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The results of the mathematical modeling and experimental studies for the stress-strain
state of the annular section of the reinforced concrete shell with the protective structure
are presented. Computer simulation has been formulated as a stationary temperature
problem. The distribution of deformations and stresses is shown using the equations of
the elastic theory. A comparison of theoretical dependences on the results of experimental
studies of physical models is given. Conclusions are drawn about the possibility of using
them in the calculations of reinforced concrete protective structures.
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1. Introduction

The overwhelming majority of protective structures designed and built at power and other enter-
prises (containment shells of nuclear power plants, heat accumulators, waste storage, protective shafts,
etc.) are reinforced concrete shells of circular cross-section, which are mainly vertically placed [1, 2].
Reinforcement of such type shells is adopted double with sheet outer or pre-stressed wound wire re-
inforcement. Full-scale tests of these structures, especially for the emergency loads combinations, are
very complex and valuable, therefore, their numerical modeling and testing of physical models are
carried out. The design scheme of such type structure can be represented as a three-layer shell, which
is acted upon by internal pressure and elevated temperature. The stress-strain state can be determined
by analyzing a three-layer plane ring as a fragment of a cylindrical shell [3] in the case for a three-layer
reinforced concrete rotation shell of the enclosing structure and given external influences that satisfy
the conditions of the plane problem.

2. Math modeling

Figure 1 shows the design diagram of the plane stationary problem of thermo-elasticity for a three-
layer (three-component) ring, as well as for the plane problem of the elastic theory for this region. The
designations adopted for a three-layer hollow long cylinder with an axisymmetric temperature field are
the next: R0 is the radius of the inner contour L0; R1 is the radius of the contour L1 at the border of
the first and second layers; R2 is the radius of the contour L2 between the second and the third layers;
R3 is the radius of the outer contour; T , T3 are known temperatures on the inner and outer edges of
the cylinder.

The conditions of ideal thermal contact (equality of temperatures and heat fluxes) are set along
the contours L1 and L2.

Let us write down the heat conduction equations for a three-layer ring, applying the relative coor-
dinate ρ = R

R3
and boundary conditions:

d2ti
dρ2

+
1

ρ

dti
dρ

= 0 (i = 1, 2, 3), (1)
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t1 = T0 at ρ = ρ0,

t3 = T3 at ρ = 1,

t1 = T2 at ρ = ρ1,

λ1
dt1
dρ

= λ2
dt2
dρ

at ρ = ρ1, (2)

t2 = t3 at ρ = ρ2,

λ2
dt2
dρ

= λ3
dt3
dρ

at ρ = ρ2,

where ti(ρ), λi is the temperature, the thermal conductivity of the i-th layer.

ρ0 =
R0

R3
, ρ1 =

R1

R3
, ρ2 =

R2

R3
.

T
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P0

P1
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P3 = Patm
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Fig. 1. Design scheme of a three-layer ring under the action of the internal pressure and the elevated temper-
ature.

The solution to equation (1) is represented as

ti(ρ) = Ai +Bi ln ρ (i = 1, 2, 3). (3)

Integration constants Ai and Bi can be obtained from conditions (2).





A1 = T0 −
(T3 − T0) ln ρ0

ρ
, B1 =

T3 − T0
ρ

,

A2 = T0 −
(T3 − T0) ln ρ0

(
λ1
λ2

− λ2
λ3

)
ln ρ2

ρ
,

B2 =
λ1
λ2

(T3 − T0) ln ρ0
ρ

,

A3 = T3, B3 =
λ1
λ3

(T3 − T0) ln ρ0
ρ

,

(4)
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where

ρ =

(
λ1
λ2

− λ2
λ3

)
ln ρ2 +

(
1 − λ1

λ2

)
ln ρ1 − ln ρ0.

Substituting (4) into (3), one can obtain the equation for the temperature distribution over the
thickness of the three-layer ring for the given boundary conditions (2) and the ideal thermal contact
of the layers:

T1(ρ) = T0 −
(T3 − T0) ln ρ0

ρ
+

(T3 − T0)

ρ
ln ρ (5)

T11 (ρ) = T0 −
(T3 − T0) ln ρ0

(
λ1
λ2

− λ2
λ3

)
ln ρ2

ρ
+
λ1
λ2

(T3 − T0) ln ρ0
ρ

ln ρ, (6)

T111 (ρ) = T3 +
λ1
λ3

(T3 − T0) ln ρ0
ρ

ln ρ. (7)

To determine the temperature stresses in a three-layer ring (a fragment of a long cylinder), the known
temperature field from the heat conduction problem under the accepted boundary conditions (2) is
used.

Let us write the equations for the radial and ring stresses and displacements of the three layers of
the ring in the general form via the polar coordinates:

σVr = CV +
DV

ρ2
− αt

′

VE
′
V

ρ2

∫ ρ

ρV

tV (ρ) ρ dρ (V = 1, 2, 3), (8)

σVθ = CV − DV

ρ2
− αt

1

V E
1
V tV (ρ) +

αt
1

V E
1
V

ρ2

∫ ρ

ρ1

tV (ρ) ρ dρ, (9)

uVr =

(
1

E1
V

((
σVθ − µ1V σ

V
r

)
+ αt

1

V tV (ρ)
)
R

)
, (10)

where

µ
′

i =
µi

1 − µi
, E

′

i =
Ei

1 − µ2i
, αt

1

V = αtV (1 − µV ), (11)

Ei, αti, µi are the elasticity modulus, temperature coefficient of the linear expansion, Poisson’s ratio
for the layers of the cylinder, respectively.

If there is no external load on all circuits L0, L1, L2, L3, then the integration constants Ci, Di

(i = 1, 2, 3) are determined from the conditions:




σ1r = 0 at ρ = ρ0,
σ3r = 0 at ρ = 1,
σ3r = σ2r at ρ = ρ1,
u1r = u2r at ρ = ρ1,
u2r = u32 at ρ = ρ2,

(12)

Substituting (8), (9), (10) into (12), we obtain




C1 =
(
F1 + F2

ρ21
+ a01

)
ρ21

ρ21−ρ20
,

C2 = F1, C3 = a21 −
(
F1 + F2

ρ22
− a12 − a21

)
ρ22
ρ22
,

D2 = F2, D1 = −
(
a01 +

(
F1 + F2

ρ21

))
ρ20ρ

2
1

ρ21−ρ20
,

D3 =
(
F1 + F2

ρ22
− a12 − a21

)
ρ22

1−ρ22
,

(13)

where
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F1 =
ρ2x2 − ρ1y2
y1x2 − y2x1

, F2 =
ρ2x1 − ρ1y1
y1x2 − y2x1

,

x1 =
1

E2

(
1 − µ12

)
− 1

E3

(
1 − 2

ρ22 − 1
− µ13

)
,

x2 =
1

ρ2

(
1

E2

(
1 + µ12

)
+

1

E3

(
1 − 2

ρ22 − 1
− µ13

))
,

y1 =
1

E2

(
1 − ρ20

ρ20 − ρ21
− µ12

)
− 1

E3

(
1 − µ12

)
,

y2 =
1

ρ21

(
1

E2

(
−1 +

ρ20
ρ20 − ρ21

+ µ12

)
+

1

E3

(
1 − 2

ρ22 − 1
− µ13

))
,

P1 =
1

E2

(
a122 − a12

(
µ12 + 1

))
+

1

E3

(
2 (a21 + a12)

ρ22 − 1
− a12

(
1 + µ13

)
− a33

)
+ b33 − b122,

P2 =
1

E1

(
2a01ρ

2
0

ρ20 − ρ21
+ a11 − 2a01

)
− 1

E2
a22 + b22 − b11.

Substituting (13) into (8), (9) and considering:




∫ ρ

ρ0

t1(ρ) ρ dρ =
1

2
A1

(
ρ2 − ρ20

)
+

1

2
B1

(
ρ2 ln ρ− ρ20 ln ρ0 −

1

2

(
ρ2 − ρ20

))
,

∫ ρ

ρ1

t2(ρ) ρ dρ =
1

2
A2

(
ρ2 − ρ21

)
+

1

2
B2

(
ρ2 ln ρ− ρ21 ln ρ1 −

1

2

(
ρ2 − ρ21

))
,

∫ ρ

ρ2

t3(ρ) ρ dρ =
1

2
A3

(
ρ2 − ρ22

)
+

1

2
B3

(
ρ2 ln ρ− ρ22 ln ρ2 −

1

2

(
ρ2 − ρ22

))
,

(14)

a01 =
αt

′

1E1

ρ21

∫ ρ1

ρ0

t1(ρ) ρ dρ =
αt

′

1E
1
1

ρ21

(
1

2
A1

(
ρ21 − ρ20

)
+

1

2
B1

(
ρ21 ln ρ1 − ρ20 ln ρ0 −

1

2

(
ρ21 − ρ20

)))
,

a12 =
αt

′

2E2

ρ20

∫ ρ2

ρ1

t2(ρ) ρ dρ =
αt

′

2E
1
2

ρ22

(
1

2
A2

(
ρ22 − ρ21

)
+

1

2
B2

(
ρ22 ln ρ2 − ρ21 ln ρ1 −

1

2

(
ρ22 − ρ21

)))
,

a21 = αt
′

3E
1
3

∫ 1

ρ2

t3(ρ) ρ dρ = αt
′

3E
1
3

(
1

2
A3

(
1 − ρ22

)
− 1

2
B2

(
ρ22 ln ρ2 +

1

2

(
1 + ρ22

)))
,

a11 = αt
′

1E
1
2t2(ρ) = αt

′

2E
2
2 (A2 +B2 ln ρ1) at ρ = ρ1,

a22 = αt
′

2E
1
2t2(ρ) = αt

′

2E
1
2 (A2 +B2 ln ρ2) at ρ = ρ2,

a1
22

= αt
′

2E
1
2t2(ρ) = αt

′

2E2 (A2 +B2 ln ρ2) at ρ = ρ2,

a33 = αt
′

3E
1
3t3(ρ) = αt

′

3E
1
3 (A3 +B3 ln ρ2) at ρ = ρ2,

b11 = αt
′

1 t1(ρ) = αt
′

1 (A1 +B1 ln ρ1) at ρ = ρ1,

b22 = αt
′

1 t2(ρ) = αt
′

2 (A2 +B2 ln ρ1) at ρ = ρ1,

b122 = αt
′

2 t2(ρ) = αt
′

2 (A2 +B2 ln ρ2) at ρ = ρ2,

b33 = αt
′

3 t3(ρ) = αt
′

3 (A3 +B3 ln ρ2) at ρ = ρ2.

Finally, we find the value of the temperature stresses in each of the three layers σir, σ
i
θ and the

radial displacement in a thin three-layer ring at a plane stress state determined by the plane force and
temperature field, replacing the values of E1

V , αt
1

V , µ1V with EV , αtV , µV .
Let us find the stresses in the three-layer ring from the internal normal uniformly distributed

pressure p0 on the contour L0. In this case, contact pressures p1 act on the rings boundaries (from the
side of the II ring on the I ring along the contour L1) and p2 (from the side of the III ring on the II
ring along the contour L2). The pressures p1 and p2 are opposite in direction to the outer normals.
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To determine the contact pressures p1 and p2, we write down a system of two equations:
{
a1p1 + a2p2 = a3,
b1p1 + b2p2 = 0,

(15)

where 



a1 = a4
(
R2

1

(
1 − µ′1

)
+R2

0

(
1 + µ′1

))
−
(
R2

1

(
1 − µ′2

)
+R2

2(1 + µ′0)
)
,

a2 = −2R2
2a4 =

E′
2

(
R2

2 −R2
1

)

E′
1

(
R2

1 −R2
2

)a3 = 2a4ρ0R
2
0,

b1 = 2b4R
2
1b2 = R2

2

(
1 − µ′3

)
+R2

3

(
1 + µ′3

)
+ b4

(
R2

2(1 − µ′2) +R2
1

(
1 + µ′2

))
,

b4 = −E
′
3

(
R2

3 −R2
2

)

E′
2

(
R2

2 −R2
1

) .

(16)

The solution to system (15) according to Cramer’s rule is:

p1 =
∆p1
∆

, p2 =
∆p2
∆

,

where ∆ =

∣∣∣∣
a1a2
b1b2

∣∣∣∣ = a1b2 + b1a2, ∆p1 = a3b2, ∆p2 = −a3b1.
To pass to the case of plane deformation, the replacement of the quantities µi and Ei by the

quantities µ′i = µi
1−µi , E

′

i = Ei

1−µ2i
(i = 1, 2, 3) is used.

For the first layer:

σ1r =
p0R

2
0(R2 −R2

1) − p1R
2
1(R2 −R2

0)

R2(R2
1 −R2

0)
, (17)

σ1θ =
p0R

2
0(R2 +R2

1) − p1R
2
1(R2 +R2

0)

R2(R2
1 −R2

0)
(R0 < R < R1), (18)

where σr, σθ are normal radial and hoop stresses.
For the second layer:

σ11r =
−p1R2

1(R2 −R2
2) − p2R

2
2(R2 −R2

1)

R(R2
2 −R2

1)
, (19)

σ11θ =
−p1R2

1(R2 +R2
2) − p2R

2
2(R2 +R2

1)

R2(R2
2 −R2

1)
(R1 < R < R2). (20)

For the third layer:

σ111r =
−p2R2

2(R2 −R2
3)

R2(R2
3 −R2

2)
, (21)

σ111θ =
−p2R2

2(R2 +R2
3)

R2(R2
3 −R2

2)
(R2 < R < R3). (22)

Let us also find the radial displacement uir in a thin three-component ring in a plane stressed state
determined by a plane force and temperature field. The boundary conditions (12) with an ideal contact
specified on the contours L1 and L2, and Hooke’s law are used for a plane stress state in the next form:

u =
R

E
(σθ − µσr) (23)

The validity of which for the second concrete ring is determined by the restrictions imposed on the
protective structure – (σb 6 0.3f cd) the work of the structure in the elastic stage ensures the absence
of not only macro, but also microcracks [7].

Dependencies for determining the stresses and displacements of the ring are conveniently calculated
using computer programs. The principle of superposition is used to determine the stresses under the
combined action of the internal pressure and the temperature field.
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3. Computer modeling

Computer modeling. Using the LIRA 10.8 software package (release 3.4), in the formulation of a
stationary temperature problem, the case with an uninsulated outer face of a three-layer ring was
considered (the problem “ring 1.68”, Fig. 2). The radial displacements of the numerical model of such
type ring (expansion) at the p0 = 1.68 MPa were 1.5−2 times less than those obtained experimentally
and calculated in an elastic formulation and with the use of a deformable model. This indicates a
significant effect of the temperature of the sheet reinforcement on the outer face on the deformability.

LIRA

Fig. 2. Simulation of thermal power loads on a three-layer reinforced concrete ring with sheet reinforcement
(external temperature 18◦C.

LIRA

Fig. 3. Modeling of thermal power loads on a three-layer reinforced concrete ring with sheet reinforcement
(internal temperature 240◦С, external temperature 180◦С).

At p0 = 3.2 MPa and when the yield stress in the reinforcement is reached, this difference remains.
When insulating the outer face (Fig. 3), the radial displacements of the numerical model at p0 =
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1.68 MPa were 7% less than those obtained experimentally and calculated in an elastic formulation
and using a deformation model.

The temperature moments, depending on the temperature difference set on the inner and outer
faces of the ring in experimental studies and in the numerical experiment, coincided. These results
confirmed the need to insulate the outer edge of the shells of protective structures. Modeling the
distribution of principal stresses in three-layer annular specimens performed according to the theories
of Huber–Genki–Mises (G-G-M), Geniev (G), Pisarenko–Lebedev (P-L) and Druckner–Prager (D-P),
showed the best agreement of research results when using the latter one.

4. Analysis of research results

At the normal temperature of the outer face, the difference between the stresses in the outer steel sheet
of the shell, obtained from the numerical experiment, was 9.7% (deforming model) and 5.1 − 7.3%
(experimental values), and for the inner steel sheet of the shell 13.4% and 0.6 − 2.0%, respectively,
both for normal temperature and for long-term heating of the inner edge (Table 1).

Table 1. Stresses in concrete and reinforcement of three-layer rings.

Research σ, Sheet corrugated Sheet smooth Sheet corrugated Sheet smooth
modes МPа exp. theor. num. exp. theor. num. exp. theor. num. exp. theor. num.
Power σ1s 29.8 24.9 30.4 34.9 24.9 30.4 – – – –

P = 1.68МPа σc 1.6 3.1 2.0 1.2 3.1 2.0 – – – –
σs 32.5 19.6 30.3 34.0 19.6 30.3 – – – –

Thermopow. σ1s – – – – – – 34.4 44.3 39.0 35.9 44.3 39.0
P = 1.68МPа, σc – – – – – – 1.72 4.02 2.88 1.53 4.02 2.88
T = 240◦С σs – – – – – – 33.7 39.0 31.4 34.4 39.0 31.4
Prolonged σ1s 13.4 21.0 15.2 14.9 21.0 15.2 – – – – – –
heating, σc 1.12 1.84 1.66 1.02 1.84 1.66 – – – – – –
T = 240◦С σs 15.0 24.2 16.1 15.8 24.2 16.1 – – – – – –

Thermopow. σ1s 32.1 44.3 39.0 33.9 44.3 39.0 35.0 44.3 39.0 38.6 44.3 39.0
P = 1.68МPа, σc 1.65 4.02 2.88 1.26 4.02 2.88 1.78 4.02 2.88 1.42 4.04 2.88
T = 240◦С σs 34.4 39.0 31.4 35.8 39.0 31.4 36.0 39.0 31.4 37.3 39.0 31.4

Note: theoretical values in accordance with dependencies (18), (20), (22), numerical according to LIRA 10.8 (release 3.4, D-P
theory).

Table 2. Radial displacements of the outer face of three-layer rings f , mm.

Type of Test modes, Internal pressure Experiment, Theoretical by Numerical experiment,
reinforcement T on the inner edge p0, MPa physical model (23) and (10) Drucker–Prager theory

smooth power 1.68 0.077 0.068 0.099
sheet T = 18◦С 3.2 0.146 0.129 0.189

thermo power 1.68 1.93 1.88 1.78
T = 240◦С short-term 3.2 3.67 3.02 1.90

thermo power 1.68 2.17 – –
T = 240◦С long-term 3.2 4.18 – –

corrugated power 1.68 0.063 0.063 0.099
sheet T = 18◦С p0 = 3.2 0.121 0.120 0.189

thermo power p0 = 1.68 1.49 1.76 1.65
T = 240◦С short-term p0 = 3.2 2.84 2.82 1.78

thermo power 1.68 1.68 – –
T = 240◦С long-term 3.2 3.22 – –

The obtained deviations indicate a good convergence of the experimental results with the results of
a numerical experiment, reflecting the distribution of stresses between the inner and outer shell sheets.

Table 2 shows the displacements of the outer face of the three-layer ring obtained in numerous
and physical experiments, and a comparison with the obtained theoretical dependences of the elastic
theory.

The obtained theoretical dependences (18), (20), (22), (23) for stresses and strains were compared
with the results of experimental studies of three-layer annular models [4, 6] and experimental studies
of V. A. Kostornichenko [8] (Table 3 and Table 5). Consequently, using the provisions of the elastic
theory and at p0 6 0, 4pu, which corresponds to the constraints imposed on the structure, ensures a
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good convergence of the results and the discrepancy does not exceed 7%. The tensile bearing capacity
of the ring elements is determined by the bearing capacity of the reinforcement. Comparison of the
theoretical and experimental results of the study of the tensile bearing capacity of ring sections is
shown in Table 4. The discrepancy does not exceed 4 − 12%.

Table 3. Moments of cracking in three-layer rings.

Type of reinforcement T , ◦С pcrc (МPа) Mcrc (kNm) Mcrc (kNm) Mexp/Mtheor

Smooth sheet 18 0.21 9.05 8.70 1.04
Corrugated sheet 18 0.42 17.62 16.62 1.06

Smooth sheet 240 2.73 2.65 1.03
Corrugated sheet 240 3.12 3.03 1.03

Bar of period. profile 18 0.194* 8.32* 8.15 1.021
Bar of period. profile 150 – 2.36** 2.21 1.067

T is the temperature of the inner face, * theoretical value according to [9], ** experimental research of Kostornichenko V. A. [8].

Table 4. Tensile bearing capacity of three-layer rings during short-term thermo-power tests.

Type of reinforcement
T , ◦С

Ultimate tensile force N , kN
Nexp/Ntheorof samples exp. theor.

Corrugated sheet 18 407.1 387.7 1.05
Smooth sheet 18 383.2 351.6 1.09

Corrugated sheet 240 370.85 356.27 1.04
Smooth sheet 240 380.1 348.5 1.09

Bar of period. profile 18 149.78* 133.37 1.12
Bar of period. profile 150 140.33* 127.56 1.10

* experimental research Kostornichenko V. A. [8].

Table 5. Temperature moments in three-layer rings at different heating modes (kNm).

Temperature mode
Experimental values Theoretical

Mexp/MtheorCorrugated Smooth Bar of period. values
sheet sheet profile according to [9]

First short-term heating up to 240◦С 6.1 6.5 – 6.2 1.03
Long-term heating up to 240◦С 1.05 1.2 – 1.11 1.01
Short-term heating up to 150◦С – – 3.07 3.24 0.96
Long-term heating up to 150◦С – – 0.25 0.27 0.93

* experimental research Kostornichenko V. A. [8].

In case when the loads are close to the limiting state, the convergence of results is much better in
contrast to using the deformable model adopted in the current standards [5,10] and taking into account
the real deformation diagrams of concrete and reinforcement [9, 11, 12] (Table 5). The discrepancy
does not exceed 7%. The nonlinear deformable model reliably describes the processes occurring in the
structure, and allows to unambiguously determine its stress-strain state until the limit state is reached.

5. Conclusions

The carried out theoretical, experimental studies and computer modeling of the reinforced concrete
three-layer annular fragments of protective structures have shown the possibility of using the depen-
dences of the elastic theory and existing algorithms in the formulation of a stationary thermo-elastic
problem to determine with high accuracy the stress-strain state of specimens in the mode of stationary
long-term heating (operational thermal power loads).

Numerical experiments carried out using the deformable model and the provisions of the Druckner–
Prager theory showed the slightest deviations from those obtained experimentally. The deviation did
not exceed 2.4 − 5.8%.

The stresses and displacements in a three-layer annular fragment, being obtained in the numerical
experiments on force loads at the normal temperature and thermal power loads in the formulation of the
stationary thermo-elastic problem, demonstrate good agreement with the results of the experimental
studies on the models under operational loading. The deviation did not exceed 7%.

The nonlinear deformation model adopted in the current standards, taking into account the real
deformation diagrams of concrete and reinforcement, reliably describes the processes occurring in the
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structure, and allows to unambiguously determine its stress-strain state in the limiting state. The
discrepancy does not exceed 7%.
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Моделювання залiзобетонної оболонки захисної споруди

Кархут I. I., Крочак О. В., Максимович С. Б.

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. С. Бандери, 12, 79013, Львiв, Україна

Наведено результати математичного моделювання та експериментальних дослiджень
напружено-деформованого стану кiльцевого перерiзу залiзобетонної оболонки захис-
ної споруди. Виконано комп’ютерне моделювання в постановцi стацiонарної темпера-
турної задачi. Показано розподiл деформацiй та напружень при застосуваннi рiвнянь
теорiї пружностi. Наведено порiвняння теоретичних залежностей з результатами екс-
периментальних дослiджень фiзичних моделей та зроблено висновки про можливiсть
застосування їх при розрахунках залiзобетонних захисних споруд.

Ключовi слова: залiзобетонна тришарова оболонка, теорiя пружностi, внутрiш-
нiй тиск, температурне поле, радiальне перемiщення.
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