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The aim of this work is to study an inverse problem for a frictional contact model for lock-
ing material. The deformable body consists of electro-elastic-locking materials. Here, the
locking character makes the solution belong to a convex set, the contact is presented in the
form of multivalued normal compliance, and frictions are described with a sub-gradient
of a locally Lipschitz mapping. We develop the variational formulation of the model by
combining two hemivariational inequalities in a linked system. The existence and unique-
ness of the solution are demonstrated utilizing recent conclusions from hemivariational
inequalities theory and a fixed point argument. Finally, we provided a continuous depen-
dence result and then we established the existence of a solution to an inverse problem for
piezoelectric-locking material frictional contact problem.
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1. Introduction

Recently, the theory of variational and hemivariational inequalities has become more attractive in the
mathematical and physics domain. This type of inequality was first introduced by Panagiotopolous in
1980 to generalize variational inequalities for non-convex and non-monotone operators see [1]. Based on
the generalized gradient of Clarke [2], it is used to study engineering problems involving non-smooth,
non-monotone, and multivalued functionals, e.g. in the variational formulation of mechanical problems
whenever nonconvex energy functionals (non-smooth constitutive laws) are involved [3,4]. However,
more of their mathematical and applied developments can be found in [5-7] and the reference therein.
In the last years, inverse problems have grown in popularity as a subject of applied mathematics with
numerous practical applications [8-12]. The goal of this research is to look into the inverse problem of
identifying parameters in a hemivariational inequality. On another side, the theory of locking materials
was firstly discussed by Prager [13,14]. We consider elastic ideally locking materials, as defined in [15].
Then, we shall deal with piezoelectric materials for which the constitutive laws are given as follows

o€ &(le(u)) — BT(1,E(p)) + 0Ip(l,e(u)) in € (1)
D e Ble(w) + B E(p)) + dIc(LE(p)) in (2)

where 0Ig: £ x S¢ — 25" and Olc: L x L?(Q) — 2L%(2) gtands for the subdifferential, respectively,
of the indicators functions of sets B and C, given by

/0 if e€ B, 0 if YecdC,
IB(l’g)_{—l—oo if e¢B, IC(“Z’)_{Jroo it pgcC.
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The physics point of view of locking materials can be found in [16]. The sets B C S? and C € L?(Q)
design the locking constraints and define the properties of the materials. Moreover, these sets have
many forms, see [16]. In this paper, we discuss the perfectly locking materials forms, for which the
sets B and C are given by

B={ces Qi(e) <0}, C={yeL*Q): Q:v) <0}, (3)

where the locking functions Qq: S — R and Qo: L?(2) — R are convexes continuous functions
verifying the condition @;(0) < 0 for ¢ = 1,2. To study these problems, we consider the following
abstract variational-hemivariational inequality, which has been discussed in [17].

Problem (P). Gwen l € L, find u = u(l) € K such that
(A(L,u) — f(D),v —u)yx 4+ 0L u, ;v —u) =0, YoeK. (4)

where A: L x X — X* is an operator from a Banach space X to its dual X* f: L — X* and
J: L x X xX — R are two real valued functions, K is a subset of X and (-,-) denotes the duality
pairing of X and X*. For z € X fixed, the notation J°(l, z,u;v) represents the generalized directional
derivative of the function J(l,z,-) at uw € X in the direction v € X. For existence and uniqueness of a
solution to inverse problems (P) have been studied by [18]|. To apply the obtained result on Problem
(P), the contact problem with piezoelectric locking materials is considered. The novelty of this paper
is study of the existence and uniqueness solution of a static frictional contact problem electro-elastic-
locking materials and also proof of Lipschitz continuous dependence of this solution. Furthermore, we
study an inverse problem for the frictional electro-elastic contact problem and show that it possesses
a solution.

The paper is structured as follows. In Section 2, we introduce the mathematical model of frictional
contact for locking materials, for example, we consider a static electroelastic-locking materials contact
problem in which the frictional contact with a conductive foundation. There are described the equations
and boundary conditions, list the data assumption on the data and derive formulation variational is
in a form of a coupled system of two hemi-variational inequalities. Section 3 is devoted to study of the
existence and unique solution of this problem. Moreover, we proved Lipschitz continuous dependence
of solution of this model and used this dependence result to study the solvability of the inverse problem
for piezoelectric-locking material frictional contact problem.

2. Contact problem for piezoelectric-locking material

In this section, there is discussed a static contact problem for a nonlinear electro-elastic and locking
material body which is described by unilateral constraints with multi-valued normal compliance func-
tion, and non-monotone multi-valued friction condition with slip dependent coefficient. We describe
the physical setting of the problem and we provide its classical variational-hemivariational formulation,
which is a system of coupled hemi-variational inequalities.

There is considered a piezoelectric-locking material body that occupies the domain Q € R%, d €
{2, 3} with Lipschitz boundary I' = 99 and a unit outward normal v at I". Body forces fy and volume
free electric charges ¢o act on the body. It is also constrained mechanically and electrically on I':
to describe these constraints, let consider three open and measurable parts I'1, I'y and I's such that
TMuTly,UTy =T and meas(I';) > 0, on the one hand, and a partition of I'y UTy into two measurable
parts I, and I'y such that meas(I';) > 0, on the other hand.

The space of second order symmetric tensors on R? is denoted by S?, while - and || - || represent the
inner product and the associated Euclidean norm on R? and S? given for all u,v € R% and o, 7 € S% by

w-v=uwuiv;, |v||=(v- v)1/2 and o-T=047y, |7|=(- 7‘)1/2.
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The normal and tangential components of the displacement vector v € R% and the stress tensor o € S¢
on the boundary I' are given by

v,=v-v, vy=v—uvw and o,=(oV) v, o =o0V—0,.
Then, the classical formulation of the frictional electro-elastic-locking material contact problem is as
follows.

Problem (P). Given | € L, find a displacement u = u(l): @ — Re, an electric potential p =
o(l): Q — R such that

o€ & e(u)) —BT(1, E(p)) + 0Ip(l,e(u)) in Q, (5)
D € B(l,=(u)) + AL, E(9)) + dlc(l, E(¢)) in - Q (6)
Divo + fo(l) =0 in Q, (7)
div D — qo(l) =0 in Q, (8)
u=0 on Iy, 9)
ov = fa(l) on Iy, (10)
=0 on T, (11)
D-v=gl) on I, (12)
uy < go, Oy <0, (o, uy — go) =0,
{ V€ wgyo(l, ¢ —+¢Z) 8ju(l7(uu J—rggg v ot 13)
— o7 € wr(l, 0 — o, uy — go) w([lurll) 04 (1, ur) on I, (14)
D v € we(l,uy — go) dje(l, 0 — o) on T (15)

Here, (5), (6) represent the electro-elastic-locking materials constitutive law of the material see [19,20]
for more details, where & = (&;;1) is the elastic tensor, B = (B;;;) and 3 = (8;;) are the piezoelectric
and the electric permittivity tensors. In addition, e(u) = (Vu+(Vu)T)/2 is the linearized strain tensor,
E(p) = =V is the electric field and BT = (By;;) is the transpose tensor of B. Equations (7), (8)
represent the equilibrium equations for the stress and the electric displacement fields. Moreover, (9)—
(12) are the mechanical and electrical boundary conditions, the relation (13) represents the multivalued
normal compliance contact condition with unilateral constraints of Signorini type coupled with the
electric potential through the stiffness coefficient w, which depends on the difference between the
electric potential on the body and the electrically conductive foundation and g¢ represents the gap
function between the body and the foundation on the contact surface. Condition (14) represents the
friction law, the function w, models the influence of the electric potential and normal displacement
on the frictional contact, and p denotes a positive function called the coefficient of friction. Finally,
relation (15) represents a regularized condition for the electrical contact on I's in which g represents
the electric potential of the foundation and we, j. are given functions.
We explore the following spaces in order to obtain the variational formulation of Problem (P)

H:L2(Q)d, H1 :Hl(Q)d, H: {T: (Tij); Tij:TjZ' ELz(Q)},
which are real Hilbert spaces for the following inner products and their associated norms

(u,v)Hz/Qum-dw, (u,0) g, = (u,v)m + (e(u), ()2, (0,7)n :/QUZ'jTij dz.

Let introduce the following variational subspaces

V={veH,v=0 onIi},
W ={yec H(Q),Y=0 on I},
Ki={veV,u, <go on T's}.
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Over V and W, we look at the inner products and Euclidean norms that go along with them

(w,0)y = (), 2@, [ully = (u,up/?, (16)
(e ¥)w = (Vo, Vi, llellw = (0, 0)i (17)
and sets with locking constraints
Vi={veVev(zr)) € B ae. z€}, (18)
Vo={{ e W, E((x)) € C ae z€Q}. (19)

Since V is a closed subspace of Hy and meas(I'1) > 0, the Korn’s inequality holds and there exists a
constant ¢, > 0 depending on €2 and I'; such that

[0l < celle()ln, YveV. (20)

Hence, the norms || - ||z, and || - ||y are equivalent on V' and then (V.|| - ||v) is a real Hilbert space.
Furthermore, by Sobolev trace theorem, there exists a constant ¢y > 0 depending on 2, I'3 and I'y
such that

[oll2rye < collvllv, Vv eV (21)

Since meas(I'y) > 0, the Friedrichs—Poincaré inequality holds and thus

[Vl @) < crlVella, Vi eW, (22)

where a constant ¢y > 0 depends only on @ and I',. It follows from (17) and (22) that the norms
| - llw and || - || g1(q) are equivalent on W, and so (W, || - [lw) is a real Hilbert space. In addition, the
Sobolev trace theorem implies that there exists ¢; > 0 depending on , I';, and I's such that

llzzea < lilw. V&€ W. (23)
From the first constitutive law (5) of locking piezoelectric materials, one can obtain
o=E(e() —BY(,E(p)) + ¢(l,u) where ((I,u) € dIp(l,e(u)) in Q.
Hence, for all u,v € Vi, we get (C(l,u), (e(v) —e(u))) < Ip(l,e(v)) — Ip(l,e(u)) <0, and then
(0,2(v) — () < (E(e(w) — B (L, E(9)), £(v) — e(u))n- (24)
Also, from the second constitutive law (6) of locking piezoelectric materials, it follows
D = B(l,e(u) + B, E(p)) +p(l,p)  where p(l,¢) € dlc(l, E(p)) in Q.
Then, for all ¢, ¢ € Va, we have (p(l, p), E(¢) — E(p)) < Ic(l, E(¢)) — Ic(l, E(¢)) < 0, and thus
(D, Vg — V) 2y < (B.e(w)) + B, E(6)), Ve — Vo) 2. (25)

The study of Problem (P) requires the following hypotheses.

(A1) The tensor £: Q x £ x S¢ — S% is such that
(i) £(-,1,€) is measurable on Q for all I € £ and all ¢ € S%,
(i1) E(y,1,-) is continuous on S¢ for all [ € £ and all y € Q,
(37) there exist Lg > 0 such that for all I3,ls € £, &,& € Sd and y € Q,

1€, i, &) = E(y, I2, &)l < Le(llln = 2lle + 1161 — &21), (26)
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(44) there exist ag > 0 such that for all I € £, &,& € ST and y € Q,
(g(vaEl) _5(y7lv‘€2)) : (fl 62) ac‘f”gl §2H27 (27)

(51) E(y,1,0) =0 for all [ € £ and y € Q.

(A2) The tensor of piezoelectric B = (B;ji): £ x L x S — R? is such that
(1) Bijk € L>(Q),
(i1) there exist Ly > 0 such that for all I1,ly € £, &,& € S? and y € Q,

1By, 11, &) = By, l2, &) < La([[l — L2l + 1€ — &) (28)

3) The permittivity tensor ik X L X — is such that
A B = (Bijr): & x L xRY R h th

(1) B(-,1,€) is measurable on § for all | € £, & € RY,
(ii) B(y,1,-) is continuous on R? for all I € L,y € Q,
(3i) there exist Lg > 0 such that for all l;,ly € £, &,62 € R? and y € Q,

18(y, 1, &1) = B(y, b2, &) < La([[ln = Ll + (161 = &), (29)
(4i) there exist ag > 0 such that for all 1 € £, &,& € R? and y € Q,

By, 1,&1) = By, 1,&)) - (& — &) = agl& — &%, (30)

(51) B(y,1,0) =0for all l € L and y € Q.
(A4) The functions j,: T3 x LXxR = R, j,: T3 x £LxR? = R and j.: I's x £ x R — R satisfy
() (a) ju (-, 1, s) is measurable on I's for all [ € £ and s € R,

(a
(0) ju(y,l,-) is locally Lipschitz on R for all [ € £ and y € I's,
(c) there exist ¢y, 1y, 2, = 0 such that for alll € £, s € R and y € ',

107 (y, 1, )|l < cov + crvls| + cavllll (31)
(d) there exist positive constants «;, and 3;, such that
oY,y 51582 — 1) + 4o (Y, I, 52551 — 82) <y [s1 — sof* + Bju |l — bl c]s1 — s2 (32)

forall 1, ls € L, 51,59 € R and y € I's.
(ii)(a) j-(-,1,€) is measurable on I's for all I € £ and & € RY,

(b) jr(y,1,-) is locally Lipschitz on R for all I € £ and y € T's,

(¢) there exist cor,c1r,car > 0 such that for all I € £, ¢ € R? and y € T's,

1047 (y, 1, Ol < cor + c1r[|€llpa + cor ||l (33)
(d) there exist positive constants a;j, and fj, such that
2l &€ — &) + 52y, b, £as &1 — &) < ajr[|€ — &llza + Billli — Lllcllér — &llge (34)

for all 13,1y € £, &1,& € R and y € T's.
(3i)(a) je(+,1,s) is measurable on I's for all [ € £ and s € R,

(b) je(y,l,.) is locally Lipschitz on R for all [ € £ and y € I's,

(c) there exist cge, C1e, c2e = 0 such that for all [ € £, s € R and y € I's, we have

105y L $)I| < coe + rels| + caelllll e, (35)
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(d) there exist positive constants aj. and ;. such that
32y, lh, 51589 — 51) + 52y, l2, 59551 — 52) < ajelst — s2|? + Bjellln — 2|l zls1 — s2f (36)

for all l1,ls € L, 81,89 € Rand y € I's.

(As) The function wy, : T3 X LXR - R, w;: T3 Xx LXRXR = R, we: T's x L xR — R and
13 x Ry — Ry satisfy
(i) (@) wy(-,1,s) is measurable on I's for all [ € £ and s € R,

(b) wy(y,1,-) is continuous on R for all I € £ and y € T's,
(¢) there exists w, > 0 such that for alll € £, s € R and y € I's, we have
0 < wy(y,l,8) < Wy, (37)
(#1)(a) wr (-1, s1,82) is measurable on I's for all [ € £ and s1,s9 € R,
(b) wr(y,1,-,-) is continuous on R x R for all [ € L, y € ',
(c) there exists w; > 0 such that for all I € £, s1,s2 € R and y € '3, we have
0 < wr(y,l,s1,52) < W, (38)
(3i)(a) we(.,1, s) is measurable on I's for all [ € £ and s € R,
(b) we(y,1,.) is continuous on R for all [ € £, y € T's,
(¢) there exists We > 0 foralll € £, s € R and y € I's,
0 < we(y,l,s) < We, (39)
(4i)(a) p(-, s) is measurable on I's for all s € Ry,
(b) there exists L, > 0 such that for all 51,50 € Ry and y € I'3, we have
(Y, 51) = wly, s2)l| < Lylsy — s2l, (40)
(¢) there exists pug > 0 such that for all s € Ry and y € T's,
1y, s) < po- (41)

(Ag) The forces, tractions, volume and surface charge densities, gap and foundation’s potential satisfy
(i) for all [ € L, the following regularity conditions are true

fol) € L2, fo(1) € L2(T2)?, qo(l) € LA(Y), q(1) € LA(Ty),

(i1) there exists Ly,, Ly,, Lqy, Lg, > 0 such that for all Iy, [y € £, we have

1fo(l) = foll2)llL2ya < LIl = Lolz,

[f2(l1) = fa(l2)llL2(ry)e < Lppllln = 2]z, (42)
lgo(t1) = qo(l2)[|z2@) < Lgollli — L2l

lgo(l1) — ab(l2)llL2(ry) < Lyl — L2l 2,

(3i) the functions gg and g are such that go >0 € L?(I's) and g € L?(T3).
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(A7) B and C are nonempty closed convex subset, resp. of S¢ and L?(Q) with
Osa € B,  Op2q) € C.

Next, let [ € £, consider two elements f(I) € V and q(I) € W defined by

(f(l),v) = (fo(l),v) + (fg(l),v) forall veV, (43)
(a(l),v) = (qo(1),v) — (g(1),) forall € W. (44)

Using standard techniques, one can get the following variational formulation of Problem (P).

Problem (PV). Given | € L, find a displacement field u € K1 N Vi and an electric potential field
@ € Vo such that

(E(le(u)) + BY(1,Vy),e(v) — z—:(u))H + /F w, (1,0 — o) 721, uy — go; v, — w,) da

+/ w‘l‘(l7(10_g007u1/_QO)M(HuT”)jg(ZauT;UT_UT)da> (f(l)uv_u)va VUEKlm‘/h (45)
I's

(5(l,v(,0) - B(l,e(u)),V(¢ - (’0))H +/F we(lyuu - QO)jg(lv‘p — 03 — 90) da
> (q(l), ¥ — @)y, Vb€ Vo (46)

The previous Problem can be reformulated as follows.

Problem (PV). Givenl € L, find (u,p) € (K1 NVy) x Vs
(£ e(w) + BT (1, V), e(v) — e(u)),, + (B, V) = B(l,e(u)), V(¥ — ¢))

+ /F [, (1,0 — @0) Jp (L uy — gos vy — uy) + we(l,uy — go) GO (L, — o3 ¥ — )] da
3

(47)
+ [ e = s = ) () 200 50, = ur) da
3
= (f(”?v_u)v—i_(q(l)?w_go)wa V(U,¢) € (Klmvl) X‘/Q-
Now, consider the real Hilbert product space Y =V x W endowed by the usual inner product
(y7 k)y = (U,U)V + ((10771Z))W for all Yy = (u7 (70)7 k= (U771Z)) € Y7 (48)

Consider a nonempty closed convex U = (K1NV}) x V5 of Y and the operator A: £LxY — Y™ defined

by
(ALy), k)y = (EWe(w) + BT (1, Vp),e(v)),, + (B V) — B(l,e(w)), Vi) 1, (49)
for all y = (u, ), k = (v,¢) € Y and I € L, the functional J: £L x U x Y — R given by

W kyy) = /F wo (L — 0) g (L uy — go) da + /P well,uy — 90) jolls o — o) da
3 3

(50)
+ [ o= ovos = o) llon ) ) da
s
for all y = (u, ), k = (v,9) € Y and [ € L, and the element f,(I) € Y* given by
(fo@),k)y = (FD),v)y, + (al),¥) s YE=(v,9) €Y, 1€ L. (51)

Let state the following problem using the preceding notations.
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Problem (QV). Given l € £, find y € U such that

(Aly) — f(0), k —y)y + Ly, y;k—y) >0, VkeU. (52)

As result, the solution of Problem (QV) is a solution of Problem (PV).

The analysis of Problem (QV), including its unique solvability is based on the abstract result on
hemi-variational inequality which has been discussed in [17]. Then we study the inverse problem for
the contact problem and deliver a result and its solvability.

3. Analysis of Problem (PV)

Moreover, for the problem (PV'), we obtain the existence and uniqueness result.

Theorem 1. Assume hypotheses (A1)-(A7) and the following smallness condition are satisfied
max {E,,aj,,c% + @T,uoaﬁc%,weajec%} < min(ag, ag) (53)
Then, for all | € L, the problem (PV') has a unique solution y(l) = (u(l), ¢(l)) € U. Moreover, for all
1,1y € L, there exists a constant ¢ > 0 such that
Ju(ln) = u(l)llv + o) — () lw < el = l2lle. (54)
where (u(l;), ¢(l;)) is the unique solution of Problem (PV') corresponding to l; € L with i =1,2.
Proof. The proof is based on the Banach fixed point arguments and some results for hemi-variational

inequality. By the definition of U it is clear that U is a nonempty, closed and convex subset of Y.
Moreover, from the definitions (43), (44) and (51) of f, q we get f,(I) € Y* for all [ € L.

Lemma 1. Under the assumptions (A;) — (As). The operator A defined by (49) satisfies the prop-
erties

(i) for alll € L, the mapping A(l,-) is a pseudo-monotonous one,
(74) there exist s > 0 such that for all | € L and uy, uy € Y, it yields

(A(lyur) — Al ug),up —ug)x = agllur — uQ||§/ (55)

Proof. First, it follows from (A41)(37), (A1)(5¢), (As2)(i7), (.Ag)(?)l) and (A3)(5¢) that for all I € L, the

operator A(l,-) is bounded one. Hence, for all k1 = (v1, 1), k2 = (v2,p2) €Y,
(AU k1) — A(L ko), k1 — ka)y = (A(L K1),y — ka)y — (A(L, kg) ki — ka)y
= (5(1,6(U1))+BT(1 v<,01) )7{+ ( l v<,01) B(l,€(’[)1)),v<,01 —V(,DQ)H

— (£l e(v2)) — BT(LVW)@(U ) = (v2))5, — (B, Vipa) + B(l,£(v2)), Vo1 — Vepa)
= (E(,e(v)) = £ e(v2)),e(v1) = (v2)) 4, + (BT Veor) = B, Vea), Vo1 — Via)
Thus by assumptions (A;1)(4i) and (As)(47),
(AL k1) = Al Ra), by — ka)y 2> aellkr — kall5 + agller — o2y, (56)

which implies the inequality (5) with aa = min(ag,ag). In addition, since A(l,-) is bounded,
monotonous and hemi-continuous operator, for all [ € £, it is also pseudo-monotonous one. [
Lemma 2. Under the assumptions A4 and As, the function J defined by (50) satisfies the properties

(¢) foralll € L,z €Y, the function J(l,z,-) is a locally Lipschitz onY,
(74) there exist positive constants ag, a1, az and ag such that for all l € L, one has

101, z,u) ||y < ag + a1||z|ly + az||u|ly + as||l||lz, forall w,z€Y, (57)
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(44i) there exist ay >0, 8 > 0 and vy > 0 such that for all l1,ls € L, one has

30, 21, ursug — wy) + J0(la, 20, gy ur — ug) < ay|lur — ua|l3 + By |l — lallcllur — ually

(58)
+ 5 ll21 — 22|y ||lur — uolly, forall wy,ug, 21,20 €Y.
Proof. Consider the following functions
ji: £LxR* >R, g1l 51, 82) = wu (1, 51) Ju (I, 52), (59)
jo: L xR xR - R, Ja(ly 51, 82, 83,8) = wr(l, 51, 82) p(l[ssl) j- (1, €), (60)
j3: L x R2 — Rv j3(l781782) = we(l,81)je(l,82). (61)
Then, let represent J = J; + Jo 4+ J3 such that
Jl(lvzvy) :/ jl(l,ﬂ)_‘POauu_QO)da’ (62)
T's
J2(luzuy) :/ j2(l7w_(1007vl/_907UT7UT)da7 (63)
T's
J3(l7 Zay) - / j3(l7vl/ — 4o, — QOO) da7 (64)
I's
forall I € £ and z = (v,v), y = (u,p) € Y. First, it is clear that J is well defined and J(I,z,") is

locally Lipschitz on Y for all | € £ and z € U. Next, we use (B4)(i)(c) and (Bs)(i)(c) to obtain

031029l < [ W ens + exullus - ool + ca ) da
T3 (65)
< W, {coymeas(T's) + crycolluy ||vv/meas(Ts) + c1v | goll 2(ry) v/meas(Ts) + ca||1]| cmeas(Ts)
In a similar way, the assumptions (A4)(ii)(c), (As)(ii)(c) and (As)(4i)(c) imply
10d2(1, z, y)|ly < Wruo {coneas(Fg) + c1rcol|ully /meas(T's) + cszeas(Fg)Hng}, (66)
and the assumptions (A4)(37)(c) and (As)(37)(c) imply
1033(1, 2,)lly < We{ coemeas(I'3) + creca|wllw v/ meas(T3)
+ loll z2(ry) v/ meas(T's) + coe||l]| cmeas(I'3) }.
From the previous estimations (65)—(67), One can deduce

103(L, 2z, 9) | < Co + Chllzlly + Collylly + Cslllllc  forall el and (z,y)€UxY, (68)

where the constants Cy, C'1, Co and C3 are given by

Co = (@ucow + Wrpiocor +Wecoe) meas(Ts) + (Woewllgollz(ry) + Tellgollzry)) vmeas(Ts), - (69)
C1 =0, (70)
Cy = (Wyc1uco + Wy p10C1-Co + Wec1eC2) v/meas(T'3), (71)
C3 = (Wycay + WrpioC2r + Wecoe ) meas(I's). (72)

Next, using Corollary 4.15 in [21], we get for [ € £ and z = (v,¢), y = (u, ), Y= (u,®) € Y that

J(l](lv z,y,ﬂ) < /1" wu(la¢ - SDO)jB(l,Uy - gO;UV) da, (73)
3
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wr (v = o, vy — go)u(l[v- )2 (1, ur; @r) da, (74)

3

Jg(l7 z? ng) g

we(l,vy — 90)i2 (1, — 0 P) da. (75)

3

—

Bl 2,9.79) <

For the functional J{, we use (A4)(i)(d) and (As)(i)(c) to find

Nz, 9192 — 1) + 3002, 22, y25 91 — 92)

N

/ @y |0 (11, uty — goi uzw — u1y) + o (o, sy — gos ur, — usy)| da (76)
T's

< Wy |lur — ually + W, Bjpco meas(T's) ||l — Lol llur — uallv.
Similarly, for functionals J9 and J9, we conclude

I, 21,1592 — y1) + I9(lay 22, 25 91 — 1)

_ _ (77)
< Wrpor €y |lur — us|[§r + WrBjrco meas(Ls) |1y — b clluy — ualv,
B30 21,1592 — 1) + J5(02, 22, w23 91 — u2) (78)
< Wejeci 01 — @2lffy + WeBjecr meas(Ts) |1y — Lzl cllor — w2llw
Consequently from the inequalities (76)—(78) one can obtain
(0, 21, 51592 —y1) + 32l 22, 92591 — 92) < asllyn — vl + Bl — Lallcllvr — w2y, (79)
where the constants o and ) are given by
j = max {wyajyc% + ET,uooijcg, @eajec%}
87 = max {@Tﬁﬁcomeas(rg) + W, Bjrcomeas(I's), @eﬁjeclmeas(Fg)}
Then, assumption (3.6) holds with the previous constants «y, §; and vy = 0. ]
Then, from Theorem 10 in [17] and the smallness conditions (53), one can conclude that for all
l € L, the Problem (PV) has a unique solution y(1) = (u(l),¢(1)) € U. [

Now, we derive a second continuous dependence result of the weak solution of problem (P) with
respect to the constraints.

Theorem 2. Assume that the assumptions of theorem 1 then we have

Lg + QLB + LB + ﬁJ + Lfock + Lf261 + LqOCF + quCQ
op— oy

ly(l1) —y(l2)]| <

Nl — 2|z (80)

where y(I1) = (u(l1),¢(l1)) and y(l2) = (u(l2),¢(l2)) are the unique solution of Problem (P) corre-
sponding to l1, la, respectively.
Proof. Let y(11),y(l2) € K be the solution of Problem (QV') corresponding to l1,l2 € L, then
(A, ully) = folln), 2 = u(ln))y + (0, u(ly), ula); 2 — u(ly))
(All2,u(l2)) = foll2), 2 = ull2))y + (1, ul2), u(l2); 2 — u(l2))
Taking z = y(l3) in (81) and z = y(l1) in (82), then we add the obtained inequalities to find

(

(A(l1,u(ly)) — All2,y(l2)), y(l1) — y(l2))y

< (fe(l2) = fo(lh), y(la) — y(l))y + J°(, w(ly), u(ly); uly) — u(ly)) (83)
+ 3%, y(l2), y(l2); (1) — y(l2)).
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As a result, the previous inequality can be stated like this

(Al2,y(l)) — A(l2,y(l2)), y(l1) — y(l2))y
< (foll2) = fo(l), y(l2) —y(l)y + (All2, y(h)) — Al y(l)), y(l) —y(l2))y  (84)
+ 03, y(h), y(); y(l2) — y(l)) + 322, y(l2), y(la); y(1) — y(la)).-
By (A1)(3i), (A2)(i7) and (A3)(3i), we find, for all I1,ls € £ and y = (u, ), z = (v,v) € Y, that
(Al y) = Al2, ), 2)y = (Al y), 2)y — (A(l2,9), 2)y
= (W, e(w) + BT (11, Vo), e(v)),, + (BV (I, 9) — Blla, e(w)), Vi)
— (E(la,e(u)) + BT (12, V), £(v)),, — (B, V) = B(lz, e(u)), Vi)
= (&, e(u) — E(l2, (), e(v)) 4, + (811, V) — B(l2, Vi), Vi) (85)
+ (BT(ll, V) — BT (1, Vgo),a(v))H — (B(l,e(w)) — B(la, e(w)), Vz/J)H
Lallth = Lllclvllv + Laliy = Lllel¢lw + Lol = Ll [llollv + [¢]w]
(Le +2Lg+ Lg) | — Lol 2]lv,

Next, by definitions (43), (44) and (51) of f, ¢ and f;, and assumption (Ag)(i7) to have
(fo)=fo(l2), 2)y = (f(lr), )y, + (a(h), )y — (f(12),0) — (a(l2), ¥)

= (fo(lh) — fo(l2)7v)L2(Q)d + (fall) - f2(12)7U)L2(1’\2)d

+ (qo(l) — QO(12),¢)L2(Q) — ((l) — au(l2), %) 12(T3)

<
<

Then, we deduce that

(fo(lh) = fq(l2), 2)y < |[fo(lr) = foll2)llL2@)allvliLoye + [1f2(l) — fall2)ll2ryyallvll L2 (py)e
+ [lgo(l1) — qo(I2)ll 2 1Yl 2 () — llav(l1) — ao(lo) |20y 101l 21y (86)
< (Lgoer vllv + Lyyer [ollv + Lgger [0llw + Lg,e2 [[$lw) [l — 2]l
Remembering [|v||v < ||z[ly and [[¢|lw < [|2]v,

1£q(l) = fo(l2)]

Therefore, it follows from (55), (58) and (84)—(86) with the fact that a4 —aj—~s > 0 then Theorem 2
holds. ]

It also demonstrates that the contact Problem (P) has a weak solution depending continuously on
data. Theorem 2 can be applied to several optimization situations involving inequality (52). Now,
we consider an inverse problem for the frictional electro-elastic-locking materials contact Problem (P).
Let L£,4 C L be an admissible subset of parameters and F': £ x K1 NV; x Vo — R be a cost function.
Consider the following minimization problem

v+ < (Lgyex + Lyyer + Logcr + Lg,c2)|[ln — la]| - (87)

Find I* € L,q such that F(I*,u(l*), (")) = lmﬁin F(lu(l), (1)), (88)
€

ad

where y(1) = (u(l), (1)) € K xW is the unique solution of Problem (PV’) corresponding to a parameter
I, we have the following corollary. In the study of this problem we assume that

Laq is a compact of L. (89)
F:LxKiNVi xV,— R isalower semi-continuous function. (90)

Corollary 1. Assume the hypothesis of Theorem 1, (89) and (90) hold. Then, Problem (88) has at
least one solution.

Various examples and interpretations of cost functionals F' that satisfy the previous corollary’s hy-
pothesis can be found in [18,22].
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lemiBapiauiiHa obepHeHa 3aga4a AN KOHTAKTHOI 3agadi 3i
3anipHUMnN martepianamu

®aiz E.!, Baiz 0.2, Benaicca X.3, Eap Myrapakins JI.!

L Vnieepcumem Cyamana Myaes Caimana, Jlabopamopis MATIC, ®II 5 Xypibzu, Mapoxko
2 Vuisepcumem I6n 3opa, I Yapsazamy, Mapoxxo
3 YVuisepcumem Cyamana Myaes Caimana,
Myavmuducyuniinapra docaidHUYLKE Ma THHOBAUITHG AGOODATOPIA,
@Il Xopibaa, Mapokxo

Meroro 1iel poboru € ocimKrenHs: 06epHEHOT 3814l It MOe i (PPUKIHITHOTO KOHTAKTY
zamipnoro matepiany. /ledpopmiBHe Tisto CKIaJAETHCS 3 €IEKTPOETACTUIHIX AN PHUX Ma-
TepiajiB. XapakTep 3alupanis pOOUTH PO3B 30K HAJIEXKHUM O OMYKJI0T MHOYKUHY, KOH-
TaKT TOJIAETHCS Y BUTVISIII OaraTo3HATHOI HOPMAJIBLHOI BiJIIOBIIHOCTI, & TE€PTsT OMUCYIOTHCSI
cyOrpaieHTOM JIOKAJBbHOTO Bimobparkenns Jlimmmma. Po3pobiieno Bapiarriitae dbopmystro-
BaHHSI MOJIEJIi, TOEIHYOYN /1Bl reMiBapiariiiiai HepiBHOCTI y OB s13aHy cucreMy. [cHyBaHHS
Ta €IMHICTH PO3B’SI3KY JIEMOHCTPYIOTHCS Ha OCHOBI HEIOJABHIX BHCHOBKIB Teopil remi-
Bapialifinnx HepiBHOCTEll Ta aprymeHty 3 ¢dikcoBanoo Toukoro. lasi mogano pesyabrar
HeIepepBHOI 3aJI€KHOCTI, a MMOTIM BCTAHOBEHO iCHYBaHHs PO3B’SI3KYy O0E€pPHEHO1 331881 JI1sI
3a/a4i TepTS KOHTAKTY 3 I'€30€JIeKTPUIHUM 3AIlPHUM MATEPIaJIOM.

Knw4osi cnosa: saniprutl n’ezoesexmpunnuti mamepian, 3a0a4a npo Gpuruyitinud KomH-
maxm, obepHena 3a0a4a, 2emi8aPIayItiHG HEPIGHOCT.
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