низькорозмiрне
диференцiальне матричне рiвняння Ляпунова. Це диференцiальне матричне рiвнян-
ня розв’язується методом диференцiацiювання назад або методом Розенброка. Отри-
маний розв’язок дозволяє створювати наближений розв’язок початкової задачi. Крiм
того, дано деякi теоретичнi результати. Чисельнi результати демонструють продук-
тивнiсть запропонованого пiдходу.

Ключовi слова: розширений блок пiдпростору Крилова, розширений несиметрич-
ний блок алгоритма Ланцоша, наближення низького рангу, диференцiальнi рiвняння
Ляпунова.
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