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This paper proposes the Caputo Fractional Reduced Differential Transform Method
(CFRDTM) for Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model with
fractional order in a host community. CFRDTM is the combination of the Caputo
Fractional Derivative (CFD) and the well-known Reduced Differential Transform Method
(RDTM). CFRDTM demonstrates feasible progress and efficiency of operation. The prop-
erties of the model were analyzed and investigated. The fractional SEIR epidemic model
has been solved via CFRDTM successfully. Hence, CFRDTM provides the solutions of
the model in the form of a convergent power series with easily computable components
without any restrictive assumptions.
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1. Introduction

Fractional calculus has been widely used to describe practical dynamics phenomena arising from compu-
tational finance, applied mathematics, physics, economics, medicine biomathematics and engineering;
see [1–15], just to mention a few. Fadugba [16] applied homotopy analysis method for the valua-
tion of European call options with time-fractional Black-Scholes equation. The comparison of the
reduced differential transform method and Sumudu transform for the solution of fractional Black–
Scholes equation for a European call option problem was studied by [17]. RDTM was first proposed
by [18] and successfully employed to solve many types of nonlinear PDEs. Similar to the traditional
Differential Transformation Method (DTM), RDTM demonstrates feasible progress and efficiency of
operation. More on the applications of RDTM, see [19–21], just to mention a few. Unlike other existing
approaches, RDTM provides a simple way to ensure the convergence of solution series. Baleanu et
al. [22] investigated the existence of solutions for a fractional hybrid integro-differential equation with
mixed hybrid integral boundary value condition. The numerical solution of fractional Schistosomiasis
disease via q-homotopy analysis transform method was studied by [23]. Gao et al. [24] investigated the
infection system of the novel coronavirus (2019-nCoV) with a non local operator in a Caputo sense via
a powerful computational technique based on the fractional natural decomposition method. Veeresha
et al. [25] investigated and studied the solution of fractional forced KdV equation using fractional
natural decomposition method. Arqub et al. [26] investigated the accuracy of the homotopy analysis
method for solving the fractional order problem of the spread of a non-fatal disease in a population. In
this paper, the solution of epidemic model with fractional order via CFRDTM is proposed. CFRDTM
does not require linearization, perturbation or restrictive assumptions and offers solutions with easily
computable components as convergent series. Also, it is a powerful tool that overcomes the deficiency
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that is mainly caused by unsatisfied conditions. The emphasis is given to the Caputo fractional oper-
ator which is more suitable for the study of differential equations of fractional order. The rest of the
paper is organized as follows: Section Two captures the preliminaries. The Caputo fractional epidemic
model is presented in Section 3. In Section Four, the solution of the model via CFRDTM is obtained.
In Section Five, concluding remarks are also presented5

2. Preliminaries

This section presents definition of some concepts [27, 28].

Definition 1. The Riemann–Liouville Fractional Derivative Operator (RLFDO) of f(t) is given by

0D
q
t f(t) =

1

Γ(n− q)

∫ t

0
(t− τ)n−q−1f(τ)dτ, t > 0, n− 1 < q < n, n ∈ N. (1)

Definition 2. The Riemann–Liouville Fractional Integral Operator (RLFIO) of f(t) is given by

Jqf(t) =
1

Γ(q)

∫ t

0
(t− τ)q−1f(τ)dτ, τ > 0, (2)

where q > 0 is the order, f(t) ∈ Cρ is a function, ρ > 1, Cρ is a space and Γ(q) is the gamma function
of q.

Definition 3. The Caputo Fractional Derivative Operator (CFDO) of f(t) ∈ Cn−1, n ∈ N is given
by

c
0D

q
t f(t) =

1

Γ(n− q)

∫ t

0
(t− τ)n−q−1f (n)(τ)dτ, (3)

for α ∈ (n− 1, n], t > 0.

Definition 4. The Caputo Time-Fractional Derivative Operator (CTFDO) of order α > 0 is defined
as

c
oD

q
tu =





1

Γ(n− q)

∫ t

0
(t− τ)n−q−1u(n)(x, τ)dτ, q ∈ (0, 1],

∂nu(x, t)

∂tn
, q = n,

(4)

where n is the smallest integer that exceeds α, u = u(x, t) and u(n)(x, τ) = ∂nu(x,τ)
∂τn . The superiority

of CFDO over RLFO is that CFD of a constant is zero. Also, in the CFD, initial conditions have clear
physical interpretation [29].

Definition 5. The series representation of the form

Eq(z) =

∞∑

n=0

zn

Γ(nq + 1)
=

∞∑

n=0

zn

(nq)!
, z ∈ C, (5)

is called the Mittag–Leffler Function (MLF).

Definition 6. The Caputo Fractional Reduced Differential Transform (CFRDT) of the function
ψ(x, t) is defined as

Ψk(x) =

[c
0
Dkq
t ψ(x, t)

]
t=t0

Γ(1 + kq)
, q ∈ (0, 1], k = 0, 1, . . . , n, (6)

where c
0D

kq
t a(x, t) = ∂kqψ(x,t)

∂tkq
.
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Definition 7. The inverse CFRDT of Ψk(x) is defined as

ψ(x, t) =

∞∑

k=0

Ψk(x)(t− t0)
kq, 0 < q 6 1. (7)

By means of (6) and (7), the fundamental properties of CFRDTM were given in Table 1.

Table 1. The fundamental properties of CFRDTM.

Functional form Transformed form
ψ(x, t) = ϕ(x, t) ± ξ(x, t) Ψk(x) = Φk(x) ± Ξk(x)

ψ(x, t) = cϕ(x, t) Ψk(x) = cΦk(x), c is a constant.
ψ(x, t) = ϕ(x, t)ξ(x, t) Ψk(x) =

∑k
i=0 Φi(x)Ξk−i(x)

ψ(x, t) = xmqtnq

Γ(1+mq)Γ(1+nq) Ψk(x) = xmq

Γ(1+mq)
δq(k−n)
Γ(1+α) , m,n ∈ N

ψ(x, t) = ∂nqϕ(x,t)
∂tnq Ψk(x) = Γ(1+(k+n)q)

Γ(1+kq) Φk+n(x), n ∈ N
ψ(x, t) = ∂mqϕ(x,t)

∂xmq Ψk(x) = ∂mqΦk(x)
∂xmq , m ∈ N

ψ(x, t) = xni t
r Ψk(x) = xni δ(k−r), i = 1, ...,m

ψ(x, t) = eλt Ψk(x) = λk

k!

3. Caputo fractional Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model

This section captures classical and fractional SEIR epidemic models as follows.

3.1. Classical SEIR epidemic model

Let the total population of a host community be denoted by N . The total population is subdivided into
four classes namely: (a) Susceptible population, S; (b) Exposed population, E; (c) Infected population,
I; (d) Recovered population, R.

The above four classes describe the model equation of Measles in a host community given by [30]

dS

dt
= B − βSI − µS,

dE

dt
= βSI − (σ + µ+ α)E,

dI

dt
= αE − (γ + µ)I,

dR

dt
= γI + σE − µR,

(8)

where β is the infected individual rate, B is the birth rate, µ is the natural death rate, σ is the Measles
therapy rate, α is the infected class rate and γ is the recovery rate.

3.2. SEIR epidemic model with fractional order in a Caputo sense

It is note worthy to say that the fractional extension of (8) was first studied by [26, 31]. Here, we
consider the Caputo fractional epidemic model of the form

c
0D

q
tS = B − βSI − µS,

c
0D

q
tE = βSI − (σ + µ+ α)E,

c
0D

q
t I = αE − (γ + µ)I,

c
0D

q
tR = γI + σE − µR.

(9)

Subject to the initial conditions S0 = a1, E0 = a2, I0 = a3, R0 = a4, where q is the fractional order
and the initial population N0 = S0 + E0 + I0 +R0.
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3.2.1. Existence and uniqueness of the solution of Caputo fractional epidemic model

Here, we present the proof of existence and uniqueness of the solution of (9). Similar approach
in [32, 33], where the Banach fixed point theorem and Picard’s operators have been employed in this
scenario.

Consider the functions H, K, L, M defined as (H,K,L,M) : [0, T ] × R → R. Let

H(S) = B − βSI − µS,

K(E) = βSI − (σ + µ+ α)E,

L(E) = αE − (γ + µ)I,

M(R) = γI + σE − µR.

(10)

Taking the norms of (10), yields

||H(S1) −H(S2)|| 6 (aβ + µ)||S1 − S2||,
||K(E1) −K(E2)|| 6 (σ + µ+ α)||E1 − E2||,

||L(I1) − L(I2)|| 6 (γ + µ)||I1 − I2||,
||M(R1) −M(R2)|| 6 µ||R1 −R2||.

(11)

Equation (11) shows that H, K, L, M are Lipschitz continuous. Suppose that S, E, I, R are normed
spaces and p > 0, define the subset of the Banach space of all continuous functions on t ∈ [0, T ] as
follows

BS = {S ∈ C[0, T ] : ||S1 − S2|| 6 p},
BE = {E ∈ C[0, T ] : ||E1 − E2|| 6 p},
BI = {I ∈ C[0, T ] : ||I1 − I2|| 6 p},
BR = {R ∈ C[0, T ] : ||R1 −R2|| 6 p},

(12)

where C is defined as the set of all continuous functions. Next, define the Picard’s operators on BS ,
BE , BI , BR by help of the Volterra integral equations of second kind,

U1(S) = S0 +c
0 V

q
t H(S)

U2(E) = E0 +c
0 V

q
t K(E),

U3(I) = I0 +c
0 V

q
t L(I),

U4(R) = R0 +c
0 V

q
t M(R).

(13)

In the sequel, we show that the LHS of (12) is a contraction. Let S1, S2 ∈ BS , E1, E2 ∈ BE, I1, I2 ∈ BI ,
R1, R2 ∈ BR. By means of (11) and the Chebyshev norm, one obtains

||U1(S1) − U1(S2)|| 6 (aβ + µ)||S1 − S2||T q
Γ(q + 1)

,

||U2(E1) − U2(E2)|| 6 (σ + µ+ α)||E1 − E2||T q
Γ(q + 1)

,

||U3(I1) − U3(I2)|| 6 (γ + µ)||I1 − I2||T q
Γ(q + 1)

,

||U4(R1) − U4(R2)|| 6 µ||R1 −R2||T q
Γ(q + 1)

.

(14)

Thus, (14) shows that U1(S), U2(E), U3(I), U4(R) are bounded and continuous. Also from (14), it
follows that

(aβ + µ)T q

Γ(q + 1)
< 1,

(σ + µ+ α)T q

Γ(q + 1)
< 1,

(γ + µ)T q

Γ(q + 1)
< 1,

µT q

Γ(q + 1)
< 1. (15)
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Therefore,
||U1(S1) − U1(S2)|| < ||S1 − S2||,
||U2(E1) − U2(E2)|| < ||E1 − E2||,
||U3(I1) − U3(I2)|| < ||I1 − I2||,

||U4(R1) − U4(R2)|| < ||R1 −R2||.

(16)

Using (16) and the Banach contraction principle, operators U1(S), U2(E), U3(I), U4(R) are contrac-
tions. Hence, it is concluded that the Caputo fractional epidemic model (9) exists and has a unique
solution in BS, BE, BI , BR, respectively.

3.3. Properties of the model

The properties of (9) were analyzed and investigated as follows.

3.3.1. Disease free equilibrium (DFE)

DFE is defined as the point where there is total absence of the disease (Measles). It is denoted by Z0.

Theorem 1. The DFE of the system (9) exists at the point

Z0 = (S∗, E∗, I∗, R∗) =

(
B

µ
, 0, 0, 0

)
. (17)

Proof. At the equilibrium points, the fractional derivative of each class becomes
c
0D

q
tS =c

0 D
q
tE =c

0 D
q
t I =c

0 D
q
tR = 0. (18)

Suppose at the equilibrium state, S = S∗, E = E∗, I = I∗, R = R∗, then (18) becomes
c
0D

q
tS

∗ = c
0D

q
tE

∗ = c
0D

q
t I

∗ = c
0D

q
tR

∗ = 0. (19)

Using (9), (19) becomes c
0D

q
tS

∗ = B − βS∗I∗ − µS∗ = 0,
c
0D

q
tE

∗ = βS∗I∗ − (σ + µ+ α)E∗ = 0,
c
0D

q
t I

∗ = αE∗ − (γ + µ)I∗ = 0,
c
0D

q
tR

∗ = γI∗ + σE∗ − µR∗ = 0.

(20)

This implies that
B − βS∗I∗ − µS∗ = 0,

βS∗I∗ − (σ + µ+ α)E∗ = 0,

αE∗ − (γ + µ)I∗ = 0,

γI∗ + σE∗ − µR∗ = 0.

(21)

At DFE state, E∗ = 0, I∗ = 0, the other two classes are obtained as R∗ = 0, S∗ = B
µ . Hence

Z0 = (S∗, E∗, I∗, R∗) =

(
B

µ
, 0, 0, 0

)
.

This completes the proof. �

3.3.2. Basic reproduction number

Basic reproduction number, Rrb is defined as a threshold parameter to determine the number of
equilibrium. By means of the next generation matrix, Rrb is expressed as

Rrb = ρ(FV −1), (22)
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where

F =

[
0 βB

µ

0 0

]
, (23)

V =

[
µ+ α+ σ 0

−µ µ+ γ

]
. (24)

The inverse of V is obtained as

V −1 =

[
1

(µ+α+σ) 0
µ

(µ+γ)(µ+α+σ)
1

(µ+γ)

]
. (25)

So, the next generation matrix is computed as

FV −1 =

[
0 βB

µ

0 0

][
1

(µ+α+σ) 0
µ

(µ+γ)(µ+α+σ)
1

(µ+γ)

]

=

[
Bβα

µ(µ+γ)(µ+α+σ)
Bβ

µ(µ+γ)

0 0

]
.

(26)

Therefore, the characteristic equation is obtained as
∣∣∣∣∣

Bβα
µ(µ+γ)(µ+α+σ) − λ Bβ

µ(µ+γ)

0 −λ

∣∣∣∣∣ = 0. (27)

Thus, the characteristic values are obtained as

λ1 = 0, λ2 =
Bβα

µ(µ+ γ)(µ + α+ σ)
. (28)

The spectral radius of FV −1 is calculated as the largest characteristic value;

ρ(FV −1) = λ2 =
Bβα

µ(µ + γ)(µ+ α+ σ)
. (29)

Hence, the reproduction number is

Rrb =
Bβα

µ(µ+ γ)(µ + α+ σ)
. (30)

3.3.3. Stability analysis of DFE

To examine the local stability of DFE, we evaluate the Jacobian matrix of (17) as follows.

J(Z0) =




−µ 0 −βB
µ 0

0 −(µ+ α+ σ) βB
µ 0

0 µ −(µ+ γ) 0
0 σ γ −µ


 . (31)

The characteristic equation of (31) is given by
∣∣∣∣∣∣∣∣∣

−µ− λ 0 −βB
µ 0

0 −(µ+ α+ σ) − λ βB
µ 0

0 µ −(µ+ γ) − λ 0
0 σ γ −µ− λ

∣∣∣∣∣∣∣∣∣
= 0. (32)
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The characteristic values of J(Z0) are obtained as

λ1 = −µ, λ2 = −µ, λ3 = −(µ+ α+ σ), λ4 = −
(
βB

µ
+ µ+ γ

)
. (33)

Therefore,
Re(λ1), Re(λ2), Re(λ3), Re(λ4) < 0.

Since all the model parameters are positive. Hence, Z0 is locally asymptotically stable.

Remark 1. The DFE, Z0 is locally asymptotically stable if Rrb < 1.

Theorem 2. The closed region Ω =
{

(S,E, I,R) ∈ R4
+ : N → B

µ

}
is positively invariant and at-

tracting.

Proof. The total population is defined as

N = S + E + I +R. (34)

Thus,
c
0D

q
tN = c

0D
q
tS + c

0D
q
tE + c

0D
q
t I + c

0D
q
tR

= B − µN.
(35)

Applying the Laplace transform to both sides of (35), we obtain

N̂ =
B

s(sq + µ)
+N0

(sq − 1)

(sq + µ)
. (36)

Solving (36) further, one obtains

N =
B

µ

(
1

s

)
−
(
B

µ
−N0

) ∞∑

k=0

(−µ)k

sqk+1
. (37)

By means of the Laplace inversion formula, (37) becomes

N =
B

µ
+

(
N0 −

B

µ

) ∞∑

k=0

(−µtq)k
Γ(qk + 1)

. (38)

It follows that as t→ ∞
N = N(t) → B

µ
. (39)

Hence, the region Ω is positively invariant and attracts all solutions in R4
+. �

Theorem 3. Every solution of system (9) with initial conditions remain positive for all t > 0.

Proof. Using the approach of [34], assume by contradiction that the second equation in (9) is not true.
Let t∗ = min{t : S(t), E(t), I(t), R(t) = 0}. Now if E(t∗) = 0, it then implies that S(t), I(t), R(t) > 0
for all 0 6 t∗ 6 t. Assume that the following expressions exist;

A1 = min
06t∗6t

[
1

S
(B − βSI − µS)

]
,

A2 = min
06t∗6t

[
1

E
(βSI − (σ + µ+ α)E)

]
,

A3 = min
06t∗6t

[
1

I
(αE − (γ + µ)I)

]
,

A4 = min
06t∗6t

[
1

R
(γI + σE − µR)

]
.

(40)
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From (9), it follows that
c
0D

q
tS −A1S > 0,

c
0D

q
tE −A2E > 0,

c
0D

q
t I −A3I > 0,

c
0D

q
tR−A4R > 0.

(41)

By means of the Laplace transform and its inversion formula, (41) yields, respectively;

S = S(t) > S0

∞∑

k=0

(A1t
q)k

Γ(qk + 1)
,

E = E(t) > E0

∞∑

k=0

(A2t
q)k

Γ(qk + 1)
,

I = I(t) > I0

∞∑

k=0

(A3t
q)k

Γ(qk + 1)
,

R = R(t) > R0

∞∑

k=0

(A4t
q)k

Γ(qk + 1)
.

(42)

From (42), we conclude that every solution of (9) is positive for all t > 0. �

Theorem 4. The fractional epidemic model (9) in a Caputo sense admits a unique endemic equilib-
rium state Y ∗ = (S∗, E∗, I∗, R∗) 6= (0, 0, 0, 0) if the basic reproduction number Rrb > 1.

Proof. Suppose c
0D

q
tS = c

0D
q
tE = c

0D
q
t I = c

0D
q
tR = 0 such that Y ∗ = (S∗, E∗, I∗, R∗) is the non-trivial

solution of the model. Using the last two equations in (9), one gets

I∗ =
αE∗

γ + µ
, (43)

R∗ =
γI∗ + σE∗

µ
=
E∗(αγI∗ + σ(γ + µ))

µ(γ + µ)
. (44)

Adding the first two equations in (9) and equating to zero, yields

c
0D

q
tS + c

0D
q
tE = B − βS∗I∗ − µS∗ + βS∗I∗ − (σ + µ+ α)E∗ = 0. (45)

It is clearly seen from (45) that

S∗ =
B

µ
− (σ + µ+ α)E∗

µ
. (46)

For the existence of E∗, we assume that h is a continuous function defined as h : R+ → R, then

h(E) =
β(B − (σ + µ+ α)E)α

µ(µ+ σ)
− (σ + µ+ α). (47)

At the point E = B
(σ+µ+α) , one obtains

h

(
B

(σ + µ+ α)

)
= −(σ + µ+ α) < 0. (48)

Also at E = 0, one gets

h(0) =
βBα− µ(σ + µ+ α)(γ + µ)

µ(µ + γ)
. (49)
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From (30), we write that
Bβα = Rrb[µ(σ + µ+ α)(γ + µ)].

Therefore, (49) becomes

h(0) =
(Rrb − 1)µ(σ + µ+ α)(γ + µ)

µ(µ+ γ)
= (Rrb − 1)(σ + µ+ α). (50)

Equation (50) can also be written as

h(0) =

(
1 − 1

Rrb

)
Bβα

µ(µ + γ)
. (51)

Equations (49) and (50) are always positive if Rrb > 1. Thus from the intermediate value theorem,
there exists a unique number E∗ such that 0 6 E∗ 6 B

(σ+µ+α) and h(E∗) = 0. It is observed from the
above conditions that (43), (44) and (46) exist and unique. Hence, Y ∗ = (S∗, E∗, I∗, R∗) is the unique
endemic equilibrium state of system (9). �

Theorem 5. The endemic equilibrium Y ∗ is globally asymptotically stable if Rrb > 1.

Proof. Now, to investigate the global stability of Y ∗. Consider the following Lyapunov function

L =

[
S − S∗ − S∗ ln

(
S

S∗

)]
+

[
E − E∗ − E∗ ln

(
E

E∗

)]
+

(µ + α+ σ)

µ

[
I − I∗ − I∗ ln

(
I

I∗

)]
. (52)

The last equation in (9) has been excluded, since it has no effect on the other three equations. Taking
the CFD of (52), one obtains

c
0D

q
tL =

[
1 −

(
S

S∗

)]
c
0D

q
tS +

[
1 −

(
E

E∗

)]
c
0D

q
tE +

(µ+ α+ σ)

µ

[
1 −

(
I

I∗

)]
c
0D

q
t I. (53)

Substituting the values of c0D
q
tS, c0D

q
tE, c0D

q
t I into (53) and using the relation B = βS∗I∗ + µS∗, one

gets

c
0D

q
tL =

[
1 −

(
S

S∗

)]
(βS∗I∗ + µS∗ − βSI − µS) +

[
1 −

(
E

E∗

)]
(βSI − (σ + µ+ α)E)

+
(µ+ α+ σ)

µ

[
1 −

(
I

I∗

)]
(αE − (γ + µ)I).

(54)

Notice that µE∗ − (µ + σ)I∗ = 0, βS∗I − (µ+α+σ)
µ (µ + γ) = 0, βS∗I − (µ + α + σ)E∗ I

I∗ = 0,

(βS∗I∗ − (µ+ α+ σ)E∗) II∗ . So, (54) yields

c
0D

q
tL =

−µ(S − S∗)2

S
+ (µ+ α+ σ)E∗

(
3 − EI∗

E∗I
− S∗

S
− SE∗I
S∗EI∗

)
6 0. (55)

Since the arithmetic mean is greater or equal to the geometric mean of the three quantities S∗

S , EI∗

E∗I ,
SE∗I
S∗EI∗ , then (

EI∗

E∗I
+
S∗

S
+ − SE∗I

S∗EI∗
− 3

)
6 0. (56)

This implies that c
0D

q
tL = 0 holds when S = S∗, E = E∗ and I = I∗. Thus the maximal compact

variant set in {(S,E, I) ∈ Ω: c0D
q
tL = 0} is the singleton set {Y ∗}. Hence, by means of the LaSalle’s

invaraince principle [35], the result follows. �
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4. CFRDTM for the solution of fractional order SEIR model

In this section, we employ CFRDTM to obtain the series solution for the fractional order SEIR model
in (9). Applying CFRDTM to (9), yields, respectively

Sk+1 =
Γ(qk + 1)

Γ(q(k + 1) + 1)


Bδ(k) − β

k∑

j=0

SjIk−j − µSk


 ,

Ek+1 =
Γ(qk + 1)

Γ(q(k + 1) + 1)


β

k∑

j=0

SjIk−j − (σ + µ+ α)Ek


 ,

Ik+1 =
Γ(qk + 1)

Γ(q(k + 1) + 1)
(αEk − (γ + µ)Ik) ,

Rk+1 =
Γ(qk + 1)

Γ(q(k + 1) + 1)
(γIk + σEk − µRk) ,

(57)

with the following conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0. (58)

5. Concluding remarks

In this paper, CFRDTM is employed for the solution of epidemic model with fractional order in a
host community. The properties of the model were discussed, analyzed and investigated. CFRDTM
provides the solution of the model in the form of a convergent series without any restrictive assumptions.
Moreover, it is noteworthy to conclude that CFRDTM is found to be effective and suitable in obtaining
solutions for SEIR epidemic model in a Caputo sense. Hence, CFRDTM provides an approximate-
analytical solution in terms of an infinite power series. In the future research, CFRDTM can be
extended for the solution of fractional epidemic model of a system of five equations (SEIRP).
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Метод дробового скороченого диференцiального перетворення
Капуто для моделi епiдемiї SEIR з дробовим порядком

Фадугба С. Е.1, Алi Ф.2, Абубакар А. Б.3

1Кафедра математики, факультет природничих наук, Державний унiверситет Екiтi,
Адо Екiтi, 360001, Нiгерiя

2Кафедра математики, Мусульманський унiверситет Алiгарха, Алiгарх-202002, Iндiя
3Кафедра математичних наук, Факультет фiзичних наук, Унiверситет Баєро,

Кано, штат Кано, Нiгерiя;
Кафедра математики та прикладної математики Унiверситету наук про здоров’я Сефако Макгато,

Га-Ранкува, Преторiя, Медунза 0204, ПАР

У статтi запропоновано метод дробового скороченого диференцiального перетворен-
ня Капуто для моделi епiдемiї “уразливi–схильнi–iнфiкованi–видужалi” з дробовим
порядком у спiльнотi–хазяїнi. Цей метод — це поєднання дробової похiдної Капуто та
вiдомого методу скороченого диференцiального перетворення. Вiн демонструє мож-
ливий прогрес та ефективнiсть роботи. Властивостi моделi були проаналiзованi та
дослiдженi. Дробова модель епiдемiї успiшно розв’язана за допомогою цього методу.
Отже, цей метод подає розв’язок моделi у виглядi збiжного степеневого ряду з легко
обчислюваними компонентами без будь-яких обмежуючих припущень.

Ключовi слова: дробова похiдна Капуто, епiдемiчна модель, дробовий порядок, ме-
тод скороченого диференцiального перетворення.
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