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1. Introduction

1.1. Introduction of our problem

Consider the nonlinear elliptic problem





−div
(
a(x)|∇u|p(x)−2∇u

)
+ b(x)u|u|r(x)−1 =

f

uγ(x)
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω is a bounded open subset of RN (N > 2) with Lipschitz boundary ∂Ω, f is a positive (that
is f(x) > 0 and not zero a.e.) function in L1(Ω), and p, r : Ω→ (0,+∞), γ : Ω→ (0, 1) are continuous
functions and satisfying

1 < p− := inf
x∈Ω

p(x) 6 p+ := sup
x∈Ω

p(x) < N, (2)

p(x)− 1 < r(x), (3)

0 < γ− := inf
x∈Ω

γ(x) 6 γ+ := sup
x∈Ω

γ(x) < 1, and |∇γ| ∈ L∞(Ω) (4)

where a(x), b(x) are measurable functions verifying for some positive numbers α, β, µ, ν the next
conditions

0 < α 6 a(x) 6 β, 0 < µ 6 b(x) 6 ν. (5)

Equations with variable exponents appear in various mathematical models. In some cases, they
provide realistic models for the study of natural phenomena in electro-rheological fluids and important
applications are related to image processing. We refer the reader to [4–6] and the references therein.
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For constant-exponent cases (i.e., p(x) = p, r(x) = r and γ(x) = γ), the existence and regularity
of solutions to problem (1) are studied in [1, 3, 7, 8]. They proved that the solution is in W 1,q

0 (Ω) and
ur+γ belongs to L1(Ω), where q = pr

p+1−γ . The problem was also considered in [9], when b(x) = 0 and
γ, p was a constants with 0 6 γ < 1, f ∈ Lm(Ω) (m > 1). The authors in [9] prove the existence and
uniqueness results. If p(x) = 2 and γ, r were constants, the problem (1) has been treated in [10].

In case without the lower-order term in (1) (i.e., b(x) = 0) and the exponent p(x) ≡ p, the
problem (1), have been treated in [11], under the hypothesis f ∈ Lm(Ω) (m > 1). If m = 1 and 0 <

γ− 6 γ(x) 6 γ+ < 1 the authors proved that the solution belongs to W 1,q
0 (Ω), where q = N(p+γ−−1)

N+γ−−1 .

1.2. Preliminary work

For some preliminary results on Lebesgue and Sobolev spaces with variable exponent, we give the
definition of Lp(·)(Ω) only, for more details, see [12, 13] or monographs [14, 15]. For an open Ω ⊂ R

N ,
let p : Ω→ [1,+∞) be a measurable function such that

1 < p− = ess inf p, p+ = ess sup p < +∞.

Let define Lebesgue space with variable exponent Lp(·)(Ω) to consist of all measurable functions u : Ω→
R for which the convex modular

ρp(·)(u) =
∫

Ω
|u|p(x)dx,

is finite. The expression

‖u‖p(·) := ‖u‖Lp(·)(Ω) = inf
{
λ > 0, ρp(·)

(u
λ

)
6 1
}

defines a norm in Lp(·)(Ω), called the Luxemburg norm, and
(
Lp(·)(Ω), ‖u‖p(·)

)
is uniformly convex

Banach space. Its dual space is isomorphic to Lp
′(·)(Ω), where 1

p(x) +
1

p′(x) = 1. For all u ∈ Lp(·)(Ω)
and v ∈ Lp′(·)(Ω), the Hölder type inequality

∣∣∣∣
∫

Ω
u v dx

∣∣∣∣ 6
(

1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·) 6 2‖u‖p(·)‖v‖p′(·),

holds true. Sobolev space is defined with variable exponent

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)

}
,

endowed with the norm
‖u‖1,p(·) = ‖u‖W 1,p(·)(Ω) = ‖u‖p(·) + ‖∇u‖p(·).

The space
(
W 1,p(·)(Ω), ‖u‖1,p(·)

)
is reflexive Banach space. Next, we define also

W
1,p(·)
0 (Ω) =

{
u ∈W 1,p(·)(Ω), u = 0 on ∂Ω

}
,

endowed with the norm ‖.‖1,p(·).
The space W 1,p(·)

0 (Ω) is separable and reflexive provided that with 1 < p− 6 p+ <∞.

Proposition 3 (Ref. [16, Poincaré inequality]). There exists a constant C > 0, such that

‖u‖p(·) 6 C‖∇u‖p(·), ∀u ∈W 1,p··)
0 (Ω).

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular ̺p(·)(Ω) of the space Lp(·)(Ω). We have the following result
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Proposition 4 (Ref. [14]). If (un), u ∈ Lp(·)(Ω) and p+ < +∞, then the following properties hold
true:

(i) min
(
ρp(·)(u)

1
p+ , ρp(·)(u)

1
p−

)
6 ‖u‖p(·) 6 max

(
ρp(·)(u)

1
p+ , ρp(·)(u)

1
p−

)
,

(ii) min
(
‖u‖p−p(·), ‖u‖

p+

p(·)

)
6 ρp(·)(u) 6 max

(
‖u‖p−p(·), ‖u‖

p+

p(·)

)
,

(iii) ‖u‖p(·) 6 ρp(·)(u) + 1,

Next, we recall some embedding results regarding variable exponent Lebesgue–Sobolev spaces. If
p, θ : Ω → (1,+∞) are Lipschitz continuous function satisfying (2) and p(x) 6 θ(x) 6 p∗(x) for any
x ∈ Ω, where p∗(x) = Np(x)

N−p(x) , then there exists a compact embedding

W 1,p(·)(Ω) →֒→֒ Lθ(·)(Ω) →֒ Lθ
−
(Ω), (6)

where θ− = inf
x∈Ω

θ(x).

1.3. Statement of main result

Definition 1. Let f ∈ L1(Ω). A function u ∈W 1,1
0 (Ω) is a weak solution to problem (1), if

∀ω ⊂⊂ Ω, ∃cω > 0 such that u > cω a.e. in ω, ur(x) ∈ L1(Ω),

and ∫

Ω
a(x)|∇u|p(x)−2∇u · ∇ϕdx+

∫

Ω
b(x)ur(x)ϕdx =

∫

Ω

fϕ

uγ(x)
dx, (7)

for every ϕ ∈ C1
0 (Ω).

In this paper we will show the following result.

Theorem 1. Suppose that assumptions (2)–(4) hold. Let f ∈ L1(Ω), f > 0 in Ω and that f 6≡ 0 in
Ω i.e. f is a function which is strictly positive on every compactly contained subset of Ω. Assume that

p(x) > 1 +
1− γ(x)
r(x)

. (8)

Then, the problem (1) has at least one weak solution u ∈W 1,q(.)
0 (Ω), with

q(x) =
p(x)

1 + 1−γ(x)
r(x)

. (9)

Moreover ur(x)+γ(x) belongs to L1(Ω).

Remark 1.

• The assumption (4) implies 1 < q(·) < p(·).
• The assumption (3) implies q(·) > p(·)− 1.

In order to prove this result, we will work by approximation, “truncating” the singular term 1
uγ(x)

so that it becomes not singular at the origin. We will get some a priori estimates on the solutions un of
the approximating problems, which will allow us to pass to the limit and find a solution to problem (1).

2. Approximating problems

Hereafter, let denote by Tk the truncation function at the level k > 0, defined by Tk(s) =
max{−k,min{s, k}} for every s ∈ R.
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Let (fn) (fn > 0) be a sequence of bounded functions defined in Ω which converges to f > 0 in
L1(Ω), and verifies the inequalities fn 6 n and fn 6 f for every n > 1 (for example fn = Tn(f)).
Consider the following approximate equation





−div
(
a(x)|∇un|p(x)−2∇un

)
+ b(x)un|un|r(x)−1 =

fn(
un +

1
n

)γ(x) in Ω,

un = 0 on ∂Ω.

(10)

Theorem 2. Let f ∈ L1(Ω), and let r, p : Ω → (1,+∞), γ : Ω → (0, 1) are continuous functions.

Assume that (2) and (5) holds true. Then the problem (10) has a nonnegative solution un ∈W 1,p(.)
0 (Ω).

Lemma 1 (Ref. [17]). Suppose that the hypotheses of Theorem 2 are satisfied. Then there exists

at least one solution un ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω) to the problem (10) in the sense that1

∫

Ω
a(x)|∇un|p(x)−2∇un · ∇ϕ+

∫

Ω
b(x)un|un|r(x)−1ϕ =

∫

Ω

fn(
un +

1
n

)γ(x)ϕ, (11)

for every ϕ ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω).

Proof. This proof derived from Schauder–Tychonov fixed point Theorem (see, for example, [18,
p. 581], [19, p. 298]). Let n in N be fixed, let v be a function in Lp(·)(Ω), we know that the following
non-singular problem




− div

(
a(x)|∇w|p(x)−2∇w

)
+ b(x)|w|r(x)−1w =

fn(
|v|+ 1

n

)γ(x) in Ω,

w = 0 on ∂Ω.
(12)

Therefore, the Minty–Browder Theorem (see, e.g. [20]) implies that problem (12) has a unique solution

w ∈W 1,p(x)
0 (Ω). Let us define a map

G : Lp(.)(Ω)→ Lp(.)(Ω)

and define w = G(v) to be the unique solution of (12). Taking w as test function,

α

∫

Ω
|∇w|p(x) 6

∫

Ω
a(x)|∇w|p(x)−2∇w · ∇w =

∫

Ω

fnw(
|v|+ 1

n

)γ(x) 6 nγ++1

∫

Ω
|w|.

Using Young’s inequality for all ε > 0, Poincaré inequality, (6), and Proposition 2, we get
∫

Ω
|∇w|p(x)dx 6

C(ε)nγ
−+1

α
+ ε

∫

Ω
|w|p−dx

6
C(ε)nγ

−+1

α
+ ε

∫

Ω
|∇w|p−dx

6
C(ε)nγ

−+1

α
+ ε

∫

Ω
|∇w|p(x)dx.

Let choose ε = 1
2 , then by Proposition 2, we obtain

‖∇w‖ρ
p(.)

6
Cnγ

−+1

α
,

where

ρ =

{
p+ if ‖∇w‖p(.) > 1,

p− if ‖∇w‖p(.) 6 1.

Using the Poincaré inequality on the left hand side, we have

1For the sake of simplicity we will use when referring to the integrals the following notation
∫
Ω
f =

∫
Ω
fdx.
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‖w‖p(.) 6
(
Cnγ

−+1

α

) 1
ρ

= Cn,

where Cn is a positive constant independent form v and w, thus, we have that the ball of Lp(.)(Ω)
of radius Cn is invariant for G. It is easy to prove, using the Sobolev embedding, that G is both
continuous and compact on Lp(.)(Ω), so that by Schauder’s fixed point Theorem there exists un in

W
1,p(x)
0 (Ω), for every fixed n such that un = S(un), i.e., un solves




−div

(
a(x) |∇un|p(x)−2∇un

)
+ b(x) |un|r(x)−1 un =

fn(
|un|+ 1

n

)γ(x) in Ω,

un = 0 on ∂Ω.
(13)

Using as a test function u−n = min {un, 0}, one has un > 0. Since the right hand side of (10) belongs
to L∞(Ω) and we proceed in the same way as [21] and obtain un belongs to L∞(Ω) (although its norm
in L∞(Ω) may depend on n). �

Lemma 2. Suppose that the hypotheses of Theorem 2 are satisfied. Then the sequence un is in-
creasing with respect to n, un > 0 in Ω, and for every ω ⊂⊂ Ω there exists cω > 0 (independent on n)
such that

un(x) > cω > 0, ∀x ∈ Ω, ∀n ∈ N. (14)

Moreover there exists the pointwise limit u > cω of the sequence un.

Proof. [Proof of the Lemma 2] Due to 0 6 fn 6 fn+1 and γ(x) > 0,

−div
(
a(x)|∇un|p(x)−2∇un

)
+ b(x)ur(x)n =

fn(
un +

1
n

)γ(x) 6
fn+1(

un +
1

n+1

)γ(x) .

So that

− div
(
a(x)|∇un|p(x)−2∇un

)
+ div

(
a(x)|∇un+1|p(x)−2∇un+1

)
+ b(x)ur(x)n − b(x)ur(x)n+1

6 fn+1




(
un+1 +

1
n+1

)γ(x)
−
(
un +

1
n+1

)γ(x)

(
un +

1
n+1

)γ(x) (
un+1 +

1
n+1

)γ(x)


 . (15)

Let choose (un − un+1)+ = max{un − un+1, 0} as test function in (15). In the left hand side we
use (5) and the monotonicity of the p(x)-laplacian operator as well as the monotonicity of the function
t→ |t|r(x)−1t. For the right hand, using the fact that γ(x) > 0 and fn+1 > 0, it follows

[(
un+1 +

1

n+ 1

)γ(x)
−
(
un +

1

n+ 1

)γ(x)]
(un − un+1)+ 6 0. (16)

By (16), one can get

α

∫

Ω
|∇(un − un+1)+|p(x) 6 0,

which implies that (un − un+1)+ = 0 a.e. in Ω, that is, un 6 un+1 for every n ∈ N. Since the
sequence (un) is increasing with respect to n, we only need to prove that (14) holds for u1. Due
to Lemma 1, u1 ∈ L∞(Ω), i.e., there exists a constant c0 (depending only on Ω and N) such that
‖u1‖L∞(Ω) 6 c‖f1‖L∞(Ω) 6 c0, then

−div
(
a(x)|∇u1|p(x)−2∇u1

)
+ b(x)u

r(x)
1 =

f1

(u1 + 1)γ(x)
>

f1

(c0 + 1)γ(x)
> 0.

Since f1
(c0+1)γ(x)

is not identically zero, the strong maximum principle implies that u1 > 0 in Ω (see [22]).

Since un > u1 for every n ∈ N, (14) holds for un (with the same constant cω which is then independent
on n). �
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Proof. [Proof of the Theorem 2] In virtue of the Lemma 1 and Lemma 2, there exists at least one

nonnegative weak solution un ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω) of problem (10). �

3. A priori estimates

In the remainder of this section, we denote by Ci i = 1, 2, 3, . . . various positive constants depending
only on the data of the problem, but not on n.

Lemma 3. Let k > 0 be fixed. The sequence (Tk(un)), where un is a solution to (13), is bounded in

W
1,p(.)
0 (Ω).

Proof. Taking Tk(un) as a test function in (13), one can obtain
∫

Ω
a(x)|∇un|p(x)−2∇un · ∇Tk(un) +

∫

Ω
b(x)ur(x)n Tk(un) =

∫

Ω

fn(
|un|+ 1

n

)γ(x)Tk(un).

Using (5), fn 6 f , Tk(un) 6= 0, and dropping the nonegative order term,
∫

Ω
|∇Tk(un)|p(x)dx 6

k

α
‖f‖L1(Ω). (17)

As a consequence of Proposition 4 and (17), Tk(un) is bounded in W 1,p(.)
0 (Ω). �

Lemma 4. Suppose that the hypotheses of Theorem 1 are satisfied. Then, the sequence un is

bounded in W
1,q(.)
0 (Ω), where q(·) is given by (9). Moreover (u

r(x)+γ(x)
n ) belongs to L1(Ω).

Proof. Taking ϕ(x, u) = (un + 1)γ(x) − 1, as test function in (13), by (4), (5), and the fact that for
a.e. x ∈ Ω

∇ϕ(x, u) = ∇γ(x)(un + 1)γ(x) ln(un + 1) + γ(x)
∇un

(un + 1)γ(x)
,

we obtain

γ−α
∫

Ω

|∇un|p(x)
(1 + un)1−γ(x)

+ µ

∫

Ω
ur(x)n

[
(un + 1)γ(x) − 1

]

6 C1

∫

Ω
|∇un|p(x)−1(un + 1)γ(x) ln(un + 1) +

∫

Ω
f

[
(un + 1)γ(x) − 1

]
(
un +

1
n

)γ(x) .

Using the fact that |un|θ(x) > 21−θ
+
(1 + un)

θ(x) − 1 (here θ(x) = r(x) and θ(x) = γ(x)),

γ−α
∫

Ω

|∇un|p(x)
(1 + un)1−γ(x)

+ 21−r
+
µ

∫

Ω
(un + 1)r(x)+γ(x)

6 C2 +
1

21−γ+

∫

Ω
f + C1

∫

Ω
|∇un|p(x)−1(un + 1)γ(x) ln(un + 1). (18)

The last term in (18) can be estimated by application of Young’s inequality

(1 + un)
γ(x) ln(1 + un)|un|p(x)−1 = (1 + un)

1− 1−γ(x)
p(x) ln(1 + un)|un|p(x)−1(1 + un)

− (1−γ(x))(p(x)−1)
p(x)

6 C3(1 + un)
p(x)−(1−γ(x))(ln(1 + un))

p(x) + ε
|∇un|p(x)

(un + 1)1−γ(x)
. (19)

Let choose ε = γ−α
2C1

, then by (18) and (19) one can obtain

1

2

∫

Ω

|∇un|p(x)
(1 + un)1−γ(x)

+ 21−r
+
µ

∫

Ω
(un + 1)r(x)+γ(x)

6 C4 + C5

∫

Ω
(un + 1)p(x)−(1−γ(x))(ln(un + 1))p(x). (20)
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The hypothesis (3) implies (1 + t)p(x)−1−r(x)−c(ln(1 + t))p(x) is bounded for all x ∈ Ω and t ∈ R
+. By

another application of Youngs inequality, the next is true

(un + 1)p(x)−(1−γ(x))(ln(un + 1))p(x) = (un + 1)r(x)+γ(x)+c(un + 1)p(x)−1−r(x)−c(ln(un + 1))p(x)

6 ε(un + 1)r(x)+γ(x) + C6. (21)

Therefore, by (20), (21),
∫

Ω

|∇un|p(x)
(1 + un)1−γ(x)

+

∫

Ω
(un + 1)r(x)+γ(x) 6 C7. (22)

Since r(x) > 0 and γ(x) > 0, then
∫

Ω
ur(x)n 6

∫

Ω
(un + 1)r(x) 6

∫

Ω
(un + 1)r(x)+γ(x) 6 C7. (23)

The inequality (23) implies that (u
r(x)+γ(x)
n ) is bounded in L1(Ω). Let q(x) < p(x), using Young’s

inequality and (22), it follows
∫

Ω
|∇un|q(x) =

∫

Ω

|∇un|q(x)

(un + 1)
(1−γ(x)) q(x)

p(x)

6 C8

∫

Ω

|∇un|p(x)
(un + 1)1−γ(x)

+ C9

∫

Ω
(un + 1)

(1−γ(x)) q(x)
p(x)−q(x)

6 C10 + C9

∫

Ω
(un + 1)

(1−γ(x)) q(x)
p(x)−q(x) . (24)

Set
(1− γ(x)) q(x)

p(x)− q(x) = r(x).

Then this equality and (23)–(24) yield
∫

Ω
|∇un|q(x) 6 C11. (25)

�

Lemma 5. Let un be a solution to problem (13). Then
∫

{un>k}
ur(x)n 6

1

µkγ+

∫

{un>k}
f, ∀k > 0, lim

|E|→0

∫

E
ur(x)n = 0,

uniformly with respect to n, for every measurable subset E in Ω.

Proof. Let k > 0 and ψj be a sequence of increasing, positive, uniformly bounded C∞(Ω) functions,
such that ψj(s)→ χ{s>k}, as j → +∞. Choosing ψj(un) in (13), using (5),

µ

∫

Ω
ur(x)n ψj(un) 6

∫

Ω

fn(
un +

1
n

)γ(x)ψj(un).

Therefore, as j tends to infinity and that kγ
−
6
(
k + 1

n

)γ−
6
(
un +

1
n

)γ(x)
in the set {un > k},

∫

{un>k}
ur(x)n 6

1

µkγ−

∫

{un>k}
f. (26)

By (26), for any measurable subset E in Ω, we have
∫

E
ur(x)n =

∫

E∩{un6k}
ur(x)n +

∫

E∩{un>k}
ur(x)n 6 kr

+ |E|+ 1

µkγ
−

∫

{un>k}
f. (27)
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Since f ∈ L1(Ω), we may choose k = kε large enough such that
∫

{un>k}
f 6 ε. (28)

Therefore, the estimates (27)–(28) imply that
∫

E
ur(x)n 6 kr

+

ε |E|+
ε

µkγ
−

ε

,

and lemma is thus proved. �

Lemma 6. Let un be a solution to problem (13). Then

lim
|E|→0

∫

E
|∇un|q(x) = 0, uniformly with respect to n, (29)

for every measurable subset E in Ω and q(·) given by (9).

Proof. Let ε > 0, by Lemma 4, we may choose k = kε large enough such that
∫

E∩{un>k}
|∇un|q(x) 6 ε. (30)

From the estimate (17) and that q(x) < p(x), it comes
∫

E∩{un6k}
|∇Tk(un)|q(x) 6 ε. (31)

By (30) and (31), for any measurable subset E in Ω, we have
∫

E
|∇un|q(x) =

∫

E∩{un6k}
|∇un|q(x) +

∫

E∩{un>k}
|∇un|q(x) 6 2ε.

As a result |∇un|q(x) is equiintegrable in L1(Ω). Thus (29) is proved. �

4. Proof of the main theorem

By Lemma 3, the sequence (un)n is bounded in W
1,q(·)
0 (Ω). Therefore, there exists a function u ∈

W
1,q(·)
0 (Ω) such that (up to a subsequence)

{
un ⇀ u in W 1,q(·)

0 (Ω),
un → u a.e. in Ω.

(32)

Proposition 5. If the sequence Tk(un) of the truncates of the solutions un of (13) is bounded in

W
1,p(·)
0 (Ω). Then

Tk(un)→ Tk(u) strongly in W
1,p(·)
0 (Ω), (33)

as n→∞, for every k > 0. In particular ∇un → ∇u a.e. in Ω.

Proof. By Lemma 3 Tk(un) is bounded in W 1,p(·)
loc (Ω), it weakly converges in this space to its pointwise

limit Tk(u). Moreover, since fn > 0 and un > 0 a.e., we have that

−div
(
a(x)|∇un|p(x)−2∇un

)
+ b(x)ur(x)n > 0,

for all n ∈ N and k > 0.
Now we fix φ ∈ C1

0(Ω) such that 0 6 φ 6 1 on Ω and such that φ ≡ 1 on a fixed subset ω of Ω.
Then, thanks to the monotonicity of the p(x)-laplacian operator, (5), and that Tk(un) > Tk(u) (since
un → u 6 un), we can conclude that the following holds
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0 < β

∫

ω

(
|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u)

)
· ∇(Tk(un)− Tk(u))

+ ν

∫

ω
ur(x)n (Tk(un)− Tk(u))

= β

∫

Ω

(
|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u)

)
· ∇(Tk(un)− Tk(u))φ

+ ν

∫

Ω
ur(x)n (Tk(un)− Tk(u))φ

= β

∫

Ω
|∇Tk(un)∇Tk(un)|p(x)−2∇[(Tk(un)− Tk(u))φ]

− β
∫

Ω
|∇Tk(un)|p(x)−2∇Tk(un) · ∇φ[Tk(un)− Tk(u)]

− β
∫

Ω
|∇Tk(u)|p(x)−2∇Tk(u) · ∇(Tk(un)− Tk(u))φ

+ ν

∫

Ω
ur(x)n (Tk(un)− Tk(u))φ (34)

By Lemma 5, we obtain
ur(x)n → ur(x) strongly in L1(Ω).

Therefore, since Tk(un) strongly converges to Tk(u) in Lp(.)(Ω) (Lemma 3),
∫

Ω
ur(x)n (Tk(un)− Tk(u))φ→ 0, as n→∞. (35)

It’s well known that |∇Tk(u)|p(x)−2∇Tk(u) ∈ Lp
′(·)
loc (Ω), and ∇(Tk(un)− Tk(u))φ tends to zero weakly

in Lp(Ω), therefore one can get
∫

Ω
|∇Tk(u)|p(x)−2∇Tk(u) · ∇(Tk(un)− Tk(u))φ→ 0, as n→∞. (36)

∇φ[Tk(un)− Tk(u)] strongly converges to zero in Lp(·)(Ω). Thus
∫

Ω
|∇Tk(un)|p(x)−2∇Tk(un) · ∇φ[Tk(un)− Tk(u)]→ 0, as n→∞. (37)

From (34)–(37),
∫

ω

(
|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u)

)
· ∇(Tk(un)− Tk(u))→ 0,

then Tk(un) strongly converges to Tk(u) in W
1,p(·)
0 (ω) for all k > 0, i.e., since ω is arbitrary, that

Tk(un) strongly converges to Tk(u) inW 1,p(·)
loc (Ω).

Choosing φ ≡ 1 and repeating the same proof, we obtain that Tk(un) strongly converges to Tk(u)

in W 1,p(·)
0 (Ω), then ∇un → ∇u a.e. in Ω. �

Proof. [Proof of the Theorem 1] It is easy to pass to the limit in the right hand side of problems (13).
On the other hand, using Lemma 2,

0 6

∣∣∣∣∣
fnϕ(

un +
1
n

)γ(x)

∣∣∣∣∣ 6
‖ϕ‖∞
cγ

−

ω

f,

for every ϕ ∈ C1
0 (Ω), using Lebesgue Theorem and (32), it follows that

lim
n→∞

∫

Ω

fnϕ(
un +

1
n

)γ(x) =

∫

Ω

fϕ

uγ(x)
. (38)

By the same argument, we get
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lim
n→∞

∫

Ω
b(x)ur(x)n ϕ =

∫

Ω
ur(x)ϕ. (39)

For the first term, by Proposition 5 we have that

a(x)|∇un|p(x)−2∇un → a(x)|∇u|p(x)−2∇u a.e. in Ω,

furthermore a(x)|∇un|p(x)−2∇un is majorette by β|∇un|p(x)−1. Observe that p(x) − 1 < q(x), by
Lemma 6 and Vitali’s Theorem, we have

lim
n→∞

a(x)|∇un|p(x)−2∇un · ∇ϕ =

∫

Ω
a(x)|∇u|p(x)−2∇u · ∇ϕ. (40)

Hence from (38)–(39) we can deduce (7). �
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Нелiнiйнi елiптичнi рiвняння зi змiнними показниками, що
включають сингулярну нелiнiйнiсть

Хелiфi Г.1, Ель Гадфi Й.2
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вул. Дiдуш Мура Алжир, 2, Алжир
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Аннаба B.P. 12, Алжир

2Лабораторiя LIPIM, Нацiональна школа прикладних наук Хоурiбга,
Султан Мулай Слиманський унiверситет, Марокко

У статтi доводиться iснування та регулярнiсть слабких додатних розв’язкiв для класу
нелiнiйних елiптичних рiвнянь iз нелiнiйною сингулярнiстю, членами нижчого поряд-
ку та L1 в заданнi просторiв Соболєва зi змiнними показниками. Доведено, що член
нижчого порядку має деякий регуляризуючий вплив на розв’язок. Ця робота уза-
гальнює деякi результати, наведенi в [1–3] .

Ключовi слова: простори Соболєва зi змiнними показниками, сингулярна нелiнiй-
нiсть, елiптичне рiвняння.
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