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The results of the mathematical modeling and experimental studies for the stress-strain
state of the annular section of the reinforced concrete shell with the protective structure
are presented. Computer simulation has been formulated as a stationary temperature
problem. The distribution of deformations and stresses is shown using the equations of
the elastic theory. A comparison of theoretical dependences on the results of experimental
studies of physical models is given. Conclusions are drawn about the possibility of using
them in the calculations of reinforced concrete protective structures.
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1. Introduction

The overwhelming majority of protective structures designed and built at power and other enter-
prises (containment shells of nuclear power plants, heat accumulators, waste storage, protective shafts,
etc.) are reinforced concrete shells of circular cross-section, which are mainly vertically placed [1,2].
Reinforcement of such type shells is adopted double with sheet outer or pre-stressed wound wire re-
inforcement. Full-scale tests of these structures, especially for the emergency loads combinations, are
very complex and valuable, therefore, their numerical modeling and testing of physical models are
carried out. The design scheme of such type structure can be represented as a three-layer shell, which
is acted upon by internal pressure and elevated temperature. The stress-strain state can be determined
by analyzing a three-layer plane ring as a fragment of a cylindrical shell [3] in the case for a three-layer
reinforced concrete rotation shell of the enclosing structure and given external influences that satisfy
the conditions of the plane problem.

2. Math modeling

Figure 1 shows the design diagram of the plane stationary problem of thermo-elasticity for a three-
layer (three-component) ring, as well as for the plane problem of the elastic theory for this region. The
designations adopted for a three-layer hollow long cylinder with an axisymmetric temperature field are
the next: R, is the radius of the inner contour Lg; R, is the radius of the contour L; at the border of
the first and second layers; R, is the radius of the contour Lo between the second and the third layers;
R is the radius of the outer contour; T', T3 are known temperatures on the inner and outer edges of
the cylinder.

The conditions of ideal thermal contact (equality of temperatures and heat fluxes) are set along
the contours L; and L.

Let us write down the heat conduction equations for a three-layer ring, applying the relative coor-
dinate p = R% and boundary conditions:

d’t;  1dt
. - =0 (2217273)7 (1)
dp*  pdp
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t1="1To at P = po,
t3 = T3 at p = 1,
t1 =15 at P = P1,

dtq dtsy
AMl— = do—— t =
1dp de a P = P1,
tQ = t3 at P = P2,
dto dts
Ag—— = A\g—— t =
de Sdp a P = p2,

where t;(p), A; is the temperature, the thermal conductivity of the i-th layer.

Fig. 1. Design scheme of a three-layer ring under the action of the internal pressure and the elevated temper-

ature.
The solution to equation (1) is represented as

Integration constants A; and B; can be obtained from conditions (2).

Ty — Ty)1 Ty — T
A=, B=T)mp p T—To
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A1 A2 A1
= (222 ) mpo+ (1- 2L ) Inpy — Inpo.
P <)\2 )\3> e ( )\2> et o

Substituting (4) into (3), one can obtain the equation for the temperature distribution over the
thickness of the three-layer ring for the given boundary conditions (2) and the ideal thermal contact
of the layers:

where

(Tg — TO) lnpo + (Tg — TO)
P

Ty(p) = Ty - Inp (5)

A A
+ In P, (6)
P A2
)\1 T3 - TO In
T () = Ty + STy, @
3 P
To determine the temperature stresses in a three-layer ring (a fragment of a long cylinder), the known
temperature field from the heat conduction problem under the accepted boundary conditions (2) is
used.
Let us write the equations for the radial and ring stresses and displacements of the three layers of
the ring in the general form via the polar coordinates:

Th1 (p) =To —

Dy oL El [P
of =Cy+ =y~ VQV/ tv(p)pdp  (V=1,2,3), (8)
p p pv
Dy ; CEL [P
7Y = Oy = 2~ Bhiv(o)+ Y [ i) o (9)
P1
1 :
= (g (o8 = ot + abvio) ). (10
|4
where
i j22% ’ Ez t1 t
H= Eizl_ilulza ay = oy (1 — py), (11)

E;, af, u; are the elasticity modulus, temperature coefficient of the linear expansion, Poisson’s ratio
for the layers of the cylinder, respectively.

If there is no external load on all circuits Lg, L1, Lo, L3, then the integration constants C;, D;
(1 =1,2,3) are determined from the conditions:

o, =0 at p=po,
o2=0 at p=1,
o) =07 at p=pi, (12)
up=uy at p=pi,
ui =uj at p=ps,

Substituting (8), (9), (10) into (12), we obtain
_ B ri
G = (Fl T a01) p3—p3’
Cy=1Tr1, (C3=ag — F1+§—§—a12—a21
F piP3
Dy =F,, Dy=-— (am + (Fl +—22>> o
9 P1 P1—Po
D3 = (Fl + % — a2 —azl) 15—703’

Y

(13)

where
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P22 — P1Y2 P2T1 — P1Y1
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Substituting (13) into (8), (9) and considering:
([P 1 1 1
/tl(p)pdp=§A1 (0" = p3) + 5B (lenp—pﬁlnpo—ﬁ(pz—p3)>,
£0
’ do= 245 (02— ) + 1B, (21 Inpy — & (o2 —
ta(p) pdp = 545 (P = p1) + 5 B2 | P"Inp — pilnpy 2(/) ) ), (14)
p1
’ dp= 245 (02— p2) + Ly [ p21 Iy — & (o2 —
ta(p) pdp = 543 (p" = p3) + 5Bs | P"Inp - p5In pa 2(/) ) ),
P2
O/{El Pt Q{Ell 1 2 2 Ly 2
a1 = — ti(p) pdp = —= Al( = p0) + 5B pilnpr = piInpo — 5 (p7 = p5) ) )
P11 Jpo P1
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P2 1 1
arp = 25 / ta(p) pdp = —2 <A2( p1)+2B2<p§hﬂpz—p§1nm—5([)5—[)?))),
Po pP1 P2

ay = ofy B} /,,21 3(p) pdp = o} 3 ( Az (1—p5) — ;Bg <p§1np2 + % (1 +p§)>> :
aj = o} Eztg(p) =al E (A + Balnpy) at p = p1,
agy = ok E2t2(p) =al E (A2 + By ln p9) at p = po2,
a,, = o Elta(p) = ob By (Ay + By ln py) at  p=pa,
azs = o} Egtg(p) — o} B} (A3 + B3ln py) at  p=po,
b :al t1(p) = ot (A + Bilnpy) at  p=p,
boo = o' ta2(p) = af (A2 + Bolnpr)  at  p=pi,
bhy = abta(p) = ab (Ay+ Balnpy)  at  p=py,
bs3 = alyts(p) = af (As + Bsln o) at p = p2.

Finally, we find the value of the temperature stresses in each of the three layers o, O'é and the
radial displacement in a thin three-layer ring at a plane stress state determined by the plane force and
temperature field, replacing the values of EV, aﬁ/, /‘V with Ey, of,, py.

Let us find the stresses in the three-layer ring from the internal normal uniformly distributed
pressure pg on the contour Ly. In this case, contact pressures p; act on the rings boundaries (from the
side of the II ring on the I ring along the contour L;) and ps (from the side of the III ring on the II
ring along the contour Ly). The pressures p; and py are opposite in direction to the outer normals.
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To determine the contact pressures p; and po, we write down a system of two equations:

aipi + azpz = as,
15
{ bip1 + bapa = 0, (15)
where ( 2 2 2 / 2 /
a1 = ag (RY (1 — py) + Rg (14 p1)) — (RY (1 — ph) + R3(1 + ppy))
Ey(R5—R
ay = —2R}ay = — ( 3 ) = 2a4po RS,
Ei (B2 - 7)™
9 (16)
b1 = 2b4Riby = R3 (1 — pi) + R3 (14 p) + ba (R3(1 — py) + RY (1 + )
by — B (R3—R3)
k By (R3 - RY)’
The solution to system (15) according to Cramer’s rule is:
_Ap _Apo
p1 = A P2 = A
a1a9
where A = = a1by + bras, Ap1 = azbs, Aps = —agby.

b1be
To pass to the case of plane deformation, the replacement of the quantities u; and E; by the
. ; ’ E; - .
quantities p, = lﬁm, E, = 2 (1 =1,2,3) is used.
For the first layer:

o B~ RY) — i R — RY)

= 17
7” RE(RY -~ ) | o
| _ poR§(R? + RY) — p1 RY (R + RY)
= Ry < R < Ry), 18
Tp R2(R%—Rg) ( 0 1) ( )
where o, 09 are normal radial and hoop stresses.
For the second layer:
11 _le%(R2 - R%) - pZR%(R2 - R%)
O = 2 2 ’ (19)
R(R; — RY)
11— RI(R® + R3) — poR3(R” + RY)
= Ri < R < Ry). 20
Op R2(R§—R%) ( 1 2) ( )
For the third layer:
L p2(p2 P2
o = szz(ZR 2R3), (21)
R2(R3 — R3)
0_111 — _p2R%(R2 +R§) (R <R<R ) (22)
" OR(RB-R) T o

Let us also find the radial displacement v’ in a thin three-component ring in a plane stressed state
determined by a plane force and temperature field. The boundary conditions (12) with an ideal contact
specified on the contours L1 and Lo, and Hooke’s law are used for a plane stress state in the next form:

u= (o9~ o) (23)

The validity of which for the second concrete ring is determined by the restrictions imposed on the
protective structure — (op < 0.3f.4) the work of the structure in the elastic stage ensures the absence
of not only macro, but also microcracks |7].

Dependencies for determining the stresses and displacements of the ring are conveniently calculated
using computer programs. The principle of superposition is used to determine the stresses under the
combined action of the internal pressure and the temperature field.
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3. Computer modeling

Computer modeling. Using the LIRA 10.8 software package (release 3.4), in the formulation of a
stationary temperature problem, the case with an uninsulated outer face of a three-layer ring was
considered (the problem “ring 1.68”, Fig.2). The radial displacements of the numerical model of such
type ring (expansion) at the pg = 1.68 MPa were 1.5 — 2 times less than those obtained experimentally
and calculated in an elastic formulation and with the use of a deformable model. This indicates a
significant effect of the temperature of the sheet reinforcement on the outer face on the deformability.

n
2v

19.04.2021 17:55:39
LIRA

Fig. 2. Simulation of thermal power loads on a three-layer reinforced concrete ring with sheet reinforcement
(external temperature 18°C.

]

19.04.2021 18:01:09
LIRA

Fig. 3. Modeling of thermal power loads on a three-layer reinforced concrete ring with sheet reinforcement
(internal temperature 240°C, external temperature 180°C).

At po = 3.2 MPa and when the yield stress in the reinforcement is reached, this difference remains.
When insulating the outer face (Fig.3), the radial displacements of the numerical model at py =
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1.68 MPa were 7% less than those obtained experimentally and calculated in an elastic formulation
and using a deformation model.

The temperature moments, depending on the temperature difference set on the inner and outer
faces of the ring in experimental studies and in the numerical experiment, coincided. These results
confirmed the need to insulate the outer edge of the shells of protective structures. Modeling the
distribution of principal stresses in three-layer annular specimens performed according to the theories
of Huber-Genki-Mises (G-G-M), Geniev (G), Pisarenko-Lebedev (P-L) and Druckner-Prager (D-P),

showed the best agreement of research results when using the latter one.

4. Analysis of research results

At the normal temperature of the outer face, the difference between the stresses in the outer steel sheet
of the shell, obtained from the numerical experiment, was 9.7% (deforming model) and 5.1 — 7.3%
(experimental values), and for the inner steel sheet of the shell 13.4% and 0.6 — 2.0%, respectively,
both for normal temperature and for long-term heating of the inner edge (Table 1).

Table 1. Stresses in concrete and reinforcement of three-layer rings.

Research o, Sheet corrugated Sheet smooth Sheet corrugated Sheet smooth
modes MPa | exp. | theor. | num. | exp. | theor. | num. | exp. | theor. | num. | exp. | theor. | num.
Power 0; 29.8 | 249 30.4 34.9 24.9 30.4 - - - -

P =1.68 MPa oc 1.6 3.1 2.0 1.2 3.1 2.0 — — - -
os 32.5 | 19.6 30.3 | 34.0 19.6 30.3 - — — -
Thermopow. ol - - - - - - 34.4 44.3 39.0 | 35.9 44.3 39.0
P =1.68 MPa, oc — — — — — — 1.72 4.02 2.88 1.53 4.02 2.88
T = 240°C os — - - - — - 33.7 39.0 314 | 344 39.0 31.4
Prolonged ol 13.4 | 21.0 15.2 14.9 21.0 15.2 - - - - - -
heating, oc 1.12 | 1.84 1.66 1.02 1.84 1.66 — — — - - -
T =240°C Os 15.0 | 24.2 16.1 15.8 24.2 16.1 - - - - - -
Thermopow. ol 32.1 | 44.3 39.0 | 33.9 44.3 39.0 | 35.0 44.3 39.0 | 38.6 44.3 39.0
P =1.68 MPa, oc 1.65 | 4.02 2.88 1.26 4.02 2.88 1.78 4.02 2.88 1.42 4.04 2.88
T = 240°C os 34.4 | 39.0 314 | 35.8 39.0 314 | 36.0 39.0 31.4 | 37.3 39.0 31.4
Note: theoretical values in accordance with dependencies (18), (20), (22), numerical according to LIRA 10.8 (release 3.4, D-P
theory).
Table 2. Radial displacements of the outer face of three-layer rings f, mm.
Type of Test modes, Internal pressure Experiment, Theoretical by | Numerical experiment,
reinforcement T on the inner edge po, MPa physical model (23) and (10) Drucker—Prager theory
smooth power 1.68 0.077 0.068 0.099
sheet T =18°C 3.2 0.146 0.129 0.189
thermo power 1.68 1.93 1.88 1.78
T = 240°C short-term 3.2 3.67 3.02 1.90
thermo power 1.68 2.17 - -
T = 240°C long-term 3.2 4.18 - -

corrugated power 1.68 0.063 0.063 0.099
sheet T =18°C po = 3.2 0.121 0.120 0.189

thermo power po = 1.68 1.49 1.76 1.65
T = 240°C short-term po = 3.2 2.84 2.82 1.78

thermo power 1.68 1.68 - -
T = 240°C long-term 3.2 3.22 - -

The obtained deviations indicate a good convergence of the experimental results with the results of
a numerical experiment, reflecting the distribution of stresses between the inner and outer shell sheets.

Table 2 shows the displacements of the outer face of the three-layer ring obtained in numerous
and physical experiments, and a comparison with the obtained theoretical dependences of the elastic
theory.

The obtained theoretical dependences (18), (20), (22), (23) for stresses and strains were compared
with the results of experimental studies of three-layer annular models [4, 6] and experimental studies
of V. A. Kostornichenko [8] (Table3 and Table5). Consequently, using the provisions of the elastic
theory and at pg < 0,4p,,, which corresponds to the constraints imposed on the structure, ensures a
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good convergence of the results and the discrepancy does not exceed 7%. The tensile bearing capacity
of the ring elements is determined by the bearing capacity of the reinforcement. Comparison of the
theoretical and experimental results of the study of the tensile bearing capacity of ring sections is
shown in Table4. The discrepancy does not exceed 4 — 12%.

Table 3. Moments of cracking in three-layer rings.

Type of reinforcement | T, °C | pere (MPa) | Mere (kNm) | Mere (KNm) | Mezp/Mineor
Smooth sheet 18 0.21 9.05 8.70 1.04
Corrugated sheet 18 0.42 17.62 16.62 1.06
Smooth sheet 240 2.73 2.65 1.03
Corrugated sheet 240 3.12 3.03 1.03
Bar of period. profile 18 0.194%* 8.32% 8.15 1.021
Bar of period. profile 150 - 2.36** 2.21 1.067

T is the temperature of the inner face, * theoretical value according to [9], ** experimental research of Kostornichenko V. A. [8].

Table 4. Tensile bearing capacity of three-layer rings during short-term thermo-power tests.

Type of reinforcement Ultimate tensile force N, kN
of samples T,°C exp. theor. Neap/Ntneor

Corrugated sheet 18 407.1 387.7 1.05
Smooth sheet 18 383.2 351.6 1.09
Corrugated sheet 240 370.85 356.27 1.04
Smooth sheet 240 380.1 348.5 1.09
Bar of period. profile 18 149.78* 133.37 1.12
Bar of period. profile 150 140.33* 127.56 1.10

* experimental research Kostornichenko V. A. [8].

Table 5. Temperature moments in three-layer rings at different heating modes (kNm).

Experimental values Theoretical
Temperature mode Corrugated | Smooth | Bar of period. values Mezp/Miheor
sheet sheet profile according to [9]

First short-term heating up to 240°C 6.1 6.5 - 6.2 1.03
Long-term heating up to 240°C 1.05 1.2 - 1.11 1.01
Short-term heating up to 150°C - - 3.07 3.24 0.96
Long-term heating up to 150°C - - 0.25 0.27 0.93

* experimental research Kostornichenko V. A. [8].

In case when the loads are close to the limiting state, the convergence of results is much better in
contrast to using the deformable model adopted in the current standards [5,10] and taking into account
the real deformation diagrams of concrete and reinforcement [9,11,12| (Table5). The discrepancy
does not exceed 7%. The nonlinear deformable model reliably describes the processes occurring in the
structure, and allows to unambiguously determine its stress-strain state until the limit state is reached.

5. Conclusions

The carried out theoretical, experimental studies and computer modeling of the reinforced concrete
three-layer annular fragments of protective structures have shown the possibility of using the depen-
dences of the elastic theory and existing algorithms in the formulation of a stationary thermo-elastic
problem to determine with high accuracy the stress-strain state of specimens in the mode of stationary
long-term heating (operational thermal power loads).

Numerical experiments carried out using the deformable model and the provisions of the Druckner—
Prager theory showed the slightest deviations from those obtained experimentally. The deviation did
not exceed 2.4 — 5.8%.

The stresses and displacements in a three-layer annular fragment, being obtained in the numerical
experiments on force loads at the normal temperature and thermal power loads in the formulation of the
stationary thermo-elastic problem, demonstrate good agreement with the results of the experimental
studies on the models under operational loading. The deviation did not exceed 7%.

The nonlinear deformation model adopted in the current standards, taking into account the real
deformation diagrams of concrete and reinforcement, reliably describes the processes occurring in the
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structure, and allows to unambiguously determine its stress-strain state in the limiting state. The
discrepancy does not exceed 7%.
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MopentoBaHHs1 3a1i300€TOHHOT 000/IOHKN 3aXUCHOT Ccnopyaun

Kapxyr L. 1., Kpouax O. B., Makcumosuu C. B.

Hauionarvrut ynisepcumem “/Iveiscora nosimexnira”,
eya. C. Bandepu, 12, 79013, Jlveis, Yxpaina

Hageneno pesynbpraTin MaTeMaTHIHOrO MOJE/IIOBAHHS Ta €KCIIEPUMEHTAJIbHIX JTOCIIII2KEHD
HAIPY2KEHO-1e(POPMOBAHOIO CTAHY KiJIbIIEBOTO Iepepidy 3a/i306eTOHHOT OOOJIOHKY 3aXUC-
HOI cropyiu. BUKOHAHO KOMIT'IOTEpHE MOJIE/IIOBAHHS B IIOCTAHOBII CTAIIIOHAPHOI TeMIIepa-
TypHOI 331a4i. [lokazano posmnomisn gedopmaliiit Ta HAIPY2KEHb IIPX 3aCTOCYBaHHI PIBHIHD
Teopil mpyxkuocTi. HaBeieHo MOpiBHAHHS TEOPETUIHUX 3aJI€2KHOCTEH 3 Pe3yIbTaTaMy eKC-
[IEPUMEHTAJIbHUAX JOCJIiJZKEeHDb (DI3UIHIX MOJeIeil Ta 3p00JIeHO BUCHOBKH IIPO MOXKJIUBICTh
3aCTOCYBaHHS 1X IIPU PO3PAaXyHKAX 3a/1i3006TOHHUX 3aXUCHUX CIIOPYII.

Knrouosi cnoBa: 3a.4i306emonna mpuuaposa 060A0HKA, MEOPLA NPYHCHOCTL, SHYMPIUL-
HIT MUCK, TMEMNEPAYPHE NOAE, PAJIGAbHE NEPEMIULEHHA.
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