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In this paper, we present a new approach for solving large-scale differential Lyapunov
equations. The proposed approach is based on projection of the initial problem onto an
extended block Krylov subspace by using extended nonsymmetric block Lanczos algorithm
then, we get a low-dimensional differential Lyapunov matrix equation. The latter differen-
tial matrix equation is solved by the Backward Differentiation Formula method (BDF) or
Rosenbrock method (ROS), the obtained solution allows to build a low-rank approximate
solution of the original problem. Moreover, we also give some theoretical results. The
numerical results demonstrate the performance of our approach.
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1. Introduction

In this paper, we consider the differential Lyapunov equation (DLE in short) on the time in the interval
[to, t] of the form
{ X'(t)=AX(t)+ X(t)AT + BBT, 1)
X(to) = Xo,

where the matrix A € R™*" is assumed to be large, sparse and nonsingular, and B € R"™*® is matrix
full rank, with s < n. We assume that the initial condition is given in a factored form as Xg = ZoZg )

Differential Lyapunov matrix equations play a fundamental role in many problems in control, filter
design theory, model reduction problems and robust control problems; see, e.g. [1] and the references
therein.

The DLE (1) is equivalent to the following linear ordinary differential equation:

o' (t) =Ax(t) + b, x(tg) = vec(Xo), (2
where A = I,, ® A+ A® I,, b = vec(BBT) and vec(X) is the vector of R"** defined by vec(X) =
[(X11, Xo1, .., Xnt, .o, X1, Xos, ..., Xpns]T € R™. Reasonable size problems, which is given by (2),
is solved by using an integration method. The Kronecker product A ® B = [a;; B], where A = [a;;].
This product satisfies the properties: (A ® B)(C ® D) = (AC ® BD), (A® B)T = AT ® BT, and
vec(AXB) = (BT ® A)vec(X).

The exact solution of the differential Lyapunov equation (1) is given by the following result.

~—

Theorem 1 (Ref. [1]). The unique solution of the differential Lyapunov equations (1) is defined by

t
X(t) = el A Xt t)AT | / et=DABBT=DA g7, (3)

to

There are several methods for solving small or medium-sized differential Lyapunov matrix equations,
for example BDF method and ROS method [2-4]. For large problems, we propose a new method based
on projection onto extended block Krylov subspaces with an orthogonality Petrov-Galerkin condition;
see, e.g. [3,5-8|.
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During the last years, there is a large variety of methods to compute the solution of large scale
matrix differential equations such as differential Lyapunov equation. For more details see [3,5,6,9]. For
large-scale problems, the effective methods are based on Krylov subspaces. Some methods have been
proposed for solving large matrix equation, see, e.g. [10]. The main idea employed in these methods
is to use an extended Krylov subspace and then apply the Galerkin-type orthogonality condition. The
main idea in this work is using the extended nonsymmetric block Lanczos to solve (1).

Behr et al. [11]. They developed a unifying approach based on the spectral theorem for normal
operators like the Sylvester operator and derived a formula for its norm using an induced operator
norm. In view of numerical approximations, they proposed an algorithm that identifies a suitable
Krylov subspace using Taylor series and use a projection to approximate the solution.

Lang et al. [12]. They proposed efficient algorithms for solving large-scale differential Lyapunov
equations. They focused on methods, based on standard versions of ordinary differential equations,
in the matrix setting. The application of these methods yields algebraic Lyapunov equations with a
certain structure to be solved in every step. The alternating direction implicit algorithm and Krylov
subspace based methods allow to exploit this special structure.

The rest of the paper is organized as follows. In the next section 2, we summarize the steps of the
extended nonsymmetric block Lanczos algorithm to generate the biorthonormal bases and some of the
characteristics of the theory. In section 3, we present a low-rank approximation of the solution of the
differential Lyapunov equation using projection and low-rank approximation (ENBL-ROS and ENBL-
BDF). Finally, Section 4 is devoted to numerical experiments showing the effectiveness of proposed
methods.

Throughout the paper, we use the following notations. The Frobenius inner product of the matrices
X and Y is defined by (X,Y)r = tr(X7Y), where tr(Z) denotes the trace of a square matrix Z. The

associated norm is the Frobenius norm denoted by || - || .
Let A € R™™ and B € R"*%, the extended block Krylov subspace K¢, (A, B) can be considered as
the subspace of R™ spanned by the columns of the matrices A*B, k= —m,...,m — 1, i.e.,

K¢,(A,B) =range{B,A"'B,AB,A"*B, A’B,...,A""'B,A""B}.

Recall extended block Arnoldi (EBA) [13] algorithm, when it applied to the pair (A, B) (m steps).
EBA is described in Algorithm 1 as follows

Algorithm 1 The extended block Arnoldi algorithm (EBA).
Inputs: A an n X n matrix, B an n X s matrix and m an integer.
Compute the QR decomposition of [B, A~!B], i.e, [B, A~!B] = ViA.
Set Vo =[]

For j =1,2,3,...,m

1. Set Vj(l) =V;(:;,1:s) and Vj(Z) =Vj(;,s +1:2s)

2.V = Vi1, Vil Vi = [AV), A7),

3. Fori=1,...,j

4. Hyj =V Visr.

. Vier = Vi = Vil
6. End For ¢

7. Compute the QR decomposition of U i.e., ‘7j+1 = Vit Hjq1 .

End For j.
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The matrix V,,, = [V4,..., V] € R™*2ms guch that their columns form an orthonormal basis of the
extended block subspace K¢, (A, B). The 2ms x 2ms Hessenberg matrix

Hm = V;LAVm = [Hi,j]a
with H; ; € R25%25 Through our algorithm 1 we have the following relations

Him

:| 7V77;;Vm = I2m37

Vm: m+1|: I2sm :| and Vg;;B:glAlla
02s><2s

with

A Ag

where EI = [023X2S(m_1) , Isg] € R?$%2m$ i the matrix formed with the last 2s columns of the 2msx2ms

identity matrix Io,,s, and Aqp is the s X s matrix, & = [IS7OS><(2m—1)s]T is the matrix of the first s
columns of the 2ms x 2ms identity matrix Iop,s.

2. The extended nonsymmetric block Lanczos process

Before describing the extended nonsymmetric block Lanczos process, we have to describe the following
procedure which, if applied to V = [v1,...,v5], W = [wy,...,ws] € R"™ % (that’s as a two-sided
Gram-Schmidt process applied to the two sequences V' and W) allows to obtain biorthogonal blocks
(BIORTHB) V, W € R"*5. For more details see [14, 15|

Algorithm 2 The BIORTHB algorithm to the pair (V, W).
Inputs: V,W an n x s matrix.

Set Oé = w{vl,rn = \/5, 211 = %,51 = ;)Tll,’wl = ;UTll
Fori=2,3,...,s

1. v=wv; et w=w;

2. For j=1,...,i—1,
o — T =T
3. Tji = w;v and zj; = Uj w
4. v =120 —r1;0; and w = W — z;;W;;
5. End For j

6. B=wlv,ry =B, zi =L, =L and ;= 2

T’ T Zig

End For :.
Outputs: V= [v1,...,0s] and W = [wy, ..., ws].

If s iterations are performed, the above algorithm produces V,W and R = [rj;],Z = [zj;] € R®*®
upper triangular matrices such that

V=VR, W=Wz, V'W=I,. (4)

We mention the extended nonsymmetric block Lanczos (ENBL) [14] algorithm when applied to the
triple (A, B,C) for constructing two biorthogonal bases V,, and W,, of the extended block Krylov
subspaces K¢, (A, B) and K¢, (AT, C), respectively. ENBL is described in algorithm 3 as follows
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Algorithm 3 The ENBL algorithm to triple (A, B,C).

Inputs: A an n X n matrix, B an n X s matrix, C' an n X s matrix and m an integer.

Initialize: Wy = Wy = 095 and Ny = N() = 09s.

Set Uy = [B,A™'B], S, = [C,A"T(C).

Apply Algorithm 2 to (U, S1) to get Vi = [fugl),fuél)], Wi = [fugl),vél)] and A, Q such that U; = V1A
and Sl = WlQ

Set Vo = [Vl] and Wy = [Wl]

For j=1,2,...,m

1. Set Uj41 = [Av%j),A_lvéj)] and Sjy1 = [Ang ),A Twé )]
2. Set Nj = WjT_lUj+h Cj = WjTUj+1 and Nj = ijllsj+17 6j = V]-TSj_H.
3. Uj+1 = Uj+1 — VjCj — Vj_le and Sj+1 = Sj+1 — Wjéj — Wj_lj\vfj

4. Apply AlgOI‘ithm 2to (Uj+1, Sj+1) to get ‘/}4_1 ,Wj+1, Aj+1, and AVj+1 such that Uj+1 = V}+1Aj+1
and Sj+1 = Wj+1Aj+1.

5. Vit1 = [V}, V] and Wy = W), W]
End For m.

Let the matrices biorthonormal basis V,,, and W,, (VﬁWm = Ioms), and the 2ms x 2ms block
triangular matrices T, = WZ;AVm and £,, = WZ;A_IVm.

Theorem 2 (Ref. [14]). Suppose that m steps of Algorithm 3 have been carried out. Then we have
the following relations

Tm
AVm = Vme + Vm+1Tm+1,mErj;L = Vm+1 |: T 41 ET :| ) (5)
T £T
A™ Wm—W E +Wm+1Lj+lj m:Wm+l|:LT mET:|7 (6)
m+1,5

where Ljq; = W,ZZA_leH and Tj41; = W,:,ZAVmH.

w11 W12

From Algorithm 2, we obtain WZ;C = £1w11, where Q = [ 0w
22

} and wy,, is the s X s matrix.

3. Low-rank approximate solution

This approach is based on extended block Krylov projection of the differential Lyapunov equation (1).
For more details on extended block Krylov projection method for solving large matrix equations see [3—
5,10]. When we apply the ENBL algorithm 2 on the triple (A B, ||B|| ), we get two biorthonormal
matrices

Va1 = Vi, Viny Vinga] € RS and Wit = (Wi, ..., Win, Winga] € RP<2mHDs,

We then consider low-rank approximate solution of the large differential Lyapunov equation (1)
that have the form
X (t) = VX (H)VE. (7)

Let the residual of an approximation X, () of the exact solution X (¢) of problem (1) given by
Rn(t) = X! (t) — AX,,(t) — X,,,(t) AT — BBT, (8)
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be the residual associated with the approximation X,,(t) satisfying the Petrov-Galerkin orthogonality
condition

WgrﬂLRm(t)Wm = 02msx2ms- (9)

Theorem 3. Let X,,(t) be the matrix function defined by (7), then it satisfies the following low-order
differential Lyapunov equation

X;n(t) = mem(t) + Xm(t)Trg + BmBg;:m (10)

where B,,, = E1w11.

Proof. From the equations (7), (9) and
R (t) = Vin (X, (8) = TonXon(t) — X (6)T,L — B Bih ) VL,
we obtain the low-dimensional differential Lyapunov equation
X0, (1) = TrnXon(t) + Xon ()T, + B BE. (11)

]
Now we have to solve the last differential Lyapunov equation (11) by ROS method or BDF method,
see [3,4,6].
Next, we give a result that allows us to compute the norm of the residual without forming the
approximation X,,(¢) at each step m. The approximation X,,(t) is computed in a factored form only
when convergence is achieved.

Theorem 4. The residual R,(t) associated with the approximation X, (t) satisfies the relation
Ro(t) = —Vins1 Tt m B X (V= Vin X () Em Tt s 1 Vi1 - (12)
Proof. We have

Rm(t) = X;n(t) - AXm(t) - Xm(t)AT — BB
= VXL, (VL — AV, X (VL =V X () VE AT — BB,

since X!, (t) = T X (t) + X (O)T,L + B, BL | so

Rin(t) = Vi (TenXn (t) + Xpn () T,E + B BL)VE — AV X (VL — VX () VL AT — BBT
= Vi Ton X OVE VX (OTEVE — AV, X (OVE — VX (1) VE AT

since VT = AV — m+1Tm+1,mE,:g, we obtain
Rm(t) = - m+1Tm+1,mE7:7FmXM(t)Vg; - mem(t)Eanj;-i-l,mVna-la

so the proof is complete. [

Theorem 5. The Frobenius norm of the residual R, (t) associated with the approximation X, (t)
satisfies the relation

IR (Ol F = | Tt 1,m B Xin (8) | - (13)

Proof. We have
Rin(t) = VXL (VL — AV, X (OVE =V, X, (1)VT AT — BBT,
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since W11V, =0, WL Vs, =0 and WL | B =0 we obtain

W£+1Rm(t)wm = - m+1,mErj;LXm(t)a
since . 0
Wi R ()W, 0
Wg; Rthm: e m:|:|: )
i ( ) an;-i—lRm(t)Wm an;-i—lRm(t)Wm
which proves the result, since HRm(t)HF = |’W£+1Rm(t)WmHF. [

To save memory, the solution X,,(t) = V;u X, (t) VL can be given as a product of two matrices of low-
rank. For that, we consider the singular value decomposition of the 2ms x 2ms matrix X,,, = UDU7,
where D is the diagonal matrix of the singular values of X,,, sorted in decreasing order. Let U; be the
2ms x | matrix of the first [ columns of U, corresponding to the [ singular values of magnitude greater
than some tolerance d;,;. We obtain the truncated singular value decomposition X,,, ~ UlDlUlT , where

Dy = diag[Ay, ..., \]. Setting Z,, = V,,U;D}’? it follows that
X = ZpnZE. (14)

This result is important for large-scale problems to decrease central processing unit (CPU) time
and memory requirements; the approximate solution could be given as a product of low-rank matrices.

We summarize the above method for solving large differential Lyapunov equation (ENBL-BDF or
ENBL-ROS) in following algorithm.

Algorithm 4 The ENBL-... method for solving differential Lyapunov equation

Inputs: A € R™" and B € R™* an matrix, t,ty .

Choose a tolerance tol > 0 and an integer M4z -

Initialize: Wy = Wy = 095 and Ny = Ng = 9.

Set Uy = [B,A™'B], S1 = [B,A""B].

Apply Algorithm 2 to Uy and S to get Vi = [v%l),vél)], Wy = [vgl),vgl)] and A, € such that U; = V1A
and Sl = WlQ.

Set Vo = [Vl] and W, = [Wl]

Form=1,2,... Mpnax

1. Set Ups1 = [Avgm),A_lvzm)] and Sp,4+1 = [Angm),A_Twém)]
2. Set Ny = WL Uni1, Con = WEUpiq and Ny = VI Spiq, Cow = VIS,

3. Um+l = Um+l - VmCm - Vm—le and Sm-‘,—l = Sm-‘,—l - Wmém - Wm—lﬁm

4. Apply Algorithm 2 to Up+1 and Spy1 to compute Vi1 \Wini1, A, and gm+1 such that
Un+1 = Vm+1Am+1 and Sm—l—l = Wm—l—lAm—l—l-

5. Vint1 = Vi, Vins1] and Wi g1 = [Win, Wipg 1]

6. Compute the 7,, and B,,.

7. Compute X,,(t) solution of low-dimensional differential Lyapunov equation (10).
8. If || Ry (8) || F < tol.

End For m.
Compute the approximate solution X, in the factored form given by the relation (14).
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The following result shows that the approximation X,,(t) is an exact solution of a perturbed
differential Lyapunov equation.

Theorem 6. Let X,,(t) = VX, (t)VL be the approximate solution obtained after running m steps
of the ENBL. Then we have

X! (t) = (A — Fp) X (t) + X (t)(A — E,)T + BBT, (15)
where Fp, = Vi1 T 1.m WL
Proof. Multiply the left the equation (10) by V,, and from the right by VI we obtain
X1 (1) = (AVm = Vi1 T 1 B2 ) X (OVE 4 Vi Xon (8) (AVy = Vi1 Tinsr.m BL) " — BBT.
On the other hand, since WLV, = Iy, and ELWT = W we have
X, (t) = (A= Fp) Xm(t) + Xim(t)(A — F,)T + BB,

]
Through this result and expression F),, shows F,, to zero, so the approximate solution X,,(t) is an
exact solution for large-scale differential Lyapunov equation.
The following result indicates that the error matrix E,,(t) = X (¢) — X,,,(t) satisfies a differential
Lyapunov equation.

Theorem 7. Let the matrix function E,,(t) verify the following differential Lyapunov equation
E;n,(t) = AEm(t) + Em(t)AT - Rm(t)' (16)
Proof.

E,, (1) = X'(t) — X7, (t)

m

= AX(t) + X(t)AT + BBT — AX,,(t) — X;n(t) AT — BBT — R,,(t)

= AX () = X (1) + (X(1) = X (1)) AT = Rn()
= AE,,(t) 4+ E,,,(t) AT — R, (¢).
[
Notice that from theorem 1, the error E,,(¢) can be expressed in the integral form as follows
t
En(t) = el10AE, , (£g)et—t0)AT 4 / AR (7 DA dr € [to, ). (17)
to

Next, we give an upper bound for the norm of the error by using the 2-logarithmic norm.
Theorem 8. Assume that the matrix A is such that pus(A) # 0. Then at step m of the ENBL, we
have the following upper bound for the norm of the error E,,(t),
e2(t—to)u2(A) _ 1

E,.(t)|]2 < |En(t 62(t—t0)ﬂ2(14)+am
En(®)lz < [Enm(to)l .

(18)

where ai, = maxXee(sy 4 [ Rm(§)]l2-

Proof. Using the expression (17) of E,,(¢), we obtain the following relation

t
Em(t)]l2 = [[e® AR, 0et=47 |y 4 [ ||t DAR,, (7)et=DA" ||2dr.
to
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Therefore, using equation (17) and the fact that ||e®=74||y < e®r2(A) | we get

t
1B ()]l2 < [|Emoll2 et—t0) (2 (A)+p2(AT) 4 oy HRm(i)Hz/ o(t=T)n2(A) [(t—7)u2 (A7) 5
7 §€[to.t] to

t
< | Emooll 2(t=to)u2(A) 4 1oy HRm(f)HQeQ“z(A)/ 6_2T“2(A)d7',
’ §€[to.t] to

so the proof is complete. ]

In Figure 1, we computed the upper bound error norm ||E,,(¢)|l2 vs number m of iterations, we use
the matrix A obtained from the discretization of the from the Lyapack package [16] using the command
fdm_2d_matrix A = fdm(n0, e, sin(xy),y* — 2?), and B = rand(n, s).

n=2500, s=2, tol=1e-09

0 —
N
S - = = = Upper bound
AN
\\
2+ \\
c)e \5’/\
(@] \
- \
E 4T N
2 AN
— N\
o \
ZI_) -6 \\\
© \
5 \
8 ‘-
5 Bf oS
S \
% \
-] S
\\
-10 N
~
~
_12 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Iterations m

Fig.1. Norm of the upper bound errors vs number m of iterations.

4. Numerical experiments

In this section, we report some experimental results. All the numerical experiments have been coded
in MATLAB 2018b, PC-Intel(R) Core(TM) i3, 4 GB of RAM. We compare the performance of the
extended block Arlondi and new methods with equal-sized approximation spaces. In our experiments,
we used 4 methods listed in Table 1. The time interval considered was [0, 1] and the initial condition
Xo = Opxn. The results are shown in Table2, we give the number of iterations (Iter), the residual

Table 1. The methods.

EBA-BDF Extended block Arlondi and BDF method
ENBL-BDF Extended nonsymmetric block Lanczos and BDF method
EBA-ROS Extended block Arlondi and ROS method
ENBL-ROS Extended nonsymmetric block Lanczos and ROS method

norm (Res.norm), and the CPU time in seconds (CPU time) required for convergence, we use s = 2,
and tol = 1071, In this example [6], we set A = (M — dtK)~'M, and B = dt(M — dtK)~'F, where
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the matrices M and K are given by:
4 1
1 4 1 -1 2 -1
1 4 1
1 4 -1 2

The entries of the n X s matrix F' and the s x n matrix C' were random values uniformly distributed
on [0,1]. In our experiments we used dt = 0.1,« = 0.5 and s = 2 for different values of n.

Table 2. Runtimes in seconds, the residual norms and iterations for each method.

Test Problem Method CPU time Iter Res.norm
EBA-ROS 2.80 30 5.28977 x 10~1°
n = 2500 ENBL-ROS 1.28 9 6.87600 x 1017
EBA-BDF 2.51 30 8.51644 x 104
ENBL-BDF 1.25 9 8.5535 x 1016
EBA-ROS 12.83 30 6.4430 x 10~ 14
n = 4600 ENBL-ROS 7.42 9 1.37058 x 10716
EBA-BDF 12.28 30 3.56598 x 10713
ENBL-BDF 7.38 9 9.65655 x 1016
EBA-ROS 19.12 30 1.03065 x 1013
n = 8100 ENBL-ROS 11.67 9 3.03288 x 10716
EBA-BDF 18.77 30 3.40216 x 1012
ENBL-BDF 15.24 11 2.39502 x 1016
EBA-ROS 28.68 30 797113 x 10714
n = 10000 ENBL-ROS 17.60 9 4.4548 x 1016
EBA-BDF 28.25 30 3.3338 x 10712
ENBL-BDF 21.33 11 7.83282 x 1016

We used a constant timestep A = 0.1. In Figure 2, we chose a size of 5600 x 5600, for the matrices
A, we plotted the Frobenius norms of the residuals at final time ¢y versus the number of iterations.

n=10000, s=2, tol=1e-15

10
3 — 7~ EBA-ROS
% — 4 -ENBL-ROS
5 Yy EBA-BDF
20\ — < -ENBL-BDF
% %7\
= 0+ ¥ \
> A\ ¥
o o \\
E \\ WY
2 51 X
]
3 k ‘v
% \’\3{\ \vv
v 10t A A v
N 4 VYV Vo Ve T v
R
\
15+ &
_20 1 1 1 1 1 |
0 5 10 15 20 25 30

Iterations
Fig. 2. Residual norm vs number m iterations.
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5. Conclusion

In this paper, we presented new iterative method for solving large-scale differential Lyapunov matrix
equations. The proposed method is based on the extended nonsymmetric block Lanczos algorithm and
the Backward Differentiation Formula method (BDF) or Rosenbrock method (ROS). The numerical
experiments show that the proposed new approach is effective for large and sparse problems.
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Po3wupennin HecumeTpuyHnii 610k meTopis JlaHuowa ans
pO3B’'sA3yBaHHA BesIMKOMAcLWTabHux andepeHuiaibHNX piBHSHL
JlsainyHoBa

Cagexk JI., Tamni6i Aayi I

Kagedpa mamemamuxu, Parxyasvmem nayx, Qyatib Hyxrxanri ynisepcumem, Eav Howcadida, Mapoxko

VY crarTi npeacTaBeHO HOBUI MiIXis 10 PO3B’S3aHHS BEIUKOMACIITAOHUX ArepeHItia b
HUX piBHsiHB JlsgmyHoBa. 3anponoHoBaHUi Mmiaxis 0a3yeTbCs HA MPOEKTYBaHHI TOYATKO-
BOI 3aj1a4i Ha po3mmpeHoMy OJomi mimnpoctopy KpmiioBa, BUKOPHUCTOBYIOUN PO3IIUpE-
Hull HecuMerpuvHuil asroputm Jlanmoma. ¥ pe3ynbTaTri OTPUMYyeThCH HU3BKOPO3MipHE
mudepentiaibue MaTpudHe piBaaaadg Jlanynosa. Ile audepenmianbae MaTpudHe piBHIH-
Hsl PO3B’sI3y€ThC METOIOM JudepeHIliaifoBanas Ha3ar abo merogom Pozernbpoka. Orpu-
MaHUil PO3B’SI30K JTO3BOJISIE CTBOPIOBATH HAOJIMXKEHUIN PO3B 30K O9aTKOBOI 3a1a9i. Kpim
TOTrO, JIAHO JIeSKl TEOPEeTUIHI pe3yIbTaTh. IncesbHI pe3ysIbTaTh JIEMOHCTPYIOTH MPOJyK-
THUBHICTH 3aIIPOTIOHOBAHOTO i IXO/LY.

Kntouosi cnoBa: poswupenut 640k nionpocmopy Kpuaosa, poswupenuts necumempu-
HUtl 640K aszopumma Jlanyousa, HAOAUIHCERHA HU3LKO20 PaH2y, JuPePeHUIasbHE PIBHAHHA
Jlanyrosa.
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