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Risk aversion plays a significant and central role in investors’ decisions in the process
of developing a portfolio. In this portfolio optimization framework, we determine the
portfolio that possesses the minimal risk by using a new geometrical method. For this
purpose, we elaborate an algorithm that enables us to compute any Euclidean distance to a
standard simplex. With this new approach, we can treat the case of portfolio optimization
without short-selling in its entirety, and we also recover in geometrical terms the well-
known results on portfolio optimization with allowed short-selling. Then, we apply our
results to determine which convex combination of the CAC 40 stocks possesses the lowest
risk. Thus, we not only obtain a very low risk compared to the index, but we also get a
rate of return that is almost three times better than the one of the index.

Keywords: portfolio optimization, short-selling, Euclidean distance to a standard sim-
plex, geometrical approach of portfolio optimization, geometrical algorithm.

2010 MSC: 91G10, 91-08, 52A20, 90C20 DOI: 10.23939/mmc2021.03.400

1. Introduction and aims of the article

1.1. Framework

The paper [1] published by Harry Markowitz in 1952 completely changed the methods of portfolio
management and gave birth to the so-called “Modern Portfolio Theory”, thanks to which its author
earned the Nobel Prize in Economics in 1990. Since his works and the paper [2] of Sharpe, this theme
centralizes a lot of interest and many developments have been written in this domain. Let us recall
some recent and important works to which our article is linked.

In [3], Jón Dańıelsson, Bjórn N. Jorgensen, Casper G. de Vries and Xiaoguang Yang study the port-
folio allocation under the probabilistic VaR constraint and obtain remarkable topological results: the
set of feasible portfolios is not always connected nor convex, and the number of local optima increases
in an exponential way with the number of states. They propose a solution to reduce computational
complexity due to this exponential increase.

In [4], Claudio Fontana and Martin Schweizer give a simple approach to mean-variance portfolio
problems: they change the problems’ parametrization from trading strategies to final positions. In this
way, they are able to solve many quadratic optimization problems by using orthogonality techniques
in Hilbert spaces and providing explicit formulas.

In their important article [5], Hanene Ben Salah, Mohamed Chaouch, Ali Gannoun and Christian De
Peretti (see also the thesis [6]) define a new portfolio optimization model in which the risks are measured
thanks to conditional variance or semivariance. They use returns prediction obtained by nonparametric
univariate methods to make a dynamical portfolio selection and get a better performance.

In [7], Sarah Perrin and Thierry Roncalli show how four algorithms of optimization (the coordi-
nate descent, the alternating direction method of multipliers, the proximal gradient method and the
Dykstra’s algorithm) can be used to solve problems of portfolio allocation.

In [8], Taras Bodnar, Dmytro Ivasiuk, Nestor Parolya and Wolfgang Schmid make an interesting
work about the portfolio choice problem for power and logarithmic utilities: they compute the portfolio
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weights for these utility functions assuming that the portfolio returns follow an approximate log-normal
distribution, as suggested in [9]. It is also noticeable that their optimal portfolios belong to the set of
mean-variance feasible portfolios.

1.2. Aims and organization of the paper

There are three aims in this article:
— give a new geometrical algorithm (Algorithm 1) to compute any Euclidean distance to a simplex,
— determine, by making use of this algorithm, a portfolio with minimal variance,
— apply this technique to the CAC 40 stocks, and get a portfolio with a rate of return that is

almost three times better than the one of the index.
After having briefly explained the notations in Section 1, we expose the portfolio optimization

problem and prove by compactness and convexity arguments that it possesses a unique solution.
Then, in Section 2, we solve the problem in the case where short-selling is allowed: for this, we

recall the classical method and give our very simple geometrical method.
Section 3 is the heart of the article: in this section, we solve the portfolio optimization problem

in the case where short-selling is not allowed. For this purpose, we give a new geometrical algorithm
(Algorithm 1) to compute the distance from a point to a standard simplex, which can be used for every
Euclidean distance.

We can eventually apply this algorithm to the example of the CAC 40 stocks and determine the
portfolio with the lowest risk. This portfolio also has the property of being almost three times more
efficient than the underlying index. This is done in Section 4.

1.3. Notations

We consider n stocks S1, . . . , Sn and denote by X1, . . . ,Xn the random variables that represent their
rate of return (for example, daily, monthly or yearly). For every i ∈ [[1, n]], we set mi = E(Xi) (mean
of Xi), m = (m1, . . . ,mn), and Vi = V (Xi) (variance of Xi). We set C = (Cov(Xi,Xj))(i,j)∈[[1,n]]2 the
covariance matrix of X1, . . . ,Xn, and define the random vector X = (X1, . . . ,Xn).

Definition 1. We call portfolio (with allowed short-selling) every linear combination Px =
∑n

j=1 xjSj,
where x = (x1, . . . , xn) ∈ Rn and x1 + · · · + xn = 1.

If we do not allow short-selling, then every xi must be nonnegative, and in that case the linear combi-
nation is a convex combination.

The rate of return of the portfolio is the linear combination Rx = x1X1 + · · · + xnXn.

1.4. Existence and uniqueness of the solution

Let us recall that the mean of Rx is E(Rx) = txm and its variance V (Rx) = txC x. Moreover, C
is a symmetric positive matrix. This matrix is symmetric definite positive if and only if X1, . . . ,Xn

are almost surely affinely independent. In all the following, we assume that C is symmetric definite

positive, which is true in practice.
Let us denote by H the affine hyperplane of Rn with equation x1 + . . . xn = 1, and by K the

standard (n − 1)-simplex, i.e. K :=
{
x ∈ [0, 1]n / x1 + · · · + xn = 1

}
. This is a Haussdorff compact

subset of Rn that is contained in the hyperplane H.
Minimizing the variance of the portfolio is equivalent to finding the minimum on K of the quadratic

form f : x 7→ V (Rx) = txC x. Let us consider the scalar product (x,y) 7→ 〈x,y〉 := txC y and the
Euclidean norm x 7→ ‖x‖ :=

√
txC x. The aim is to determine the point of K that realizes the minimal

distance from the origin point to K in the sense of ‖ · ‖. As K is a Haussdorff compact subset, and
as f is continuous, we know that this minimum does exist. Moreover, the map f is strictly convex, so
that it possesses at most one minimum, and every local minimum of f is global (see for example [10]).
Therefore, f possesses exactly one minimum on K, and this minimum is global.
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2. Minimization of f on the hyperplane H: allowed short-selling

In this section, we give two methods to compute the portfolio that possesses the lowest risk: the
classical one, and our geometrical approach. Let us denote by E = (e1, . . . , en) the canonical basis of
Rn. Then, a basis of the vector hyperplane that directs H is B = (e1 − e2, e1 − e3, . . . , e1 − en), and
for every x ∈ Rn, x belongs to H if and only if x1 + · · · + xn = 1. Let us set u = e1 + · · · + en and
h : x 7→ txu− 1.

2.1. Minimization of f on H by the classical method

Here we briefly recall the classical method to compute the portfolio that possesses the lowest risk.
Several sources, such as [11, 12] and [13], provide a clear presentation of these well-known tools. The
classical method using Lagrange’s multipliers theorem applied to h provides the following proposition.

Proposition 3. x0 = C−1
u

tuC−1u
is the unique solution that minimizes f on H.

For example, for n = 2 the unique solution is given by x0 = V (X2)−Cov(X1,X2)
v e1 + V (X1)−Cov(X1,X2)

v e2,
where v = V (X2) − 2 Cov(X1,X2) + V (X1).

2.2. Minimization of f on H by the geometrical approach

We can recover the classical results on the portfolio with minimal variance and with allowed short-
selling by making use of an Euclidean interpretation. This portfolio is Px0 , where x0 is the orthogonal
projection onto H of the origin point. In order to compute x0, let us define the (n, n)-matrix

A =




c1,1 − c1,2 c1,2 − c2,2 · · · c1,n − cn,2
c1,1 − c1,3 c1,2 − c2,3 · · · c1,n − cn,3

...
...

...
c1,1 − c1,n c1,2 − c2,n · · · c1,n − cn,n

1 1 · · · 1



.

Theorem 1. The unique solution x0 that minimizes f on H is the vector whose coordinates in E are
given by the last column of the inverse of matrix A.

Proof. For every x in H, x is the orthogonal projection onto H of the origin point if and only if x is
orthogonal to H, that is to say, for every i ∈ [[2, n]], 〈x, e1 − ei〉 = 0.

Since 〈x, e1 − ei〉 =
∑n

j=1 xj〈ej, e1 − ei〉 =
∑n

j=1 xj(c1,j − ci,j), we deduce that x is the solution if

and only if Ax =
[
0n−1,1

1

]
, i.e. x = A−1

[
0n−1,1

1

]
, which means that the coordinates of x in E are given

by the last column of A−1. �

3. Minimization of f on the simplex K: not allowed short-selling

In this section, we solve the problem of portfolio optimization without short-selling, by giving an
explicit and calculable solution that doesn’t seem to appear in the literature.

3.1. Projections onto affine hyperplanes of Rm

Let us now consider J a subset of [[1, n]] and the vector subspace E = ⊕j∈JRej of Rn, identified with
Rm, where m = |J |. Let H ′ be the affine hyperplane of E defined by the equation

∑
j∈J xj = 0. Let

us fix i0 ∈ J and define J1 by J1 = J \ {i0}, and let us denote by J the complementary of J in [[1, n]].
Then, a basis of the vector hyperplane of E parallel to H ′ is B′ = (ei0 − ei / i ∈ J1).
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Let a ∈ Rn, and let us set B′ = (ci,j − ci0,j)(i,j)∈J1×J and B =
[

B′

11,m

]
, then

b′ =

( n∑

j=1

aj(ci,j − ci0,j)

)

i∈J1
and b =

[
b′

1

]
.

Theorem 2. The orthogonal projection of a onto H ′ is the vector x whose nonzero coordinates in E
are given by B−1b, i.e. (xi)i∈J = B−1b and (xi)i∈J = 0n−m,1.

Proof. For every x ∈ Rn, x is the orthogonal projection of a onto H ′ if and only if the three following
conditions hold

(i) for every j ∈ J , xj = 0,
(ii) x1 + . . . + xn = 1,
(iii) for every i ∈ J1, x− a is orthogonal to ei0 − ei.

Since 〈x− a, ei0 − ej〉 =
∑n

j=1(xj − aj)〈ej , ei0 − ei〉, we have 〈x − a, ei0 − ej〉 = 0 if and only if∑
j∈J xj〈ei − ei0 , ej〉 =

∑n
j=1 aj〈ei − ei0 , ej〉, i.e.

∑
j∈J xj(ci,j − ci0,j) =

∑n
j=1 aj(ci,j − ci0,j). �

3.2. The algorithm for computing any Euclidean distance to K from a point of Rn

We now propose a recursive algorithm1 to compute the point x0 realizing the distance to K from a
point a ∈ Rn. In his article [14], L.Condat gave a fast algorithm to project a vector onto a simplex.
However, his algorithm was made only for the usual Euclidean distance. Our algorithm can be used
for every Euclidean distance, and this is necessary for our purpose. The reader can also have a look at
the paper [15] about the projection onto a simplex.

Algorithm 1 Compute x the orthogonal projection of a onto K.

Require: (a, K)
1: if x belongs to K then
2: return x

3: else
4: if K is a 1-simplex (i.e. K possesses exactly 2 vertices) then
5: return the vertex that is the closest to x

6: else
7: Determine the hyperface K ′ of K that is the closest to x

8: Compute y the orthogonal projection of x onto H ′ (the affine subspace defined by K ′)
9: Apply recursively the algorithm to (y, K ′)

Proposition 4. Algorithm 1 ends.

Proof. This is straightforward since at each step of the algorithm the dimension of the simplex
decreases of one unit. �

Lemma 1. If x belongs to H \K, then the distance from x to K is realized in a point of the frontier
of K.

Proof. Let us proceed by contradiction by assuming that the distance from x to K is realized in a
point z in the interior of K. Let us denote by y the intersection of the line (x, z) with an hyperface of
K crossed by this line. Then, by Minkowski, we get ‖x− z‖ = ‖x− y‖ + ‖y− z‖ > ‖x− y‖, which is
absurd since z realizes the minimal distance from x to K. �

As a consequence, if x belongs to H \K, then the distance from x to K is the distance from x to
the hyperface of K that is the closest to x.

1A Python version of this algorithm is proposed in the appendix at the end of the paper.
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Theorem 3. Algorithm 1 is correct.

Proof. Let us prove by induction on the dimension of K that the algorithm provides us x0 ∈ K such
that d(a,K) = ‖−−→ax0‖.

• If K has dimension 1, the result is clear.
• Now assume that the algorithm is correct for every (n−1)-simplex. Let us consider K a n-simplex

(with n > 2), and prove that the algorithm is correct for K. Let x be the orthogonal projection of a
onto H.

— If x belongs to K, then x is the solution, and the algorithm is correct.
— If x does not belong to K, as n > 2, we consider the simplex K ′ defined above, the affine

subspace H ′ and y the orthogonal projection of x onto H ′. By induction hypothesis applied to y and
the (n− 1)-simplex K ′, the algorithm provides us x0 ∈ K ′ such that d(y,K ′) = ‖−−→y x0‖. In particular,
x0 belongs to K.

Let us now prove that d(a,K) = ‖−−→ax0‖. According to the Pythagorean theorem, as −→ax is orthogonal
to H, we have

d(a,K)2 = ‖−→ax‖2 + d(x,K)2 = ‖−→ax‖2 + d(x,K ′)2,

thanks to Lemma 1.
Moreover, as −→xy is orthogonal to H ′, we have

d(x,K ′)2 = ‖−→xy‖2 + d(y,K ′)2 = ‖−→xy‖2 + ‖−−→x0y‖2 = ‖−−→xx0‖2

since −→xy is orthogonal to −−→x0 y.
Finally, d(a,K)2 = ‖−→ax‖2 +‖−−→xx0‖2 = ‖−−→ax0‖2 as −→ax is orthogonal to −−→

xx0, hence d(a,K) = ‖−−→ax0‖
and the algorithm is correct for K. �

Remark 1. Let x be in H \K. Then the hyperface of K that is the closest to x is not necessarily
the hyperface of K obtained by suppressing the (or one) vertex of K that is the furthest from x.

According to Algorithm 1, finding the solution that minimizes f on K is now a straightforward
application of the following proposition.

Theorem 4. The unique portfolio that possesses the lowest risk is Px0 , where d(0,K) = ‖x0‖.

4. Application to portfolio optimization

Here we determine the portfolio with the lowest risk: we find the convex combination of CAC 40 stocks
(we use the abbreviations given in Table A at the end of the article) for which the variance is minimal2.
We use the mean and the standard deviation of monthly3 variation.

4.1. Portfolio optimization from 2007-04-23 to 2020-07-21

Here we consider the period from 2007-04-23 to 2020-07-21, that is to say we start from the highest
point of CAC 40 index. By using Algorithm 1, we determine the portfolio with allowed short-selling
that possesses the lowest risk: this is the linear combination given by Table 1, which also provides
the mean and the standard deviation of stocks’ rates of return. The mean of this portfolio’s monthly
variation is 0.44% and its standard-deviation 4.35%. We observe here that the linear combination
obtained is already a convex combination, which means that this portfolio is also the portfolio without
short-selling that possesses the lowest risk. In geometrical terms, this means that the orthogonal
projection of the origin point onto the hyperplane H already belongs to the simplex K.

2For this computation, we do not consider EL, GLE and WLN, for which we don’t have enough data.

3The French stock market’s month (that ends the third Friday in the month) is used.
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Table 1. Portfolio with allowed short-selling that possesses the lowest risk (in %).

Stock AI BN CA DSY ENGI HO ORA RMS SAN VIV
x0 7.28 22.69 3.90 12.63 2.41 3.81 21.05 8.96 16.57 0.70
Mean 0.73 0.18 −0.559 1.53 −0.43 0.53 −0.18 1.6 0.4 0.08
Std. Dev. 5.73 5.55 8.02 6.58 7.06 6.57 6.74 8.63 6.25 6.75

Table 2 and Figure 1 give the yearly rate of return of this portfolio. We notice that the portfolio is
more profitable and more regular than the index: indeed, its mean is 7.41% and its standard deviation
11.93%, whereas for the index, the mean is 1.12% and the standard deviation 19.61%. Moreover, the
rate of return of the portfolio is almost never negative. Finally, if we fix at 100 the value of CAC 40
index and portfolio on 2007-04-23, then on 2020-07-21, the value of CAC 40 index is 86.26 whereas the
value of the portfolio is 248.16.

Table 2. Yearly rate of return of the portfolio (in %).

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Porfolio’s r. r. 1.85 −23.04 5.09 12.84 −0.80 14.67 7.81 12.89 16.16 3.95 14.38 1.47 33.12 3.37

CAC 40’s r. r. −5.12 −43.87 22.87 0.34 −23.45 23.54 14.72 0.93 7.30 5.64 12.40 −14.65 30.33 −15.34
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Fig. 1. Portfolio optimization from 2007-04-23 to 2020-07-21 and yearly rate of return.

4.2. Portfolio optimization from 2009-01-19 to 2020-07-21

Here we consider the period from 2009-01-19 to 2020-07-21, that is to say we start from the lowest
point of CAC 40 index. The portfolio with allowed short-selling that possesses the lowest risk is given
by the following linear combination in Table 3. The mean of its monthly variation is 0.76% and its
standard-deviation 4.17%. As in previous section, Table 3 also provides the mean and the standard
deviation of stocks’ rates of return that appear in the results.

Table 3. Portfolio with allowed short-selling that possesses the lowest risk (in %).

Stock AI BN CA DSY ENGI HO OR ORA RI RMS SAN VIV
x0 10.70 28.25 5.42 20.91 −2.34 1.88 −20.66 19.75 −3.07 17.26 18.36 3.54
Mean 1.03 0.44 −0.13 1.93 −0.470 0.79 1.36 −0.18 1.0 1.86 0.64 0.37
Std. Dev. 5.36 5.34 7.97 6.00 7.09 6.48 5.42 6.77 5.93 7.44 6.03 6.77

Now, according to Algorithm 1, the portfolio without short-selling that possesses the lowest risk
is given by the convex combination in Table 4. The mean of its monthly variation is 0.87% and its
standard-deviation 4.22%. Let us note that some stocks that were in the linear combination of the
portfolio with allowed short-selling now disappear: the geometric explanation of this fact immediately
comes from Lemma 1.
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Table 4. Portfolio without allowed short-selling that possesses the lowest risk (in %).

Stock AI BN CA DSY HO ORA RMS SAN VIV
x0 6.17 19.22 3.43 17.37 2.96 17.15 15.60 16.73 1.37

The yearly rate of return of this portfolio is given by Table 5. Here again, as shown by this table
and Figure 2, the portfolio is more profitable and more regular than the index: its mean is 13.27% and
its standard deviation 11.99%, whereas for the index, the mean is 5.94% and the standard deviation
16.78%. Moreover, the rate of return of the portfolio is negative for only two years, and the absolute
value of these negative rates of return very small. Finally, if we fix at 100 the value of CAC 40 index
and portfolio on 2009-01-19, then on 2020-07-21, the value of CAC 40 index is 170.73 whereas the
value of the portfolio is 417.97.

Table 5. Yearly rate of return of the portfolio (in %).

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Portfolio’s r. r. 17.95 15.82 −1.49 27.80 5.76 7.87 23.81 −2.25 18.18 2.86 38.27 4.72

CAC 40’s r. r. 29.51 0.34 −23.45 23.54 14.72 0.93 7.30 5.64 12.40 −14.65 30.33 −15.34
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Fig. 2. Portfolio optimization from 2009-01-19 to 2020-07-21 and yearly rate of return.

5. Conclusions and perspectives

Thanks to our geometrical approach, we transformed the portfolio optimization problem into a problem
of computation of a distance to a simplex, where the distance is a Euclidean distance defined from
the covariance matrix of the stocks used. To solve this problem, we wrote an algorithm that can be
used for every Euclidean distance, and that provided us a method to determine the portfolio without
short-selling that possesses the minimal risk.

The good rate of return that we got when we applied our method to the example of the CAC 40
stocks can prompt us to use it in a more dynamic way for prediction algorithms. Moreover, it would
be very usefull to optimize the time complexity of the algorithm by reducing the number of cases
to be processed during the computation of the distance. It could also be fruitful to study how this
geometrical method can be used not only in finance, but in various areas where such optimization
problems occur.

Appendix — Python programs

Here we give a possible way to program Algorithm 1 in Python as well as the subroutine used to
compute an orthogonal projection.
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The function orth_proj(c,a,J) computes an orthogonal projection, where
— c is the covariance matrix,
— a is the point of which we want to compute the orthogonal projection,
— J is the list of indices of p vectors of E that define the affine subspace onto which we want to
project a.
def orth_proj(c,a,J):

p=len(J); n=len(c); i0=J[0]; L=list(set(range(n))-set(J)) #Complementary of J

Mpart1=np.array([[c[i,j]-c[i0,j] for j in J] for i in J[1:]])

Mpart2=np.ones((1,p))

M=np.concatenate((Mpart1,Mpart2),axis=0) #Matrix of the system

b=np.array([sum(a[j]*(c[i,j]-c[i0,j]) for j in range(n))for i in J[1:]]+[1])

sol=np.linalg.solve(M,b); x=np.zeros(n); x[J]=sol; return x #Solving

The function mini_dist_fct(c,a) finds the point that realizes the minimal distance from a to the
standard (n − 1)-simplex and also returns the square of this distance: this is a possible version of
Algorithm 1.
def mini_dist_fct(c,a):

#Scalar product

def phi(x,y):

return np.dot(x,np.dot(c,y))

n=len(c); dico={}

e=[np.array(j*[0]+[1]+(n-j-1)*[0]) for j in range(n)] #Canonical basis

#Recursive function mini_dist(c,a,J)

def mini_dist(c,a,J):

x=orth_proj(c,a,J) #Orthogonal projection of a

#Case 1: the orthogonal projection belongs to the simplex

if all(t>=0 for t in x):

return [x,phi(x-a,x-a)]

#Case 2: the orth. proj. doesn’t belong to the simplex (dim 1)

elif len(J)==2:

d0=phi(x-e[J[0]],x-e[J[0]]); d1=phi(x-e[J[1]],x-e[J[1]])

if d0<=d1:

return [e[J[0]],phi(e[J[0]]-a,e[J[0]]-a)]

else:

return [e[J[1]],phi(e[J[1]]-a,e[J[1]]-a)]

#Case 3: the orth. proj. doesn’t belong to the simplex (dim >1)

else:

#Looking for the hyperface that is the closest to x

s=J[0]

if str(set(J)-{s})+str(x) in dico:

delta=dico[str(set(J)-{s})+str(x)]

else:

delta=mini_dist(c,x,list(set(J)-{s}))

dico[str(set(J)-{s})+str(x)]=delta

d=delta[1]

for j in J[1:]:

if str(set(J)-{j})+str(x) in dico:

delta0=dico[str(set(J)-{j})+str(x)]

else:

delta0=mini_dist(c,x,list(set(J)-{j}))
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dico[str(set(J)-{j})+str(x)]=delta0

d0=delta0[1]

if d0<d:

s=j; d=d0

#Projection onto the simplex defined by the closest hyperface

J=list(set(J)-{s})

if str(set(J))+str(x) in dico:

delta=dico[str(set(J))+str(x)]

else:

delta=mini_dist(c,x,J); dico[str(set(J))+str(x)]=delta

x=delta[0]; return [x,phi(x-a,x-a)]

return mini_dist(c,a,list(range(n))) #Point realizing the minimal distance
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Table A. CAC 40 stocks.

Symbol Company Symbol Company
AC Accor SA ACA Credit Agricole S.A.
AI L’Air Liquide S.A. AIR Airbus SE
ATO Atos SE BN Danone S.A.
BNP BNP Paribas SA CA Carrefour SA
CAP Capgemini SE CS AXA SA
DG VINCI SA DSY Dassault Systemes SE
EL EssilorLuxottica Societe anonyme EN Bouygues SA
ENGI ENGIE SA FP TOTAL S.A.
GLE Societe Generale Societe anonyme HO Thales S.A.
KER Kering SA LR Legrand SA
MC LVMH Moet Hennessy - Louis Vuitton ML Cie Gle des Et. Michelin
MT ArcelorMittal OR L’Oreal S.A.
ORA Orange S.A. PUB Publicis Groupe S.A.
RI Pernod Ricard SA RMS Hermes International
RNO Renault SA SAF Safran SA
SAN Sanofi SGO Compagnie de Saint-Gobain S.A.
STM STMicroelectronics N.V. SU Schneider Electric
SW Sodexo S.A. UG Peugeot S.A.
URW Unibail-Rodamco-Westfield VIE Veolia Environnement S.A.
VIV Vivendi WLN Worldline

Новий геометричний метод оптимiзацiї портфеля

Бутiн Ф.

Université de Lyon, Université Lyon 1, CNRS, UMR5208, Institut Camille Jordan,
43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France

Запобiгання ризикiв вiдiграє важливу та центральну роль у прийняттi рiшень iнвес-
торами в процесi формування портфеля. У межах оптимiзацiї портфеля визначено
портфель, який має мiнiмальний ризик, використовуючи новий геометричний метод.
Для цього розроблено алгоритм, який дозволяє нам обчислити будь-яку евклiдову
вiдстань до стандартного симплексу. Завдяки цьому новому пiдходу можна розгляну-
ти випадок оптимiзацiї портфеля без коротких продажiв у цiлому, а також вiдновити
в геометричному виглядi добре вiдомi результати оптимiзацiї портфеля з дозволе-
ними короткими продажами. Потiм застосовано отриманi результати для того, щоб
визначити, яка опукла комбiнацiя акцiй CAC 40 має найнижчий ризик: не тiльки от-
римуємо дуже низький ризик порiвняно з iндексом, але також отримуємо коефiцiєнт
прибутковостi, який майже втричi кращий, нiж в iндекса.

Ключовi слова: оптимiзацiя портфеля без коротких продажiв, евклiдова вiд-
стань до стандартного симплексу, геометричний пiдхiд до оптимiзацiї портфеля,
геометричний алгоритм.
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