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The aim of this work is to study an inverse problem for a frictional contact model for lock-
ing material. The deformable body consists of electro-elastic-locking materials. Here, the
locking character makes the solution belong to a convex set, the contact is presented in the
form of multivalued normal compliance, and frictions are described with a sub-gradient
of a locally Lipschitz mapping. We develop the variational formulation of the model by
combining two hemivariational inequalities in a linked system. The existence and unique-
ness of the solution are demonstrated utilizing recent conclusions from hemivariational
inequalities theory and a fixed point argument. Finally, we provided a continuous depen-
dence result and then we established the existence of a solution to an inverse problem for
piezoelectric-locking material frictional contact problem.
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1. Introduction

Recently, the theory of variational and hemivariational inequalities has become more attractive in the
mathematical and physics domain. This type of inequality was first introduced by Panagiotopolous in
1980 to generalize variational inequalities for non-convex and non-monotone operators see [1]. Based on
the generalized gradient of Clarke [2], it is used to study engineering problems involving non-smooth,
non-monotone, and multivalued functionals, e.g. in the variational formulation of mechanical problems
whenever nonconvex energy functionals (non-smooth constitutive laws) are involved [3, 4]. However,
more of their mathematical and applied developments can be found in [5–7] and the reference therein.
In the last years, inverse problems have grown in popularity as a subject of applied mathematics with
numerous practical applications [8–12]. The goal of this research is to look into the inverse problem of
identifying parameters in a hemivariational inequality. On another side, the theory of locking materials
was firstly discussed by Prager [13,14]. We consider elastic ideally locking materials, as defined in [15].
Then, we shall deal with piezoelectric materials for which the constitutive laws are given as follows

σ ∈ E(l, ε(u)) − BT (l, E(ϕ)) + ∂IB(l, ε(u)) in Ω, (1)

D ∈ B(l, ε(u)) + β(l, E(ϕ)) + ∂IC(l, E(ϕ)) in Ω, (2)

where ∂IB : L× S
d −→ 2S

d
and ∂IC : L×L2(Ω) −→ 2L

2(Ω) stands for the subdifferential, respectively,
of the indicators functions of sets B and C, given by

IB(l, ε) =

{
0 if ε ∈ B,
+∞ if ε 6∈ B, IC(l, ψ) =

{
0 if ψ ∈ C,
+∞ if ψ 6∈ C.
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The physics point of view of locking materials can be found in [16]. The sets B ⊂ S
d and C ⊂ L2(Ω)

design the locking constraints and define the properties of the materials. Moreover, these sets have
many forms, see [16]. In this paper, we discuss the perfectly locking materials forms, for which the
sets B and C are given by

B =
{
ε ∈ S

d : Q1(ε) 6 0
}
, C =

{
ψ ∈ L2(Ω): Q2(ψ) 6 0

}
, (3)

where the locking functions Q1 : S
d −→ R and Q2 : L

2(Ω) −→ R are convexes continuous functions
verifying the condition Qi(0) 6 0 for i = 1, 2. To study these problems, we consider the following
abstract variational-hemivariational inequality, which has been discussed in [17].

Problem (P). Given l ∈ L, find u = u(l) ∈ K such that

〈A(l, u) − f(l), v − u〉X + j0(l, u, u; v − u) > 0, ∀v ∈ K. (4)

where A : L × X → X∗ is an operator from a Banach space X to its dual X∗, f : L → X∗ and
J : L × X × X → R are two real valued functions, K is a subset of X and 〈·, ·〉 denotes the duality
pairing of X and X∗. For z ∈ X fixed, the notation J0(l, z, u; v) represents the generalized directional
derivative of the function J(l, z, ·) at u ∈ X in the direction v ∈ X. For existence and uniqueness of a
solution to inverse problems (P ) have been studied by [18]. To apply the obtained result on Problem
(P ), the contact problem with piezoelectric locking materials is considered. The novelty of this paper
is study of the existence and uniqueness solution of a static frictional contact problem electro-elastic-
locking materials and also proof of Lipschitz continuous dependence of this solution. Furthermore, we
study an inverse problem for the frictional electro-elastic contact problem and show that it possesses
a solution.

The paper is structured as follows. In Section 2, we introduce the mathematical model of frictional
contact for locking materials, for example, we consider a static electroelastic-locking materials contact
problem in which the frictional contact with a conductive foundation. There are described the equations
and boundary conditions, list the data assumption on the data and derive formulation variational is
in a form of a coupled system of two hemi-variational inequalities. Section 3 is devoted to study of the
existence and unique solution of this problem. Moreover, we proved Lipschitz continuous dependence
of solution of this model and used this dependence result to study the solvability of the inverse problem
for piezoelectric-locking material frictional contact problem.

2. Contact problem for piezoelectric-locking material

In this section, there is discussed a static contact problem for a nonlinear electro-elastic and locking
material body which is described by unilateral constraints with multi-valued normal compliance func-
tion, and non-monotone multi-valued friction condition with slip dependent coefficient. We describe
the physical setting of the problem and we provide its classical variational-hemivariational formulation,
which is a system of coupled hemi-variational inequalities.

There is considered a piezoelectric-locking material body that occupies the domain Ω ⊂ R
d, d ∈

{2, 3} with Lipschitz boundary Γ = ∂Ω and a unit outward normal ν at Γ. Body forces f0 and volume
free electric charges q0 act on the body. It is also constrained mechanically and electrically on Γ:
to describe these constraints, let consider three open and measurable parts Γ1, Γ2 and Γ3 such that
Γ1 ∪ Γ2 ∪ Γ3 = Γ and meas(Γ1) > 0, on the one hand, and a partition of Γ1 ∪ Γ2 into two measurable
parts Γa and Γb such that meas(Γa) > 0, on the other hand.

The space of second order symmetric tensors on R
d is denoted by S

d, while · and ‖ ·‖ represent the
inner product and the associated Euclidean norm on R

d and S
d given for all u, v ∈ R

d and σ, τ ∈ S
d by

u · v = ui vi, ‖v‖ = (v · v)1/2 and σ · τ = σij τij , ‖τ‖ = (τ · τ)1/2.
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The normal and tangential components of the displacement vector v ∈ R
d and the stress tensor σ ∈ S

d

on the boundary Γ are given by

vν = v · ν, vτ = v − vνν and σν = (σν) · ν, στ = σν − σνν.
Then, the classical formulation of the frictional electro-elastic-locking material contact problem is as
follows.

Problem (P). Given l ∈ L, find a displacement u = u(l) : Ω −→ R
d, an electric potential ϕ =

ϕ(l) : Ω→ R such that

σ ∈ E(l, ε(u)) − BT (l, E(ϕ)) + ∂IB(l, ε(u)) in Ω, (5)

D ∈ B(l, ε(u)) + β(l, E(ϕ)) + ∂IC(l, E(ϕ)) in Ω, (6)

Div σ + f0(l) = 0 in Ω, (7)

divD − q0(l) = 0 in Ω, (8)

u = 0 on Γ1, (9)

σν = f2(l) on Γ2, (10)

ϕ = 0 on Γa, (11)

D · ν = qb(l) on Γb, (12)
{
uν 6 g0 , σν + γ 6 0 , (σν + γ)(uν − g0) = 0,
γ ∈ wν(l, ϕ− ϕ0) ∂jν(l, uν − g0),

on Γ3, (13)

− στ ∈ wτ (l, ϕ− ϕ0, uν − g0)µ(‖uτ‖) ∂jτ (l, uτ ) on Γ3, (14)

D · ν ∈ we(l, uν − g0) ∂je(l, ϕ− ϕ0) on Γ3. (15)

Here, (5), (6) represent the electro-elastic-locking materials constitutive law of the material see [19,20]
for more details, where E = (Eijkl) is the elastic tensor, B = (Bijk) and β = (βij) are the piezoelectric
and the electric permittivity tensors. In addition, ε(u) = (∇u+(∇u)T )/2 is the linearized strain tensor,
E(ϕ) = −∇ϕ is the electric field and BT = (Bkij) is the transpose tensor of B. Equations (7), (8)
represent the equilibrium equations for the stress and the electric displacement fields. Moreover, (9)–
(12) are the mechanical and electrical boundary conditions, the relation (13) represents the multivalued
normal compliance contact condition with unilateral constraints of Signorini type coupled with the
electric potential through the stiffness coefficient wν which depends on the difference between the
electric potential on the body and the electrically conductive foundation and g0 represents the gap
function between the body and the foundation on the contact surface. Condition (14) represents the
friction law, the function wτ models the influence of the electric potential and normal displacement
on the frictional contact, and µ denotes a positive function called the coefficient of friction. Finally,
relation (15) represents a regularized condition for the electrical contact on Γ3 in which ϕ0 represents
the electric potential of the foundation and we, je are given functions.

We explore the following spaces in order to obtain the variational formulation of Problem (P)

H = L2(Ω)d, H1 = H1(Ω)d, H =
{
τ = (τij) ; τij = τji ∈ L2(Ω)

}
,

which are real Hilbert spaces for the following inner products and their associated norms

(u, v)H =

∫

Ω
uivi dx, (u, v)H1 = (u, v)H + (ε(u), ε(v))H , (σ, τ)H =

∫

Ω
σijτij dx.

Let introduce the following variational subspaces

V = {v ∈ H1, v = 0 on Γ1},
W = {ψ ∈ H1(Ω), ψ = 0 on Γa},
K1 = {v ∈ V, vν 6 g0 on Γ3}.
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Over V and W , we look at the inner products and Euclidean norms that go along with them

(u, v)V = (ε(u), ε(v))H , ‖u‖V = (u, u)
1/2
V , (16)

(ϕ,ψ)W = (∇ϕ,∇ψ)H , ‖ϕ‖W = (ϕ,ϕ)
1/2
W . (17)

and sets with locking constraints

V1 = {v ∈ V, ε(v(x)) ∈ B a.e. x ∈ Ω}, (18)

V2 = {ξ ∈W,E(ξ(x)) ∈ C a.e. x ∈ Ω}. (19)

Since V is a closed subspace of H1 and meas(Γ1) > 0, the Korn’s inequality holds and there exists a
constant ck > 0 depending on Ω and Γ1 such that

‖v‖H1 6 ck‖ε(v)‖H, ∀v ∈ V. (20)

Hence, the norms ‖ · ‖H1 and ‖ · ‖V are equivalent on V and then (V, ‖ · ‖V ) is a real Hilbert space.
Furthermore, by Sobolev trace theorem, there exists a constant c0 > 0 depending on Ω, Γ3 and Γ1

such that
‖v‖L2(Γ)d 6 c0‖v‖V , ∀v ∈ V. (21)

Since meas(Γa) > 0, the Friedrichs–Poincaré inequality holds and thus

‖ψ‖H1(Ω) 6 cF ‖∇ψ‖H , ∀ψ ∈W, (22)

where a constant cF > 0 depends only on Ω and Γa. It follows from (17) and (22) that the norms
‖ · ‖W and ‖ · ‖H1(Ω) are equivalent on W , and so (W, ‖ · ‖W ) is a real Hilbert space. In addition, the
Sobolev trace theorem implies that there exists c1 > 0 depending on Ω, Γa and Γ3 such that

‖ξ‖L2(Γ3) 6 c1 ‖ξ‖W , ∀ ξ ∈W. (23)

From the first constitutive law (5) of locking piezoelectric materials, one can obtain

σ = E(l, ε(u)) − BT (l, E(ϕ)) + ζ(l, u) where ζ(l, u) ∈ ∂IB(l, ε(u)) in Ω.

Hence, for all u, v ∈ V1, we get 〈ζ(l, u), (ε(v) − ε(u))〉 6 IB(l, ε(v)) − IB(l, ε(u)) 6 0, and then

(σ, ε(v) − ε(u))H 6 (E(l, ε(u)) − BT (l, E(φ)), ε(v) − ε(u))H. (24)

Also, from the second constitutive law (6) of locking piezoelectric materials, it follows

D = B(l, ε(u)) + β(l, E(ϕ)) + p(l, ϕ) where p(l, ϕ) ∈ ∂IC(l, E(ϕ)) in Ω.

Then, for all ϕ, φ ∈ V2, we have 〈p(l, ϕ), E(φ) − E(ϕ)〉 6 IC(l, E(φ)) − IC(l, E(ϕ)) 6 0, and thus

(D,∇ϕ−∇φ)L2(Ω) 6 (B(l, ε(u)) + β(l, E(φ)),∇ϕ −∇φ)L2(Ω). (25)

The study of Problem (P) requires the following hypotheses.

(A1) The tensor E : Ω× L× S
d −→ S

d is such that
(i) E(·, l, ξ) is measurable on Ω for all l ∈ L and all ξ ∈ S

d,
(ii) E(y, l, ·) is continuous on S

d for all l ∈ L and all y ∈ Ω,
(3i) there exist LE > 0 such that for all l1, l2 ∈ L, ξ1, ξ2 ∈ S

d and y ∈ Ω,

‖E(y, l1, ξ1)− E(y, l2, ξ2)‖ 6 LE(‖l1 − l2‖L + ‖ξ1 − ξ2‖), (26)
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(4i) there exist αE > 0 such that for all l ∈ L, ξ1, ξ2 ∈ S
d and y ∈ Ω,

(E(y, l, ε1)− E(y, l, ε2)) · (ξ1 − ξ2) > αE‖ξ1 − ξ2‖2, (27)

(5i) E(y, l, 0) = 0 for all l ∈ L and y ∈ Ω.
(A2) The tensor of piezoelectric B = (Bijk) : Ω× L× S

d −→ R
d is such that

(i) Bijk ∈ L∞(Ω),
(ii) there exist LB > 0 such that for all l1, l2 ∈ L, ξ1, ξ2 ∈ S

d and y ∈ Ω,

‖B(y, l1, ξ1)− B(y, l2, ξ2)‖ 6 LB(‖l1 − l2‖L + ‖ξ1 − ξ2‖). (28)

(A3) The permittivity tensor β = (βijk) : Ω×L× R
d −→ R

d is such that
(i) β(·, l, ξ) is measurable on Ω for all l ∈ L, ξ ∈ R

d,
(ii) β(y, l, ·) is continuous on R

d for all l ∈ L, y ∈ Ω,
(3i) there exist Lβ > 0 such that for all l1, l2 ∈ L, ξ1, ξ2 ∈ R

d and y ∈ Ω,

‖β(y, l1, ξ1)− β(y, l2, ξ2)‖ 6 Lβ(‖l1 − l2‖L + ‖ξ1 − ξ2‖), (29)

(4i) there exist αβ > 0 such that for all l ∈ L, ξ1, ξ2 ∈ R
d and y ∈ Ω,

(β(y, l, ξ1)− β(y, l, ξ2)) · (ξ1 − ξ2) > αβ‖ξ1 − ξ2‖2, (30)

(5i) β(y, l, 0) = 0 for all l ∈ L and y ∈ Ω.
(A4) The functions jν : Γ3 × L× R→ R, jτ : Γ3 × L× R

d → R and je : Γ3 ×L× R→ R satisfy
(i) (a) jν(·, l, s) is measurable on Γ3 for all l ∈ L and s ∈ R,

(b) jν(y, l, ·) is locally Lipschitz on R for all l ∈ L and y ∈ Γ3,

(c) there exist c0ν , c1ν , c2ν > 0 such that for all l ∈ L, s ∈ R and y ∈ Γ3,

‖∂jν(y, l, s)‖ 6 c0ν + c1ν |s|+ c2ν‖l‖L, (31)

(d) there exist positive constants αjν and βjν such that

j0ν(y, l1, s1; s2 − s1) + j0ν(y, l2, s2; s1 − s2) 6 αjν |s1 − s2|2 + βjν‖l1 − l2‖L|s1 − s2| (32)

for all l1, l2 ∈ L, s1, s2 ∈ R and y ∈ Γ3.
(ii)(a) jτ (·, l, ξ) is measurable on Γ3 for all l ∈ L and ξ ∈ R

d,

(b) jτ (y, l, ·) is locally Lipschitz on R
d for all l ∈ L and y ∈ Γ3,

(c) there exist c0τ , c1τ , c2τ > 0 such that for all l ∈ L, ξ ∈ R
d and y ∈ Γ3,

‖∂jτ (y, l, ξ)‖ 6 c0τ + c1τ‖ξ‖Rd + c2τ‖l‖L, (33)

(d) there exist positive constants αjτ and βjτ such that

j0τ (y, l1, ξ1; ξ2 − ξ1) + j0τ (y, l2, ξ2; ξ1 − ξ2) 6 αjτ‖ξ1 − ξ2‖2Rd + βjτ‖l1 − l2‖L‖ξ1 − ξ2‖Rd (34)

for all l1, l2 ∈ L, ξ1, ξ2 ∈ R
d and y ∈ Γ3.

(3i)(a) je(·, l, s) is measurable on Γ3 for all l ∈ L and s ∈ R,

(b) je(y, l, .) is locally Lipschitz on R for all l ∈ L and y ∈ Γ3,

(c) there exist c0e, c1e, c2e > 0 such that for all l ∈ L, s ∈ R and y ∈ Γ3, we have

‖∂je(y, l, s)‖ 6 c0e + c1e|s|+ c2e‖l‖L, (35)
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(d) there exist positive constants αje and βje such that

j0e (y, l1, s1; s2 − s1) + j0e (y, l2, s2; s1 − s2) 6 αje|s1 − s2|2 + βje‖l1 − l2‖L|s1 − s2| (36)

for all l1, l2 ∈ L, s1, s2 ∈ R and y ∈ Γ3.

(A5) The function wν : Γ3 × L × R → R, wτ : Γ3 × L × R × R → R, we : Γ3 × L × R → R and
µ : Γ3 × R+ → R+ satisfy
(i) (a) wν(·, l, s) is measurable on Γ3 for all l ∈ L and s ∈ R,

(b) wν(y, l, ·) is continuous on R for all l ∈ L and y ∈ Γ3,

(c) there exists wν > 0 such that for all l ∈ L, s ∈ R and y ∈ Γ3, we have

0 6 wν(y, l, s) 6 wν , (37)

(ii)(a) wτ (·, l, s1, s2) is measurable on Γ3 for all l ∈ L and s1, s2 ∈ R,

(b) wτ (y, l, ·, ·) is continuous on R× R for all l ∈ L, y ∈ Γ3,

(c) there exists wτ > 0 such that for all l ∈ L, s1, s2 ∈ R and y ∈ Γ3, we have

0 6 wτ (y, l, s1, s2) 6 wτ , (38)

(3i)(a) we(., l, s) is measurable on Γ3 for all l ∈ L and s ∈ R,

(b) we(y, l, .) is continuous on R for all l ∈ L, y ∈ Γ3,

(c) there exists we > 0 for all l ∈ L, s ∈ R and y ∈ Γ3,

0 6 we(y, l, s) 6 we, (39)

(4i)(a) µ(·, s) is measurable on Γ3 for all s ∈ R+,

(b) there exists Lµ > 0 such that for all s1, s2 ∈ R+ and y ∈ Γ3, we have

‖µ(y, s1)− µ(y, s2)‖ 6 Lµ|s1 − s2|, (40)

(c) there exists µ0 > 0 such that for all s ∈ R+ and y ∈ Γ3,

µ(y, s) 6 µ0. (41)

(A6) The forces, tractions, volume and surface charge densities, gap and foundation’s potential satisfy
(i) for all l ∈ L, the following regularity conditions are true

f0(l) ∈ L2(Ω)d, f2(l) ∈ L2(Γ2)
d, q0(l) ∈ L2(Ω), qb(l) ∈ L2(Γb),

(ii) there exists Lf0 , Lf2 , Lq0 , Lqb > 0 such that for all l1, l2 ∈ L, we have

‖f0(l1)− f0(l2)‖L2(Ω)d 6 Lf0‖l1 − l2‖L,
‖f2(l1)− f2(l2)‖L2(Γ2)d 6 Lf2‖l1 − l2‖L,
‖q0(l1)− q0(l2)‖L2(Ω) 6 Lq0‖l1 − l2‖L,
‖qb(l1)− qb(l2)‖L2(Γb) 6 Lqb‖l1 − l2‖L,

(42)

(3i) the functions g0 and ϕ0 are such that g0 > 0 ∈ L2(Γ3) and ϕ0 ∈ L2(Γ3).

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 665–677 (2021)



Hemivariational inverse problem for contact problem with locking materials 671

(A7) B and C are nonempty closed convex subset, resp. of Sd and L2(Ω) with

0Sd ∈ B, 0L2(Ω) ∈ C.

Next, let l ∈ L, consider two elements f(l) ∈ V and q(l) ∈W defined by
(
f(l), v

)
=
(
f0(l), v

)
+
(
f2(l), v

)
for all v ∈ V, (43)(

q(l), ψ
)
=
(
q0(l), ψ

)
−
(
qb(l), ψ

)
for all ψ ∈W. (44)

Using standard techniques, one can get the following variational formulation of Problem (P).

Problem (PV). Given l ∈ L, find a displacement field u ∈ K1 ∩ V1 and an electric potential field

ϕ ∈ V2 such that

(
E(l, ε(u)) + BT (l,∇ϕ), ε(v) − ε(u)

)
H +

∫

Γ3

wν(l, ϕ− ϕ0) j
0
ν (l, uν − g0; vν − uν) da

+

∫

Γ3

wτ (l, ϕ− ϕ0, uν − g0)µ(‖uτ‖) j0τ (l, uτ ; vτ − uτ ) da >
(
f(l), v − u

)
V
, ∀ v ∈ K1 ∩ V1, (45)

(
β(l,∇ϕ)− B(l, ε(u)),∇(ψ − ϕ)

)
H
+

∫

Γ3

we(l, uν − g0) j0e (l, ϕ− ϕ0;ψ − ϕ) da

>
(
q(l), ψ − ϕ

)
W
, ∀ψ ∈ V2. (46)

The previous Problem can be reformulated as follows.

Problem (PV). Given l ∈ L, find (u, ϕ) ∈ (K1 ∩ V1)× V2
(
E(l, ε(u)) + BT (l,∇ϕ), ε(v) − ε(u)

)
H +

(
β(l,∇ϕ) − B(l, ε(u)),∇(ψ − ϕ)

)
H

+

∫

Γ3

[
wν(l, ϕ− ϕ0) j

0
ν (l, uν − g0; vν − uν) + we(l, uν − g0) j0e (l, ϕ − ϕ0;ψ − ϕ)

]
da

+

∫

Γ3

wτ (l, ϕ− ϕ0, uν − g0)µ(‖uτ‖) j0τ (l, uτ ; vτ − uτ ) da

>
(
f(l), v − u

)
V
+
(
q(l), ψ − ϕ

)
W
, ∀ (v, ψ) ∈ (K1 ∩ V1)× V2.

(47)

Now, consider the real Hilbert product space Y = V ×W endowed by the usual inner product
(
y, k
)
Y
=
(
u, v
)
V
+
(
ϕ,ψ

)
W

for all y = (u, ϕ), k = (v, ψ) ∈ Y, (48)

Consider a nonempty closed convex U = (K1∩V1)×V2 of Y and the operator A: L×Y −→ Y ∗ defined
by

〈A(l, y), k〉Y =
(
E(l, ε(u)) + BT (l,∇ϕ), ε(v)

)
H +

(
β(l,∇ϕ) − B(l, ε(u)),∇ψ

)
H
, (49)

for all y = (u, ϕ), k = (v, ψ) ∈ Y and l ∈ L, the functional J : L × U × Y −→ R given by

J(l, k, y) =

∫

Γ3

wν(l, ϕ− ϕ0) jν(l, uν − g0) da+
∫

Γ3

we(l, uν − g0) je(l, ϕ− ϕ0) da

+

∫

Γ3

wτ (l, ϕ − ϕ0, vν − g0)µ(‖vτ‖) jτ (l, uτ ) da
(50)

for all y = (u, ϕ), k = (v, ψ) ∈ Y and l ∈ L, and the element fq(l) ∈ Y ∗ given by

〈fq(l), k〉Y =
(
f(l), v

)
V
+
(
q(l), ψ

)
W
, ∀ k = (v, ψ) ∈ Y, l ∈ L. (51)

Let state the following problem using the preceding notations.
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Problem (QV ). Given l ∈ L, find y ∈ U such that

〈A(l, y) − fq(l), k − y〉Y + J
0(l, y, y; k − y) > 0, ∀ k ∈ U. (52)

As result, the solution of Problem (QV ) is a solution of Problem (PV ).
The analysis of Problem (QV ), including its unique solvability is based on the abstract result on

hemi-variational inequality which has been discussed in [17]. Then we study the inverse problem for
the contact problem and deliver a result and its solvability.

3. Analysis of Problem (PV)

Moreover, for the problem (PV ), we obtain the existence and uniqueness result.

Theorem 1. Assume hypotheses (A1)-(A7) and the following smallness condition are satisfied

max
{
wναjνc

2
0 + wτµ0αjτc

2
0, weαjec

2
1

}
6 min(αE , αβ) (53)

Then, for all l ∈ L, the problem (PV ) has a unique solution y(l) = (u(l), ϕ(l)) ∈ U . Moreover, for all
l1, l2 ∈ L, there exists a constant c > 0 such that

‖u(l1)− u(l2)‖V + ‖ϕ(l1)− ϕ(l2)‖W 6 c ‖l1 − l2‖L. (54)

where (u(li), ϕ(li)) is the unique solution of Problem (PV ) corresponding to li ∈ L with i = 1, 2.

Proof. The proof is based on the Banach fixed point arguments and some results for hemi-variational
inequality. By the definition of U it is clear that U is a nonempty, closed and convex subset of Y .
Moreover, from the definitions (43), (44) and (51) of f , q we get fq(l) ∈ Y ∗ for all l ∈ L.

Lemma 1. Under the assumptions (A1)− (A3). The operator A defined by (49) satisfies the prop-
erties

(i) for all l ∈ L, the mapping A(l, ·) is a pseudo-monotonous one,
(ii) there exist αA > 0 such that for all l ∈ L and u1, u2 ∈ Y , it yields

〈A(l, u1)−A(l, u2), u1 − u2〉X > αA‖u1 − u2‖2Y . (55)

Proof. First, it follows from (A1)(3i), (A1)(5i), (A2)(ii), (A3)(3i) and (A3)(5i) that for all l ∈ L, the
operator A(l, ·) is bounded one. Hence, for all k1 = (v1, ϕ1), k2 = (v2, ϕ2) ∈ Y ,

〈A(l, k1)−A(l, k2), k1 − k2〉Y = 〈A(l, k1), k1 − k2〉Y − 〈A(l, k2), k1 − k2〉Y

=
(
E(l, ε(v1)) + BT (l,∇ϕ1), ε(v1)− (v2)

)
H +

(
β(l,∇ϕ1)− B(l, ε(v1)),∇ϕ1 −∇ϕ2

)
H

−
(
E(l, ε(v2))− BT (l,∇ϕ2), ε(v1)− (v2)

)
H −

(
β(l,∇ϕ2) + B(l, ε(v2)),∇ϕ1 −∇ϕ2

)
H

=
(
E(l, ε(v1))− E(l, ε(v2)), ε(v1)− (v2)

)
H +

(
β(l,∇ϕ1)− β(l,∇ϕ2),∇ϕ1 −∇ϕ2

)
H
,

Thus by assumptions (A1)(4i) and (A3)(4i),

〈A(l, k1)−A(l, k2), k1 − k2〉Y > αE‖k1 − k2‖2V + αβ‖ϕ1 − ϕ2‖2W , (56)

which implies the inequality (5) with αA = min(αE , αβ). In addition, since A(l, ·) is bounded,
monotonous and hemi-continuous operator, for all l ∈ L, it is also pseudo-monotonous one. �

Lemma 2. Under the assumptions A4 and A5, the function J defined by (50) satisfies the properties

(i) for all l ∈ L, z ∈ Y , the function J(l, z, ·) is a locally Lipschitz on Y ,
(ii) there exist positive constants a0, a1, a2 and a3 such that for all l ∈ L, one has

‖∂J(l, z, u)‖Y ∗ 6 a0 + a1‖z‖Y + a2‖u‖Y + a3‖l‖L, for all u, z ∈ Y, (57)
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(iii) there exist αJ > 0, βJ > 0 and γJ > 0 such that for all l1, l2 ∈ L, one has

J
0(l1, z1, u1;u2 − u1) + J

0(l2, z2, u2;u1 − u2) 6 αJ ‖u1 − u2‖2Y + βJ ‖l1 − l2‖L‖u1 − u2‖Y
+ γJ ‖z1 − z2‖Y ‖u1 − u2‖Y , for all u1, u2, z1, z2 ∈ Y.

(58)

Proof. Consider the following functions

j1 : L × R
2 → R, j1(l, s1, s2) = wν(l, s1) jν(l, s2), (59)

j2 : L × R
3 × R

d → R, j2(l, s1, s2, s3, ξ) = wτ (l, s1, s2)µ(‖s3‖) jτ (l, ξ), (60)

j3 : L × R
2 → R, j3(l, s1, s2) = we(l, s1) je(l, s2). (61)

Then, let represent J = J1 + J2 + J3 such that

J1(l, z, y) =

∫

Γ3

j1(l, ψ − ϕ0, uν − g0) da, (62)

J2(l, z, y) =

∫

Γ3

j2(l, ψ − ϕ0, vν − g0, vτ , uτ ) da, (63)

J3(l, z, y) =

∫

Γ3

j3(l, vν − g0, ϕ− ϕ0) da, (64)

for all l ∈ L and z = (v, ψ), y = (u, ϕ) ∈ Y . First, it is clear that J is well defined and J(l, z, ·) is
locally Lipschitz on Y for all l ∈ L and z ∈ U . Next, we use (B4)(i)(c) and (B5)(i)(c) to obtain

‖∂J1(l, z, y)‖Y 6

∫

Γ3

wν
(
c0ν + c1ν‖uν − g0‖+ c2ν‖l‖L

)
da

6 wν
{
c0νmeas(Γ3) + c1νc0‖uν‖V

√
meas(Γ3) + c1ν‖g0‖L2(Γ3)

√
meas(Γ3) + c2ν‖l‖Lmeas(Γ3)

}
.

(65)

In a similar way, the assumptions (A4)(ii)(c), (A5)(ii)(c) and (A5)(4i)(c) imply

‖∂J2(l, z, y)‖Y 6 wτµ0
{
c0τmeas(Γ3) + c1τ c0‖u‖V

√
meas(Γ3) + c2τmeas(Γ3)‖l‖L

}
, (66)

and the assumptions (A4)(3i)(c) and (A5)(3i)(c) imply

‖∂J3(l, z, y)‖Y 6 we
{
c0emeas(Γ3) + c1ec2‖ϕ‖W

√
meas(Γ3)

+ ‖ϕ0‖L2(Γ3)

√
meas(Γ3) + c2e‖l‖Lmeas(Γ3)

}
.

(67)

From the previous estimations (65)–(67), One can deduce

‖∂J(l, z, y)‖ 6 C0 + C1‖z‖Y + C2‖y‖Y + C3‖l‖L for all l ∈ L and (z, y) ∈ U × Y, (68)

where the constants C0, C1, C2 and C3 are given by

C0 =
(
wνc0ν + wτµ0c0τ + wec0e

)
meas(Γ3) +

(
wνc1ν‖g0‖L2(Γ3) + we‖ϕ0‖L2(Γ3)

)√
meas(Γ3), (69)

C1 = 0, (70)

C2 =
(
wνc1νc0 + wτµ0c1τc0 + wec1ec2

)√
meas(Γ3), (71)

C3 =
(
wνc2ν + wτµ0c2τ + wec2e

)
meas(Γ3). (72)

Next, using Corollary 4.15 in [21], we get for l ∈ L and z = (v, ψ), y = (u, ϕ), y = (u, ϕ) ∈ Y that

J
0
1(l, z, y, y) 6

∫

Γ3

wν(l, ψ − ϕ0)j
0
ν(l, uν − g0;uν) da, (73)
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J
0
2(l, z, y, y) 6

∫

Γ3

wτ (l, ψ − ϕ0, vν − g0)µ(‖vτ‖)j0τ (l, uτ ;uτ ) da, (74)

J
0
3(l, z, y, y) 6

∫

Γ3

we(l, vν − g0)j0e (l, ϕ − ϕ0;ϕ) da. (75)

For the functional J01, we use (A4)(i)(d) and (A5)(i)(c) to find

J
0
1(l1, z1, y1; y2 − y1) + J

0
1(l2, z2, y2; y1 − y2)

6

∫

Γ3

wν
∣∣j0ν(l1, u1ν − g0;u2ν − u1ν) + j0ν(l2, u2ν − g0;u1ν − u2ν)

∣∣ da

6 wναjνc
2
0 ‖u1 − u2‖2V + wνβjνc0 meas(Γ3) ‖l1 − l2‖L‖u1 − u2‖V .

(76)

Similarly, for functionals J
0
2 and J

0
3, we conclude

J
0
2(l1, z1, y1; y2 − y1) + J

0
2(l2, z2, y2; y1 − y2)
6 wτµ0αjτc

2
0 ‖u1 − u2‖2V + wτβjτc0 meas(Γ3) ‖l1 − l2‖L‖u1 − u2‖V ,

(77)

J
0
3(l1, z1, y1; y2 − y1) + J

0
3(l2, z2, y2; y1 − y2)
6 weαjec

2
1 ‖ϕ1 − ϕ2‖2W + weβjec1 meas(Γ3) ‖l1 − l2‖L‖ϕ1 − ϕ2‖W .

(78)

Consequently from the inequalities (76)–(78) one can obtain

J
0(l1, z1, y1; y2 − y1) + J

0(l2, z2, y2; y1 − y2) 6 αJ‖y1 − y2‖2Y + βJ‖l1 − l2‖L‖y1 − y2‖Y , (79)

where the constants αJ and βJ are given by

αJ = max
{
wναjνc

2
0 + wτµ0αjτc

2
0, weαjec

2
1

}

βJ = max
{
wτβjτc0meas(Γ3) + wτβjτc0meas(Γ3), weβjec1meas(Γ3)

}

Then, assumption (3.6) holds with the previous constants αJ, βJ and γJ = 0. �

Then, from Theorem 10 in [17] and the smallness conditions (53), one can conclude that for all
l ∈ L, the Problem (PV ) has a unique solution y(l) = (u(l), ϕ(l)) ∈ U . �

Now, we derive a second continuous dependence result of the weak solution of problem (P ) with
respect to the constraints.

Theorem 2. Assume that the assumptions of theorem 1 then we have

‖y(l1)− y(l2)‖ 6
LE + 2LB + Lβ + βJ + Lf0ck + Lf2c1 + Lq0cF + Lqbc2

αA − αJ
‖l1 − l2‖L (80)

where y(l1) = (u(l1), ϕ(l1)) and y(l2) = (u(l2), ϕ(l2)) are the unique solution of Problem (P ) corre-
sponding to l1, l2, respectively.

Proof. Let y(l1), y(l2) ∈ K be the solution of Problem (QV ) corresponding to l1, l2 ∈ L, then

〈A(l1, u(l1))− fq(l1), z − u(l1)〉Y + J
0(l1, u(l1), u(l1); z − u(l1)) > 0, for all z ∈ U, (81)

〈A(l2, u(l2))− fq(l2), z − u(l2)〉Y + J
0(l1, u(l2), u(l2); z − u(l2)) > 0, for all z ∈ U, (82)

Taking z = y(l2) in (81) and z = y(l1) in (82), then we add the obtained inequalities to find

〈A(l1, u(l1))−A(l2, y(l2)), y(l1)− y(l2)〉Y
6 〈fq(l2)− fq(l1), y(l2)− y(l1)〉Y + J

0(l1, u(l1), u(l1);u(l2)− u(l1))
+ J

0(l2, y(l2), y(l2); y(l1)− y(l2)).
(83)
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As a result, the previous inequality can be stated like this

〈A(l2, y(l1))−A(l2, y(l2)), y(l1)− y(l2)〉Y
6 〈fq(l2)− fq(l1), y(l2)− y(l1)〉Y + 〈A(l2, y(l1))−A(l1, y(l1)), y(l1)− y(l2)〉Y
+ J

0(l1, y(l1), y(l1); y(l2)− y(l1)) + J
0(l2, y(l2), y(l2); y(l1)− y(l2)).

(84)

By (A1)(3i), (A2)(ii) and (A3)(3i), we find, for all l1, l2 ∈ L and y = (u, ϕ), z = (v, ψ) ∈ Y , that

〈A(l1, y)−A(l2, y), z〉Y = 〈A(l1, y), z〉Y − 〈A(l2, y), z〉Y
=
(
E(l1, ε(u)) + BT (l1,∇ϕ), ε(v)

)
H +

(
β∇(l1, ϕ) −B(l1, ε(u)),∇ψ

)
H

−
(
E(l2, ε(u)) + BT (l2,∇ϕ), ε(v)

)
H −

(
β(l2,∇ϕ)− B(l2, ε(u)),∇ψ

)
H

=
(
E(l1, ε(u)) − E(l2, ε(u)), ε(v)

)
H +

(
β(l1,∇ϕ)− β(l2,∇ϕ),∇ψ

)
H

+
(
BT (l1,∇ϕ)− BT (l2,∇ϕ), ε(v)

)
H −

(
B(l1, ε(u)) −B(l2, ε(u)),∇ψ

)
H

6 LA‖l1 − l2‖L‖v‖V + Lβ‖l1 − l2‖L‖ψ‖W + LB‖l1 − l2‖L
[
‖v‖V + ‖ψ‖W

]

6
(
LE + 2LB + Lβ

)
‖l1 − l2‖L‖z‖Y ,

(85)

Next, by definitions (43), (44) and (51) of f , q and fq, and assumption (A6)(ii) to have

〈fq(l1)−fq(l2), z〉Y =
(
f(l1), v

)
V
+
(
q(l1), ψ

)
W
−
(
f(l2), v

)
V
−
(
q(l2), ψ

)
W

=
(
f0(l1)− f0(l2), v

)
L2(Ω)d

+
(
f2(l1)− f2(l2), v

)
L2(Γ2)d

+
(
q0(l1)− q0(l2), ψ

)
L2(Ω)

−
(
qb(l1)− qb(l2), ψ

)
L2(Γ2)

Then, we deduce that

〈fq(l1)− fq(l2), z〉Y 6 ‖f0(l1)− f0(l2)‖L2(Ω)d‖v‖L2(Ω)d + ‖f2(l1)− f2(l2)‖L2(Γ2)d‖v‖L2(Γ2)d

+ ‖q0(l1)− q0(l2)‖L2(Ω)‖ψ‖L2(Ω) − ‖qb(l1)− qb(l1)‖L2(Γb)‖ψ‖L2(Γb)

6
(
Lf0ck ‖v‖V + Lf2c1 ‖v‖V + Lq0cF ‖ψ‖W + Lqbc2 ‖ψ‖W

)
‖l1 − l2‖L.

(86)

Remembering ‖v‖V 6 ‖z‖Y and ‖ψ‖W 6 ‖z‖Y ,

‖fq(l1)− fq(l2)‖Y ∗ 6
(
Lf0ck + Lf2c1 + Lq0cF + Lqbc2

)
‖l1 − l2‖L. (87)

Therefore, it follows from (55), (58) and (84)–(86) with the fact that αA−αJ−γJ > 0 then Theorem 2
holds. �

It also demonstrates that the contact Problem (P ) has a weak solution depending continuously on
data. Theorem 2 can be applied to several optimization situations involving inequality (52). Now,
we consider an inverse problem for the frictional electro-elastic-locking materials contact Problem (P ).
Let Lad ⊂ L be an admissible subset of parameters and F : L×K1 ∩V1×V2 −→ R be a cost function.
Consider the following minimization problem

Find l∗ ∈ Lad such that F (l∗, u(l∗), ϕ(l∗)) = min
l∈Lad

F (l, u(l), ϕ(l)), (88)

where y(l) = (u(l), ϕ(l)) ∈ K×W is the unique solution of Problem (PV ) corresponding to a parameter
l, we have the following corollary. In the study of this problem we assume that

Lad is a compact of L. (89)

F : L ×K1 ∩ V1 × V2 −→ R is a lower semi-continuous function. (90)

Corollary 1. Assume the hypothesis of Theorem 1, (89) and (90) hold. Then, Problem (88) has at
least one solution.

Various examples and interpretations of cost functionals F that satisfy the previous corollary’s hy-
pothesis can be found in [18, 22].
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Гемiварiацiйна обернена задача для контактної задачi зi
запiрними матерiалами

Фаiз Е.1, Баiз О.2, Бенаiсса Х.3, Ель Мутавакiль Д.1

1Унiверситет Султана Мулея Слiмана, Лабораторiя MATIC, ФП з Хурiбги, Марокко
2Унiверситет Iбн Зора, ФП Уарзазату, Марокко

3Унiверситет Султана Мулея Слiмана,
Мультидисциплiнарна дослiдницька та iнновацiйна лабораторiя,

ФП Хорiбга, Марокко

Метою цiєї роботи є дослiдження оберненої задачi для моделi фрикцiйного контакту
запiрного матерiалу. Деформiвне тiло складається з електроеластичних запiрних ма-
терiалiв. Характер запирання робить розв’язок належним до опуклої множини, кон-
такт подається у виглядi багатозначної нормальної вiдповiдностi, а тертя описуються
субградiєнтом локального вiдображення Лiпшица. Розроблено варiацiйне формулю-
вання моделi, поєднуючи двi гемiварiацiйнi нерiвностi у пов’язану систему. Iснування
та єдинiсть розв’язку демонструються на основi нещодавнiх висновкiв теорiї гемi-
варiацiйних нерiвностей та аргументу з фiксованою точкою. Далi подано результат
неперервної залежностi, а потiм встановено iснування розв’язку оберненої задачi для
задачi тертя контакту з п’єзоелектричним запiрним матерiалом.

Ключовi слова: запiрний п’єзоелектричний матерiал, задача про фрикцiйний кон-
такт, обернена задача, гемiварiацiйнi нерiвностi.
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