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The main difficulty of the meshless methods is related to the support of shape functions.
These methods become stable when sufficiently large support is used. Rather larger sup-
port size leads to higher calculation costs and greatly degraded quality. The continuous
adjustment of the support size to approximate the shape functions during the simulation
can avoid this problem, but the choice of the support size relative to the local density
is not a trivial problem. In the present work, we deal with finding a reasonable size of
influence domain by using a genetic algorithm coupled with high order mesh-free algo-
rithms which the optimal value depends on the accuracy and stability of the results. The
proposed strategy provides guarantees about the growth of approximation errors, monitor
the level of error, and adapt the evaluation strategy to reach the required level of accuracy.
This allows the adaptation of the proposed algorithm with problem complexity. This new
strategy in meshless approaches are tested on some examples of structural analysis.
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1. Introduction

In our opinion, the main advantage of meshless methods in nonlinear structural analysis is the pos-
sibility to handle more flexibly large transformations and discontinuities than the Finite Element
Method (FEM) approaches that typically suffer from severe grid distortion under these conditions.
Meshless methods are used to study elastoplasticity and hyperelasticity problems [1–6], viscoplastic
problems [7–10], fissuring of structures [11–13], contact problems [14], nonlinear dynamic ruptures [15],
metal forming problems [16] and there are other fields of application of meshless methods. The per-
formance of meshless methods can be explained by the following factors: (i) in the Lagrangian for-
mulation, the gradient operator of the transformation calculated at a point is constructed using a
number of nearest neighbors generally larger than the only nodes of the element in the FEM; (ii) in
meshless approaches based on the strong form there is no Jacobian matrix, even in the case of meshless
approaches based on the weak form, the Jacobian matrix associated not become singular except for
much larger distortion of nearest neighbors [17]; (iii) the quality of the solution is much less sensitive
to the relative position of the nodes, authorizing in updated Lagrangian formulations to build the
solution from relative positions between the nodes prohibited in the finite element method; (iv) it
is not necessary to build a mesh for the construction of approximations that allows treating the do-
mains of complex geometries in bidimensional (2D) or tridimensional (3D) cases, using only a cloud of
nodes [18]; (v) another major advantage of meshless methods is the ability to insert or remove nodes
very easily, the relative position of the nodes between them influences very little the solution quality.
There are other advantages of the meshless methods which are related to the physical phenomenon
to simulate, for example, the meshfree shape functions reduce considerably the dependence between
the direction of the shear bands or cracks and nodes distribution [19,20]. The conditions necessary to
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guarantee the stability of these methods are given in [21–23]. The use of fixed support in the prob-
lems simulation where the cloud of nodes undergoes strong distortions can involve the instability of the
method. Relatively large support of the Moving Least Square (MLS) shape functions allows remedying
for the blocking problems encountered in the incompressibility problems. Li et al. [17] conduct a large
deformation simulation with a displacement formulation without introducing a specific treatment for
the problems related to plastic incompressibility. In the same way in [17], the volumetric locking and
shear locking problems encountered in the FEM are not encountered with the meshless methods. When
we want to reduce the support size, for reasons of cost and quality, the blocking problems reappear.
These aspects are discussed in [24, 25]. We can notice that the main difficulty of these techniques is
related to the support of the shape functions. In most of these approaches, the support domain (or
also influence domain) of a node is defined by a sphere or a parallelepiped centered on this node and
by a circle or rectangle in the 3D and 2D cases respectively. As discussed by Liu et al. [22, 23, 26],
this support must cover a sufficient number of nodes (or particles), so it must be large enough, so that
the method to be stable. Rather, a larger support size leads to greatly degraded quality and higher
calculation costs. To avoid these problems, we can use the continuous adjustment of the support size
of the shapes functions during the simulation, but the search for optimal support size relative to the
local density is not a trivial problem. In the proposed meshless approaches [6,8–10,27,28], the nearest
neighbors (N) choice can be determined from numerical tests to stabilize the solution which is very
difficult and expensive in terms of calculation time.

Timesli [29] presented the first effort to find the optimal size of the influence domain for high order
mesh-free algorithms. In this paper, we propose an adaptive approach to optimize the support size
of meshfree shape functions. Our objective is to show a mesh-free approach coupled with a genetic
algorithm to determines, with good precision, the optimal value of the support size. It is an effective
strategy coupling the high order mesh-free approach, based on strong form MLS approximations, and
an optimal value search algorithm of the support size based on optimization algorithms to ensure
the existence of the inversion of weighted moment matrix [A]−1 and a well-conditioned [A] in MLS
approximation. In this approach, the choice of nearest neighbors depends on the accuracy and stability
of the results.

The outline of this paper is as follows: Section 2 presents the high order approaches of the considered
nonlinear problem. In Section 3, the promising genetic algorithm for finding a good size of influence
domain for solving large deformation problems by the high order mesh-free approaches is introduced.
The results of numerical experiments are presented in Section 4. Finally, we finish with a conclusion
in section 5.

2. High order approaches of the considered nonlinear problem

In the nonlinear elastic contact problems with large deformations, the problem in strong form as shown
in the reference [6] can be written as follows:




divT = 0 on Ω,
T = S +BS,
S = D : γ,
T ·NF = λF on ∂ΩF ,
T ·NC = C on ∂ΩC ,
U = λUd on ∂Ωd,

(1)

where Ω is the occupied domain by the structure, T is the first Piola-Kirchhoff stress tensor, S is
the second Piola-Kirchhoff stress tensor, B is the displacement gradient tensor, D is the fourth order
elastic behavior tensor, γ is the Green-Lagrange strain tensor, λ is a control parameter, Ud, F and
C are respectively an imposed displacement on the boundary ∂Ωd, an applied stress vector on the
boundary ∂ΩF and a stress vector of the unilateral contact on the boundary ∂ΩC , NF and NC are
respectively the unit outward normal to the boundaries ∂ΩF and ∂ΩC .
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The problem can be rewritten in the following form:




[L] {T} = {0} on Ω,
{T} = ([A] + [B]) {S} ,
{S} = [D] {γ} ,
[NF ] {T} = λ {F} on ∂ΩF ,
{U} = λ {Ud} on ∂Ωd,
[NC ] {T} = {C} on ∂ΩC ,

(2)

where [L] is an operator matrix, {T} and {S} are vectors containing all the components of the first
Piola-Kirchhoff stress tensor T and the second Piola–Kirchhoff stress tensor S, [A] and [B] are the
matrices, [NF ] and [NC ] are matrices formed of components of the outward unit normal vectors to the
boundary ∂ΩF and ∂ΩC respectively. We apply the perturbation technique as shown in [6] and using
the definition of the path parameter [30], we obtain some linear problems given by:





[L] {Tk} = {0} on Ω,
{Tk} = [BT ] {Sk}+

{
T nlk
}
,

{Sk} = [DT ] {γk}+
{
Snlk
}
,

{γk} = [CT ] {U ek}+
{
γnlk
}
,

[NF ] {Tk} = λk {F} on ∂ΩF ,
{Uk} = λk {Ud} on ∂Ωd,
[NC ] {Tk} = {Ck} on ∂ΩC ,

(3)

where (·)nl represent the terms that depend on solutions at previous orders and the matrices [BT ],
[DT ] and [CT ] are dependent on the initial solution.

Taking into account the MLS approximation of unknown vector {U} and after substitution and
assembly techniques, the problem of Eq. (3) can be written in the following condensed form:

{
Order: k = 1 [KT ] {U1} = λ1 {F}+

{
Fnl1

}
,

Order: 2 6 k 6 p [KT ] {Uk} = λk {F}+
{
Fnlk
}
,

(4)

where [KT ] is the stiffness matrix evaluated at a point solution, {Fnlk } is the term depending on previous
orders solutions and {Uk} is the unknown vector that collects all nodal displacements. The range of
validity amax of series expansion, in the path-following technique, is determinate by difference between
consecutive orders. Simply, we require that the difference between two approximations to consecutive

orders be quite small, which allows us to obtain an explicit formula amax =
(
η ‖U1‖
‖Up‖

) 1
p−1

, where η is a

given tolerance parameter and ‖ · ‖ represents a given norm [30].

3. Optimum support size in high order meshfree approaches

Genetic algorithms are part of evolutionary algorithms which are based on genetics and natural selec-
tion. Their operation is extremely simple. We start from an initial population of arbitrarily chosen
potential solutions (chromosomes). We assess their relative performance (fitness). These performances
allow us to create another population of potential solutions by crossover, mutations, and selection
which are simple evolutionary operators. This cycle must be repeated to find a satisfactory solution.
The directed stochastic search makes genetic algorithms [31] a very robust and universal tool for almost
any optimization problem which can be expressed in a reasonably small set of parameters.

The purpose is to use a search algorithm using the genetic algorithm to determine good size of
influence domain hi in the mesh-free methods. In this study, the genetic algorithm is tested to determine
the good hi for the simulation of large deformation problems. For a given distribution of points, this
proposed strategy allows to determinate automatically and quickly the best number of neighbors points,
to build the shapes functions, with good precision. We consider that the size of the influence domain
hi = βds where β is a coefficient to determinate and ds is the average distance between points, where
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ds = 1
N

∑N
j=1 dj and dj is the distance between the jth point and its nearest natural neighbor. The

proposed genetic algorithm for the optimal value search of the coefficient β is presented in Fig. 1.
The idea is to minimize the relative error of the displacement at order 1 of the high order mesh-free
algorithm [29, 32] as shown in this figure. This first order error estimator allows us to ensure a well-
conditioned tangent matrix [KT ] of the high order algorithm which is the same used in the other orders
k > 2. For this reason, in the minimization of the relative error, we are limited to the displacement at
order 1 to determine βoptimal.

YesNo

Initialization: β = 〈0 0 0 0〉; Population =




2 2
3 3
4 4
5 5




Iteration: n = 1

Iteration: n = n+ 1

i = 1 : 2

β(1 : 4) = β(1 : 4) + Population(1 : 4, i) · 10(1−i)

j = 1 : 4Neighboring points and shape functions
update with influence domain d = β(j)ds

{Uln} = [KT ]
−1{F}

λ1 = 1√
〈Uln〉{Uln}+1

{U1}n = λ1{Uln}
error(j) =

1

2

‖{U1}n − {U1}n−1‖
‖{U1}n + {U1}n−1‖

min(error(1 : 4)) < ε

Find j equivalent to the mini-
mum error (min(error))

βoptimal = β(j)

Selection of Population(imax,1:S) and
Population(imin,1:S) which are equivalent
to the max(error) and min(error) repec-
tively

Replace Population(imax,1) with Population(imin,1)

Fig. 1. Strategy of the genetic algorithm for finding the optimal value of β based on the first order error
estimator.

In general, we can obtain the generation of the “Population” as follows:

Population = zeros(Npopulation,digits + 1),

Population = [randi([0 9], [Npopulation 1]), . . . , (5)

randi([0 9], [Npopulation digits])],

where “Npopulation” represents the number of values β to be tested for each iteration, “digits” is the
number of digits after the decimal point and “randi” is a random function between 0 and 9 where the
size of the influence domain hi varies in the interval [0, 10]. From our numerical experience on the
use of the meshless strong form method for structural analysis and to facilitate understanding of the
proposed algorithm, we limit the choices of the parameters of the genetic algorithm. In this contest, we
can consider that the size of the influence domain hi varies in the interval [2, 5.5] as shown in the initial
“Population” in the Fig. 1. We also assume a single number after the decimal point which limited to 2,
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3, 4 and 5 as shown in the second column of “Population” (Population(:, 2)) of the initial “Population”
where in this case βoptimal must be equal to 2.2, 3.3, 4.4 or 5.5. Note that in the selected “Population”,
the numbers in the first column of “Population” (Population(:, 1)) are arranged in ascending order from
the smallest to the largest number to minimize the number of iterations in the proposed algorithm
and to choose the smallest value of βoptimal with good precision to minimize the calculated time. The
satisfactory solution is controlled by the displacement relative error which must be lower than of ε.
If the relative errors of the values 2.2, 3.3, 4.4 and 5.5 are greater of the tolerance parameter ε, we
change the values to be tested (Population(:, 1)) using the proposed strategy and keeping the same
numbers after the commas (Population(:, 2)). We test the values of the new “Population” in the second
iteration. The same procedure is repeated until the relative error is less than ε.

4. Numerical results

4.1. First example: the Timoshenko beam

Firstly, to guarantee the accuracy of the proposed approach, the relative error between the simulation
results and the analytical solution is presented in the context of linear elasticity. We consider the

x

y

P

Fig. 2. The Timoshenko beam.

Timoshenko beam [33] of the following mechani-
cal properties: Young’s modulus E = 3 · 107 MPa,
Poisson’s ratio nu = 0.3. The geometrical prop-
erties of this beam are: length L = 48mm, width
D = 12mm. The beam is considered to be of unit
depth and is in a plane stress state (see Fig. 2).

The beam is subjected to a parabolic traction,
on the boundary at (y, x = L), given by

F d =
−P
2I

(
D2

4
− y2

)
, (6)

where P = 1000 and I = D3

12 is the moment of inertia (second moment of the area). The exact
displacement solution for this problem is





u(x, y) =
Py

6EI

[
(6Lx− 3x2) + (2 + ν)

(
y2 − D2

4

)]
,

v(x, y) =
−Py
6EI

[
3ν2y(L− x) + (4 + 5ν)

D2x

4
+ 3Lx− x3

]
.

(7)

The satisfactory solution compared to the analytical solution is controlled by the displacement relative
error ‖Unumerical−Uexact‖

‖Uexact‖ which must be lower of ε = 5 · 10−3. The relative error of nodes displacements
is computed according to the exact displacement solution in the equivalent positions of nodes. Fig. 3
shows the variation of the relative error of the nodes displacement with the parameter β using the
genetic algorithm. The optimum value βoptimal = 4.4 can be obtained with a relative error equal
to 6.858 · 10−3 in the first iteration as shown the Fig. 3a. The first step in the second iteration
is to create another population of potential solutions. In this work, we change the values to be
tested (Population(:, 1)) using the proposed strategy and keeping the same numbers after the commas
(Population(:, 2)). Therefore without taking into account the numbers after the decimal point, the
value 5 equivalent to the maximum error is replaced by the value 4 equivalent to the minimum error
and the new “Population” becomes:

Population =




2 2
3 3
4 4
4 5


 . (8)
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The first iteration allows to determine the best value of support size, but it is necessary to test other
numbers after the decimal point to increase accuracy. Fig. 3b shows the second iteration where the
optimum value βoptimal = 4.5 can be obtained with a relative error equal to 2.276·10−3 . The calculation
stops because the relative error is lower of ε = 5 · 10−3 and the best choice of the optimal value is
βoptimal = 4.5.

β
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Fig. 3. Evolution of displacement relative error versus the parameter β:
(a) First estimation of βoptimal; (b) Second estimation of βoptimal.
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Fig. 4. Deformed configuration with deformation scale
factor equal 800 for the adaptive algorithm and the an-

alytical solution.

Fig. 4 represents the comparison of the ana-
lytical solution and that numerical of the adap-
tive algorithm based on meshless strong form
approximation. To evaluate the obtained re-
sults, we compare in Table 1 the relative error
‖U−Uexact‖
‖Uexact‖ of displacements calculated by the

adaptive algorithm in bold and different values
of support size. We observe an excellent agree-
ment between the numerical and analytical re-
sult for the support size hi = 4.5 ds which can
be determined automatically using our strategy
based on the genetic algorithm. Otherwise, it
should be noted that the arbitrary choice of sup-
port size requires many numerical tests to arrive
at the same quality of the proposed strategy.
This is what can make this strategy less expen-
sive compared to the classical method. We can

Table 1. Relative error ‖Unumerical−Uexact‖
‖Uexact‖

using the proposed strategy
and different values of the parameter β to approximate the shapes functions.

Parameter β 2 2.5 3 3.5 4 proposed strategy 5

Error (%) 31.573 1.748 2.012 2.521 2.2 0.2276 6.303

minimize the number of iterations by increasing the values tested in each iteration. For example, we
consider that the number after the decimal point for each number 2, 3, 4 or 5 maybe 2, 3, 4 or 5 as
shown in the initial population in Fig. 5. As shown the Fig. 6, the same quality solution can be obtained
with a single iteration. In the following examples, we use the second choice of initial Population given
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in Fig. 5 and the satisfactory solution is controlled by the displacement relative error (see Fig. 1) which
must be lower of ε = 10−4.

Population=

2 2

2 3

2 4

2 5

3   2

3   3

3   4

3   5

4 2

4 3

4 4

4 5

5   2

5   3

5   4

5   5

digits after the decimal point for number 5

digits after the decimal point for number 4

digits after the decimal point for number 3

digits after the decimal point for number 2
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β
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error=2.276 10-3

Fig. 5. Initial Population with the number after the
decimal point for each number 2, 3, 4 or 5 maybe 2, 3,

4 or 5.

Fig. 6. Evolution of displacement relative error versus
the parameter β.

4.2. Second example: traction of a bi-dimensional nonlinear elastic plate

Secondly, in the context of the geometrical non-linearity, we consider a bi-dimensional 2D elastic
structure in tension of geometry (200mm × 100mm). This plate is fixed and submitted to a uniform
loading λF (F = 1MPa) at x = 0 and x = L respectively. The mechanical properties of this structure
are: Young’s modulus E = 2 · 105 MPa, Poisson’s ratio ν = 0.3.
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Fig. 7. Estimation of the optimal parameter βoptimal: (a) Evolution of displacement relative error versus the

parameter β; (b) Zoom of the curve in the figure on the left.

In the numerical results, the proposed adaptive algorithm based on the high order mesh-free ap-
proach is denoted by “HOA-Adaptive”. On the other hand, the high order approach using Finite
Element Method FEM, considered as a reference solution, is denoted by “HOA-FEM”. The chosen
parameters of all high order mesh-free approaches (“HOA-Adaptive” and “HOA-FEM”) are truncation
order p = 15 and tolerance parameter η = 10−8.
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Fig. 8. Evolution of the optimal parameter βoptimal

with respect to the number of steps using the “HOA-
Adaptive”.

Fig. 7 shows the evolution of the displacement
relative error with respect to the parameter β to
estimate βoptimal in the first step using the genetic
algorithm. The optimum value βoptimal = 2.5 can
be obtained with a relative error equal to 4.216 ·
10−5.

Fig. 8 shows that the evolution of the opti-
mal parameter βoptimal remains constant versus
the number of steps, which explains that βoptimal

is not influenced by the increase in loading and
displacement. So in traction tests, we can search
βoptimal just in the first step. In Fig. 9, we present
the initial and the deformed configurations of the
structure and the stress distributions Sxx in the
plate for the load λ = 2.2202 · 105.
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Fig. 9. Results for λ = 2.2202 · 105: (a) Initial and deformed configurations of plate; (b) Distribution of stress
component Sxx in the deformed configuration of plate.
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Fig. 10. Evolution of load λF with respect to displacements u and v for
the two algorithms “HOA-Adaptive” and “HOA-FEM” at registration point.

We plot in Fig. 10 the
evolution of the displacement
components u and v with re-
spect to the load parameter
λ at registration point us-
ing the two algorithms “HOA-
Adaptive” and “HOA-FEM”.
There is a good agreement be-
tween the two results where
the maximum relative er-
ror of “HOA-Adaptive” versus
“HOA-FEM” is less than 10−3.

4.3. Third example: bending of a bi-dimensional nonlinear elastic plate

In this third example, we consider the bending of a bi-dimensional 2D elastic structure of geometry
(200mm × 20mm) with the same mechanical properties and the same chosen parameters of the first
example for the algorithm “HOA-Adaptive”. This plate is fixed at x = 0 and submitted to an imposed
bending load λF (F = 1MPa) at x = L.

Using the genetic algorithm, Fig. 11a shows the evolution of displacement relative error with respect
to the parameter β to estimate βoptimal in the first step. The optimum value βoptimal = 3.4 can be
obtained with a relative error equal to 2.146 · 10−5 which represents the minimum value as shown the
Fig. 11b.
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Fig. 11. Estimation of the optimal parameter βoptimal: (a) Evolution of displacement relative error versus the
parameter β; (b) Zoom of the curve in the figure on the left configuration of plate.
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Fig. 12. Evolution of the optimal parameter
βoptimal with respect to the number of steps

using the “HOA-Adaptive”.

In the bending test, the optimal parameter βoptimal

varies between 3.3 and 3.5 (see Fig. 12). Initial and de-
formed configurations of the plate and the distribution of
the stress component Sxx in the deformed configuration of
the plate for λ = 4569, in the case of the bending test, are
represented in the Fig. 13.

We also represent in Fig. 14, the evolution of load λF
with respect to displacements u and v for the two algo-
rithms “HOA-Adaptive” and “HOA-FEM” at the registra-
tion point. The results show that the maximum relative
error of “HOA-Adaptive” versus “HOA-FEM” is less than
10−3, but the convergence radius of “HOA-FEM” tends
to zero and the calculation stops from the load value
λ = 3500. But “HOA-Adaptive” exceeds this value, which
shows the advantage of the high order mesh-free approach

compared to high order approach based on the FEM.
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Fig. 13. Results for λ = 4569: (a) Initial and deformed config-
urations of plate; (b) Distribution of stress component Sxx in the

deformed configuration of plate.

Fig. 14. Evolution of load λF with re-
spect to displacements u and v for the two
algorithms “HOA-Adaptive” and “HOA-

FEM” at the registration point.
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4.4. Fourth example: bending of a bi-dimensional nonlinear elastic plate in contact with a rigid
foundation

In this test, the contact between the bi-dimensional nonlinear elastic structure and a rigid foundation is
considered as shown in the initial configuration of the plate in Fig. 15a. We adopt the same mechanical
and geometrical data as in the second example. We are interested to treat this problem by using the
proposed algorithm “HOA-Adaptive” based on a genetic algorithm. Fig. 15 represents the deformed
configuration of the plate (see Fig. 15a) for the load parameter λ = 48.3963 and distribution of the
stress component Sxx in the deformed plate (see Fig. 15b) for the same load parameter.
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Fig. 15. Results for λ = 48.3963: (a) Initial and deformed configurations of the plate; (b) Distribution of the
stress component Sxx.

Fig. 16 illustrates the evolution of displacement relative error versus the parameter β in the first
step (k = 1). The analysis of this figure shows that the optimal value is βoptimal = 3.3 with a relative
error equal to 2.09 · 10−5.
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Fig. 16. Estimation of the optimal parameter βoptimal: (a) Evolution of displacement relative error versus the
parameter β; (b) Zoom of the curve in the figure on the left.

Fig. 17 shows the evolution of the optimal parameter βoptimal with respect to the number of steps.
We remark that there is a fluctuation of βoptimal, which the optimal parameter βoptimal varies of 3.3 to
3.5, after that the calculation stabilizes.
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Fig. 17. Evolution of the optimal parameter βoptimal with respect to
the number of steps using the “HOA-Adaptive”.

5. Conclusion

In this paper, we present a new strategy for the automatic adaptation of the support size of meshfree
approaches. In this strategy, we have adapted an algorithm for finding the optimal value of support
size with a high order meshfree algorithm. The proposed adaptive mesh-free approach based on this
strategy gives good results with good precision, compared with the high order approach based on FEM,
which overcomes the difficulty for finding the size of influence domain. This work is an initiation in
this field who can handle some technical difficulties in meshless methods and to show the effectiveness
of the new strategy for finding the optimal value of the support size, therefore the proposed strategy
allows us to think about implementing mesh-free approaches in industrial simulation software.
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Оптимальна пiдтримка змiнного розмiру для безсiткових пiдходiв
з використанням генетичного алгоритму

Гассуна С., Таймслi А.

Унiверситет Касабланки Хасан II,
Нацiональна вища школа мистецтв та ремесел (Ensam Casablanca),

20670 Касабланка, Марокко

Основна складнiсть безсiткових методiв пов’язана з пiдтримкою форми функцiй.
Цi методи стають стабiльними, коли використовується достатньо велика пiдтрим-
ка. Значно бiльший розмiр пiдтримки призводить до бiльших обчислень та значно
гiршої якостi. Неперервне регулювання розмiру пiдтримки для апроксимацiї функцiй
форми пiд час моделювання може усунути цю проблему, але вибiр розмiру пiдтримки
вiдносно локальної щiльностi не є простою проблемою. У данiй роботi дослiджується
розумний розмiр домену впливу, використовуючи генетичний алгоритм у поєднаннi
з безсiтковими алгоритмами високого порядку, оптимальне значення яких залежить
вiд точностi та стабiльностi результатiв. Пропонована стратегiя забезпечує гарантiї
щодо зростання похибок наближення, контроль рiвня похибки, а також адаптацiю
стратегiї оцiнки для досягнення необхiдного рiвня точностi. Це дозволяє адаптувати
запропонований алгоритм до необхiдної складностi задачi. Запропонована стратегiя
у безсiткових пiдходах випробовується на деяких прикладах структурного аналiзу.

Ключовi слова: великi деформацiї, сильна форма, безсiтковий метод, генетичний
алгоритм, автоматичний вибiр найближчого околу.
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