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With an increase of equipment parameters, such as the pressure of the sealing medium and
the speed of shaft rotation, the problems ensuring its hermetization efficiency are rising
up. In addition to hermetization itself, the sealing system affect the overall operational
safety of the equipment, especially vibratory. Groove seals are considered as hydrosta-
todynamic supports capable of effectively damping rotor oscillations. To determine the
dynamic characteristics, models of grooved seals and single-disc rotors with grooved seals
are examined. The obtained analytical dependences for computation of dynamic charac-
teristics for the hydromechanical rotor-seals system, describing radial-angular oscillations
of the centrifugal machine rotor in groove seals are presented as well as the formulas for
computation of amplitude frequency characteristics. An example for the computation
dynamic characteristics of one of the centrifugal machine rotor models is drawn.
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1. Introduction

The distinguishing characteristics of centrifugal machine is that the tasks of vibration reliability and
sealing are interrelated and, in most cases, can be satisfactorily accomplished through the correct
choice of the groove seal construction. Therefore, while choosing the construction of groove seals,
besides their designated purpose – to reduce volume losses, it is necessary to ensure the required
vibration characteristics of rotor, that is also a very important function.

Noncontact seals, on which a huge differential pressure is throttled, can play the role of static,
and with the right design approaches, dynamic supports. The last fact must be taken into account as
designing critical power equipment [1].

In aviation and space technology, where, in addition to high sealed pressures and rotational speeds
of rotors, there are great restrictions on the weight and dimensions of equipment, the use of seals as
dynamic supports is especially important. When properly designed, noncontact seals can stiffen a
flexible rotor to provide the required vibration reliability.

Current approaches for refinement of mathematical models of oscillatory systems according to
experimental data are presented in the work [2]. The monograph [3] evaluates coefficients of the math-
ematical models for oscillatory systems, including rotary systems for multistage centrifugal machines.
The article [4] addresses the phenomena of rotor rotation stability loss at rolling bearing.

Modern approaches in the linear and non-linear rotor dynamics and their practical applications are
presented in the paper [5]. The work [6] provides an estimation of segment bearing stiffness with the
balancing procedure for the flexible rotors of turbocharge units in the accelerating-balancing stand.
Current methods for determination of active magnetic bearings stiffness and damping identification
from frequency characteristics of control systems were introduced in [7]. Application of the finite
element analysis for stiffness and critical speed calculation of a magnetic bearing-rotor system for
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electrical machines was described in the paper [8]. Article [9] provides stability and vibration analysis
of a complex flexible rotor bearing system. A phenomenon of subharmonic resonance of a symmetric
ball bearing-rotor system is investigated in the paper [10]. The paper [11] studies models for the
critical frequencies of the centrifugal compressor rotor with taking into account the non-linear stiffness
characteristics of bearings and seals.

As indicated in [12], energy of volumetric losses can be converted into net energy, if the groove seals
are used simultaneously as hydrostatic bearings, that are able to have not only high radial rigidity but
also to effectively damp the rotor fluctuations to the acceptable level even if there is a significant
disbalance. This effect is especially considerable if there are existing steep velocity and pressure
gradients, which are peculiar to close gaps of the groove seals, on which high pressure differentials are
chocked and one of the surfaces belongs to rotor that both rotates and vibrates [13].

The dynamic characteristics of groove seals as intermediate supports have been studied in the
paper [14].

However, the problems of rotor dynamics in groove seals are slightly neglected as to solve them it
is necessary to account for the hydrodynamic characteristics of groove seals. And this is a separate
problem in the hydrodynamics of three-dimensional unsteady viscous fluid flows in annular channels,
whereof surfaces rotate and simultaneously perform radial-angular oscillations.

Since the problems of the rotor dynamics without groove seals have been mainly solved, this paper
focuses more on the analysis of oscillatory processes caused by the hydrodynamic characteristics of
seals.

2. Groove seal model

Fig. 1 shows a model of the groove seal that is an annular throttle formed by inner cylinder (shaft)
with a small taper angle ϑA and outer cylinder (sleeve) with a taper angle ϑB ; total taper angle of the
channel ϑ0 = ϑB − ϑA. Taper parameter of the channel
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Fig. 1. Model of the groove seal.

Shaft and bushing ro-
tate around their own axes
with the frequencies of
their own rotation ω1, ω2.
The axes themselves rotate
around the fixed center O
with precession frequencies
Ω1, Ω2, and also perform
radial and angular oscilla-
tions.

Thus, when developing
groove seals, it is neces-
sary to consider not only
their direct purpose to re-
duce volumetric losses, but
also their equally impor-
tant function, which is to
provide the necessary vi-
bration characteristics of
the rotor.
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3. Radial forces and moments in groove seals

The paper has provided an assessment of the force characteristics for laminar and turbulent flow
regimes taking into consideration local resistances and in view of flow swirl at the gap inlet [14].

Projections onto the fixed coordinate axes of individual components of hydrodynamic forces and
moments

Fs(x,y) = Fg(x,y) + Fd(x,y) + Fp(x,y),Ms(x,y) = Mg(x,y) +Md(x,y) +Mp(x,y),

arising in one groove seal and referred to the rotor mass, are as follows:
– forces and moments due to fluid inertia:

Fgx
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ẏ − κωaẋ− 2
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(2)

– forces and moments due to displacement flow:
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θ0 (ẋ+ κωay) +

l

12

(
κωaϑx − ϑ̇y

)]
;

(4)

– forces and moments due to drop in pressure throttled on the groove seal ∆p0 (pressure flow):
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(6)

Let us move on in formulas (1) – (6) to dimensionless coordinates and reduced forces and moments
also introducing the additional representations

Ki =
12q0

Hl (2 − n)
, j =

ml2

60I
,

where Ki is the parameter considering local component of fluid inertia force; j is dimensionless pa-
rameter characterizing the hydrodynamic moments in the groove seal: it converts the radial rigidity
coefficients kg, kd, kp into the corresponding angular rigidity coefficients kgj, kdj, kpj.
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In our notations

kp =
k′p
mH

, M∗
px =

Mpxl

2HI
= 10kpjχmθx.

The initial swirl of the flow is estimated by the coefficient

κ =
ωc
ωa
,

where ωa = 0.5(ω1 + ω2), ωc is the average angular velocity of the fluid in the channel.
Further the rotor rotating in two symmetrically located groove seals with fixed outer races (ω2 = 0),

is considered, therefore, ωa = 0.5ω1 = 0.5ω, where ω1 = ω is rotor speed.
The values of forces and moments will be doubled by the number of seals. For convenience of further

transformations, the components will be grouped according to their dependence on the generalized
coordinates (F ∗

3 ,M
∗
3 ), generalized velocities (F ∗

2 ,M
∗
2 ) and generalized accelerations (F ∗

1 ,M
∗
1 ):
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Let us introduce notations of the doubled force coefficients
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Expressions of relative forces and moments for two groove seals now become:
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1x = a11üx, −F ∗

1y = a11üy, −M∗
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(9)
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4. The models of rotors

In the models of rotors of single-stage pumps, impellers are situated between two identical seals.
Two models of single-disk rotor: with the disk between fixed bearings (Fig. 2a) of asymmetrical

(P-1 model), symmetrical l1 = l2 (Р-1с model) and overhung (Fig. 2b, P-2 model) are considered.
Identical groove seals are situated from the both sides of the disk (impeller).
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Fig. 2. Models of single-disk rotors in groove seals: а — with
a disk between the bearings (Р-1, Р-1с models); b — overhung
(Р-2 model) with mass m, radius R and effective thickness be.

The first model imitates the rotor
of single-stage pump with double-entry
impeller and the second one – the rotor
of overhang pump.

In the both models’ radial displace-
ments of disk are accompanied with its
rotation in the plane of defected shaft
axis. Inertial resistance to rotation is
characterized with the corresponding
gyroscopic disk moment. Rotor mass

is concentrated in the center of disk masses and a weightless elastic shaft rotates in fixed bearings.
The rotor is statically and dynamically unbalanced: mass center is displaced from the mechanical

center for the amount of eccentricity a(ax, ay) that stands for static unbalance. The main central axes
of disk inertia due to fit tilt or other instrument accuracy are deviated from the principal shaft axes
of section (main flexural shaft axes) to angles γx, γy, characterizing dynamic unbalance of the rotor.
Unbalance parameters are considered to be preset small values.

For the symmetrical statistically unbalanced rotors, for example, rotors of double inlet impeller
pump, radial oscillations are predominant. Small angular oscillations are caused by unavoidable dy-
namic unbalance and probable disturbance of the rotor symmetry in regard to the transverse vertical
plane passing through the center of masses. In this case, useful preliminary results can be received,
when considering only radial oscillations. Herewith, the coefficients of hydrodynamic forces should be
doubled (according to the number of seals).

The another extreme case of predominantly angular vibrations is possible for a symmetrical stati-
cally balanced rotor under the influence of dynamic unbalance. In this case, it is necessary to double
the hydrodynamic moments. Besides, the radial hydrodynamic forces F ∗

su arising when the rotor axis
is skewed towards to the seal axis are different in value due to the difference in eccentricities, radial
speeds and accelerations. Therefore, they create an additional moment relative to the impeller center.
The azimuth angles in the both seals with equally spaced bushings remain the same, therefore, the
components of forces due to the angular vibrations (with coefficients αi), do not create additional
moments.

More details on the additional moments from elastic forces one can find in the paper [14]. For
the right and left seals, dimensionless generalized coordinates, velocities and accelerations of the shaft
center, which will be needed to calculate the moments of inertial, dissipative and gyroscopic forces:

u′x = ux + ∆ux, u′′x = ux − ∆ux, ∆ux =
1

H
lcϑy = 2

lc
l
θy;

u′y = uy − ∆uy, u′′y = uy + ∆uy, ∆uy =
1

H
lcϑx = 2

lc
l
θx;

ü′x = üx + ∆üx, ü′′x = üx − ∆üx, ∆üx = 2
lc
l
θ̈y;

ü′y = üy − ∆üy, ü′′y = üy + ∆üy, ∆üy = 2
lc
l
θ̈x.

(10)

Correlation θx,y = ϑx,yl/(2H) is used here. The centripetal components are not indicated in the
formulas for accelerations, since they are directed along the rotor axis and do not affect its radial-
angular vibrations.
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Based on (5), the dimensional forces in the right F ′
3 and left F ′′

3 seals are as follows:

F ′
3x = −mHa31

2
(ux + ∆ux) = −F3x − ∆F3x,

F ′′
3x = −a31

2
mH (ux − ∆ux) = −F3x + ∆F3x,

F ′
3y = −mHa31

2
(uy − ∆uy) = −F3y + ∆F3y,

F ′′
3y = −a31

2
mH (uy + ∆uy) = −F3y − ∆F3y,

∆F3x = a31Hm
lc
l
θy, ∆F3y = a31Hm

lc
l
θx.

Additions to the forces are equal in value and oppositely directed, so their total projections on the
corresponding axes are equal to zero and do not affect the radial vibrations.

Additional moments from the elastic forces are as follows:

∆M3x = −2lc∆F3y = −2a31Hm
l2c
l
θx, ∆M3y = −2lc∆F3x = −2a31Hm

l2c
l
θy,

and after dividing by the equatorial moment of inertia and multiplying by l/(2H),

∆M∗
3x =

∆M3xl

2HI
= −a31jcθx, ∆M∗

3y =
∆M3yl

2HI
= −a31jcθy, jc =

ml2c
I
.

Similarly, additional moments of other components of the radial force are calculated, due to the
difference in the generalized coordinates, velocities and accelerations (7) of the shaft centers in the
right and left seals:

∆M∗
1x = −a11jcθ̈x, ∆M∗

1y = −a11jcθ̈y, ∆M∗
2x = −a21jcθ̇x, ∆M∗

2y = −a21jcθ̇y,

∆M∗
4x = −a41jcθ̇y, ∆M∗

4y = a41jcθ̇x, ∆M∗
5x = −a51jcθy, ∆M∗

5y = a51jcθx.

The given additions depend on the angular coordinates, so they should be introduced into the
moment components determined by the angles of the disk rotation, angular velocities and accelerations.
Having denoted total components of the hydrodynamic moment in two seals

Mi(x,y) = M∗
i(x,y) + ∆M∗

i(x,y), i = 1, 2, 3,

taking into consideration (2) – (9) one can obtain:

−M1x = a11 (j + jc) θ̈x, −M1y = a11 (j + jc) θ̈y;

−M2x = 15j (α2u̇x + α4u̇y) + (2kdj + a21jc) θ̇x + a41 (j + jc) θ̇y,

−M2y = 15j (−α4u̇x + α2u̇y) − a41 (j + jc) θ̇x + (2kdj + a21jc) θ̇y;

−M3x = j

(
−15α3ux + 5α5

N∆χ

1 + 2∆χ
uy

)
− a31

(
10χm

θ0 +Nχm
j − jc

)
θx + a51 (j + jc) θy,

−M3y = j

(
−5α5

N∆χ

1 + 2∆χ
ux − 15α3uy

)
− a51 (j + jc) θx − a31

(
10χm

θ0 +Nχm
j − jc

)
θy.

It should be noted that additional moments were found for seals symmetrically located regarding
the mass center of the impeller. If this symmetry is violated, values ∆ux,y (10) will slightly change,
causing a change in the numerical coefficient in expression of the parameter jc.

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 422–431 (2021)



428 Shevchenko S. S.

5. Joint radial-angular oscillations of the rotor in groove seals

The considered rotor in groove seals is an eighth-order oscillatory system with four generalized coor-
dinates: ux, uy, θx, θy. The system oscillates about a stable equilibrium position, so the roots of the
characteristic equation are four pairs of complex adjoined numbers.

The pressure developed by the centrifugal stage is throttled on the front groove seal of the stage.
This pressure is proportional to the square of the impeller rotary velocity. These conditions are peculiar
to centrifugal machines. This affects the form of frequency characteristics, which are dependencies
of natural frequencies on the rotary speed. In this case, the pressure differential ceases to be an
independent external influence, it is associated with the additional ratio ∆p0 = Bω2. As a result, only
the rotary speed is external influence, and self-toughening effect of the rotor is enhanced.

Forced joint radial-angular oscillations of the rotor at a constant pressure drop across the seals are
described by equations [14],

a1ü+ a2u̇+ a3u∓ i (a4u̇+ a5u)ω −
(
α2θ̇ + α3θ

)
ω

∓i
(
α4θ̇ + α5θ − α0θ

)
= ω2a∗ = ω2 |a∗| e±iωt,

b1θ̈ + b2θ̇ + b3θ ∓ i
(
b4θ̇ + b5θ

)
ω + (β2u̇− β3u)ω

∓i (β4u̇+ β5u+ β0u) = (1 − j0)ω2γ∗ = (1 − j0)ω2 |γ∗| e±iωt.

(11)

Using standard programs, one can immediately find numerical solution of these equations. However,
the traditional described approach makes it possible to estimate the influence of the various forces and
moments on amplitudes and phases via their analytical expressions (by evaluating the coefficients of
the proper operator and operators of external influences).

6. Determination of the amplitude and phase frequency characteristics

Substituting the solution of equations (11) in the form

u = uae
i(ωt+ϕu) = ũeiωt,

θ = θae
i(ωt+ϕϑ) = θ̃eiωt,

we shall obtain a system of algebraic equations for complex amplitudes A and Γ:

[
−a1ω2 + a3 + a4ω

2 + i (a2 − a5)ω
]
ũ−

[
(α3 − α4)ω + i

(
α2ω

2 + α5 − αa
)]
θ̃ = Aω2,

[
− (β3 − β4)ω + i

(
β2ω

2 − β5 − βa
)]
ũ+

[
−b1ω2 + b3 + b4ω

2 + i (b2 − b5)ω
]
θ̃ = Γω2.

(12)

After transformation to dimensionless frequencies ω̄ = ω/Ωu0 and introduction of some notations,
the equations (12) take the form:

(U11 + iV11) ũ+ (U12 + iV12) θ̃ = Aω̄2,

(U21 + iV21) ũ+ (U22 + iV22) θ̃ = Γω̄2.
(13)

Here U11 + iV11, U22 + iV22 are proper operators of the independent radial and angular oscillations
correspondingly. Cross sectional operators U12 + iV12, U21 + iV21 characterize the influence of angular
oscillations on radial and the effect of radial on angular, i.e., interconnection of these oscillations.

From the system of non-homogenous algebraic equations (13) after a series of transformations can
be obtained the amplitudes and phases expressed in terms of external disturbances:
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u0 = ω̄2

√
(AU22 − ΓU12)2 + (AV22 − ΓV12)2

U2
0 + V 2

0

,

θa = ω̄2

√
(ΓU11 − AU21)2 + (ΓV11 − AV21)2

U2
0 + V 2

0

,

ϕu = − arctan
(AU22 − ΓU12)V0 − (AV22 − ΓV12)U0

(AU22 − ΓU12)U0 + (AV22 − ΓV12)V0
,

ϕϑ = − arctan
(ΓU11 − AU21)V0 − (ΓV11 − AV21)U0

(ΓU11 − AU21)U0 + (ΓV11 − AV21)V0
.

(14)

1

2

3

0
10 30 40

0.05

0.1

20

1
2

3

0
10 20 30 40

1

2

4

3

c

b

a

1

2

3

0
5 10 15

0.05

0.1
1

2

3

0
5 1510

2

4

1

2

3

0
2 4 6 8 10

0.05

0.1

0.15

uaA

1

2

3

0
2 4 6 8 10

2

4

6

uaA

uaA

ϑaA

ϑaA

ϑaA

1

2

3

0
10 30 40

0.05

0.1

20

1
2

3

0
10 20 30 40

1

2

4

3

c

b

a

1

2

3

0
5 10 15

0.05

0.1
1

2

3

0
5 1510

2

4

1

2

3

0
2 4 6 8 10

0.05

0.1

0.15

uaA

1

2

3

0
2 4 6 8 10

2

4

6

uaA

uaA

ϑaA

ϑaA

ϑaA

ω2ω2

ω2ω2

ω2ω2

ω2ω2

ω2ω2

ω2ω2

Fig. 3. Amplitude frequency characteristics as a re-
sponse to statistic unbalance, model Р-1: a – ∆p0 =
1.5 MPa = const, b – ∆p0 = 4 MPa = const, c –

∆p0 = 13.3 MPa = const.

Fig. 4. Amplitude frequency characteristics as a re-
sponse to dynamic unbalance, model Р-1: a – ∆p0 =
1.5 MPa = const, b – ∆p0 = 4 MPa = const, c –

∆p0 = 13.3 MPa = const.

Using formulas (14), one can build amplitude frequency characteristics as amplitude ratio of the
corresponding oscillations to the amplitudes of external excitements:

Aua =
uaa
A
, Aϑa =

θaa
A
, Auγ =

uaγ
Γ
, Aϑγ =

θaγ
Γ
.

Numerical calculations were carried out for the rotor model with a disc between the bearings.
The groove seals with three taper parameters were considered: θ0 = −0.3; 0; 0.3. Diagrams for these
parameters in Figs. 3, 4 are designated respectively by numbers 1, 2, 3. Calculations were carried out
for the constant pressure differences ∆p0 = (1.5; 4.0; 13.3) MPa. The following values of unbalance
were considered in the calculations: A = a∗ = a/H = 0.05, a = 12.5µm, aωn = 3.75 mm/s.

The obtained dependences are confirmed by the results of the experimental studies, published
works [1, 5, 12, 13].
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7. Conclusions

Based on the study of hydromechanical model of groove seal and models of rotors in groove seals,
analytical dependences that describe the radial-angular vibrations of the rotor are obtained.

Force coefficients of groove seals are determined by geometric (clearance, radius, length, taper,
shape of the input edges) and operational (pressure drop, operating speed range, physical properties of
the pumped medium) parameters. A purposeful choice of these parameters can influence the vibration
state of the rotor and the machine itself. An important feature of centrifugal machines is that the
pressure drops that throttled on the groove seals are proportional to the rotor speed. This leads to the
effect of the rotor self-toughening, and to the fact that in most cases there are no critical frequencies.
Self-toughening is enhanced by the gyroscopic moments of groove seals, and, for rotors of a disk design,
by the gyroscopic moment of the disk.

This is especially important for machines with high parameters. For example, in space technology,
where high shaft speeds and sealing pressure must be provided in combination with the requirement to
minimize the weight and dimensions of the unit. That is, the initially “flexible” in the dynamic sense
rotor, in combination with properly designed seals, becomes “tough”.

The problems of rotor dynamics are of great practical importance, and the range of these problems
is unlimited, as is the unlimited number of constructive types of rotary machines, features of rotor
designs, and the conditions for their operation. Use of numerical methods is very promising for solving
problems of joint radial-angular oscillations of the rotor, that takes into account all hydrodynamic
forces and moments arising in groove seals.
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Математичне моделювання ущiльнень роторiв вiдцентрових
машин з метою оцiнки їх впливу на динамiчнi характеристики

Шевченко С. С.

Iнститут проблем моделювання в енергетицi iм. Г. Є. Пухова,
вул. Генерала Наумова, 15, Київ-164, 03164, Україна

З ростом параметрiв обладнання, таких як тиск ущiльнюваного середовища i швид-
кiсть обертання ротора, зростають i проблеми, пов’язанi iз забезпеченням ефектив-
ностi його герметизацiї. Крiм власне герметизацiї системи ущiльнення впливають на
загальну експлуатацiйну безпеку обладнання, особливо вiбрацiйну. Щiлиннi ущiль-
нення розглядаються як гiдростатодинамiчнi опори, здатнi ефективно демпфувати
коливання ротора. Для визначення динамiчних характеристик розглянуто моделi щi-
линного ущiльнення та однодискових роторiв з щiлинними ущiльненнями. Наведено
отриманi аналiтичнi залежностi для розрахунку динамiчних характеристик гiдроме-
ханiчної системи ”ротор – ущiльненняєє, що описують радiально-кутовi коливання
ротора вiдцентрової машини в щiлинних ущiльненнях, а також формули для розра-
хунку амплiтудних частотних характеристик. Наведено приклад розрахунку дина-
мiчних характеристик однiєї з моделей ротора вiдцентрової машини.

Ключовi слова: ущiльнення-опори, математична модель, радiально-кутовi коли-
вання, частотнi характеристики.
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