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1. Introduction

1.1. Introduction of our problem

Consider the nonlinear elliptic problem

—div (a(2)|Vu[P®=2Vu) + b(x)ulul @~ = VJZ ) in Q,

u x
u>0 in Q, (1)
u=0 on 01,

where Q is a bounded open subset of RN (N > 2) with Lipschitz boundary 99, f is a positive (that
is f(z) = 0 and not zero a.e.) function in L'(Q), and p,r: Q — (0,4+00), v: & — (0,1) are continuous
functions and satisfying

1 <p :=inf p(z) <p" :=supp(x) < N, (2)
e weﬁ
p(z) =1 <r(z), (3)
0<~ :=inf y(z) <A :i=supy(x) <1, and |Vy|€ LX(Q) (4)
zeQ z€Q

where a(x), b(z) are measurable functions verifying for some positive numbers «, 3, p, v the next

conditions
O<a<a(z)<p, 0<pu<bx) < (5)

Equations with variable exponents appear in various mathematical models. In some cases, they
provide realistic models for the study of natural phenomena in electro-rheological fluids and important
applications are related to image processing. We refer the reader to [4-6] and the references therein.
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For constant-exponent cases (i.e., p(x) = p, r(x) = r and y(x) = ), the existence and regularity
of solutions to problem (1) are studied in [1,3,7,8|. They proved that the solution is in VVO1 9(Q) and
u™ belongs to L(Q2), where ¢ = 5 +plr_y. The problem was also considered in [9], when b(z) = 0 and
v, p was a constants with 0 <y < 1, f € L"™(Q) (m > 1). The authors in [9] prove the existence and
uniqueness results. If p(z) = 2 and v, were constants, the problem (1) has been treated in [10].

In case without the lower-order term in (1) (i.e., b(z) = 0) and the exponent p(xz) = p, the

problem (1), have been treated in [11], under the hypothesis f € L™(Q2) (m > 1). If m =1 and 0 <

v~ < y(xz) <~y < 1 the authors proved that the solution belongs to Wol’q(Q), where ¢ = %.

1.2. Preliminary work

For some preliminary results on Lebesgue and Sobolev spaces with variable exponent, we give the
definition of LP()(Q) only, for more details, see [12,13] or monographs [14,15]. For an open Q C RV,
let p: © — [1,400) be a measurable function such that

+:

1<p =essinfp, p esssupp < +oo.

Let define Lebesgue space with variable exponent LP()() to consist of all measurable functions u: Q —
R for which the convex modular

Pp(-) (1) = /Q |ufP™®dz,

is finite. The expression
. u
lullpey = Nl oy = inf {2 >0, gy (5) <1}

defines a norm in LPO)(Q), called the Luxemburg norm, and (LP0)(€Q), |wllp.y) is uniformly convex
Banach space. Its dual space is isomorphic to L' ()(Q), where ﬁ + Wlx) = 1. For all u € LPO)(Q)
and v € LP()(Q), the Holder type inequality

/uvdaz
Q

holds true. Sobolev space is defined with variable exponent

1 1
<Q;+F)mmwmm<wwmwmw

WP (Q) = {u e LPV)(Q) and |Vu| € LP<'>(Q)} ,

endowed with the norm
lullipey = lullwreo @) = lullpey + 1Vullp)-

The space (WHPO(Q), l|ull1,py) is reflexive Banach space. Next, we define also

Wol,p(-)(Q) _ {u e WLP(')(Q)’ u =0 on 89} ,

endowed with the norm ||.||; ;.-
The space VVO1 P (')(Q) is separable and reflexive provided that with 1 < p~ < p™ < o0.
Proposition 3 (Ref. [16, Poincaré inequality]). There exists a constant C' > 0, such that

1,p-
lullp) < ClIVullpey, Ve Wy ().

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular g,,)(€2) of the space LP0)(Q). We have the following result
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Proposition 4 (Ref. [14]). If (u,), u € LPO)(Q) and pt < +oo, then the following properties hold
true:

(i) min (Pp(~)( )PE s oy (w) P~ ) [ullpy < max (Pp()( ) +7Pp(~)(u)F>7
(i) min (Jfull2 ) el ) < po () < ma (Jlul llully))
(i) [Jullpey < ppey(u )+1

Next, we recall some embedding results regarding variable exponent Lebesgue—Sobolev spaces. If

p,0: Q — (1,+00) are Lipschitz continuous function satisfying (2) and p(z) < 0(x) < p*(z) for any

x € Q, where p*(x) = ]\],V_p;()) then there exists a compact embedding

WhO(Q) wes L00(Q) — 197 (), (6)

where 6~ = inf 0(x).
z€QN

1.3. Statement of main result
Definition 1. Let f € L(Q). A function u € Wol’l(Q) is a weak solution to problem (1), if

Vw CCQ, e, >0 such that u>c, ae inw, u® e LY(Q),

and

u“/(w)

/ a(x)\Vu]p(x)_ZVu-Vgoda:—k/
Q

Q

b(a:)ur(“"”)cpdgn:/Q Jo dx, (7)

for every ¢ € CL(1).

In this paper we will show the following result.

Theorem 1. Suppose that assumptions (2)—(4) hold. Let f € L*(Q), f > 0 in Q and that f # 0 in
Q i.e. f is a function which is strictly positive on every compactly contained subset of §). Assume that

1 —v(z)
r(z) -

Then, the problem (1) has at least one weak solution u € Wol’q(')(Q), with

p(x) > 1+ (8)

_pl@)
(z) = T 190 9)
L+ r(x)

Moreover u"®*7() belongs to L' ().
Remark 1.
e The assumption (4) implies 1 < ¢(-) < p().
e The assumption (3) implies ¢(-) > p(-) — 1.

In order to prove this result, we will work by approximation, “truncating” the singular term ﬁ

so that it becomes not singular at the origin. We will get some a priori estimates on the solutions u,, of
the approximating problems, which will allow us to pass to the limit and find a solution to problem (1).

2. Approximating problems

Hereafter, let denote by T} the truncation function at the level £ > 0, defined by Tj(s) =
max{—Fk, min{s, k}} for every s € R.
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Let (fn) (fn > 0) be a sequence of bounded functions defined in € which converges to f > 0 in
LY(2), and verifies the inequalities f, < n and f, < f for every n > 1 (for example f, = T,,(f)).
Consider the following approximate equation

—div (a(2) |V, [P@) =2V, ) + b(z)un |u,["® 1 = % in €,
(un +1)7 (10)

U, =0 on Of2.

Theorem 2. Let f € L'(Q), and let r,p: Q@ — (1,400), v: @ — (0,1) are continuous functions.
Assume that (2) and (5) holds true. Then the problem (10) has a nonnegative solution u,, € Wol’p(')(Q).

Lemma 1 (Ref. [17]). Suppose that the hypotheses of Theorem 2 are satisfied. Then there exists
at least one solution u, € Wol’p(')(Q) N L>(Q) to the problem (10) in the sense that!
[ a@I¥un P2V, Vot [ baunlun = [ I (1)
Q Q Q (up + %)W(m)
for every ¢ € Wol’p(')(Q) N L>(9).

Proof. This proof derived from Schauder—Tychonov fixed point Theorem (see, for example, [18,
p.581], [19, p.298]). Let n in N be fixed, let v be a function in LP()(Q), we know that the following
non-singular problem

—div (a(m)]Vw[p(x)_QVw) + b(x) Jw| @)L = S in Q,

(Jo] + 2)*¢ (12)
w=20 on 0.

Therefore, the Minty—Browder Theorem (see, e.g. [20]) implies that problem (12) has a unique solution
w e Wol’p(x)(Q). Let us define a map
G: LPY(Q) — LPV(Q)

and define w = ) to be the unique solution of (12). Taking w as test function,

/|Vw|p(x / (:E)|Vw|p(x)_2Vw'Vw:/ fniw() <n7++1/ |w.
9 (ol +3)™ 9

Using Young’s inequality for all £ > 0, Poincaré inequality, (6), and Proposition 2, we get

v+l
/|V (6)2 +€/ |w|P dx

v+l B
M—i—s/\va dx
Q

v +1
o Q

Let choose ¢ = %, then by Proposition 2, we obtain

Cn'y*—l—l
||Vw||Z(,) < o

where

_ {p+ if [[Vwlly.)

Using the Poincaré inequality on the left hand side, we have

1For the sake of simplicity we will use when referring to the integrals the following notation fQ f= fQ fdx.
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1
YL\ P
[wllp) < <Cn ) = Ch,

(07

where C), is a positive constant independent form v and w, thus, we have that the ball of Lp(')(Q)
of radius C), is invariant for G. It is easy to prove, using the Sobolev embedding, that G is both
continuous and compact on Lp(')(Q), so that by Schauder’s fixed point Theorem there exists u, in

Wol’p(x)(Q), for every fixed n such that w, = S(uy,), i.e., u, solves

—div(a(x) |V, [P 2 Vuy,) + b(z) |y [Ty, = I in Q,
(Jun] + 2)7) (13)

Uy =0 on 0f).
Using as a test function u,, = min {uy,0}, one has u, > 0. Since the right hand side of (10) belongs

to L>°(Q2) and we proceed in the same way as [21] and obtain u,, belongs to L>°(€2) (although its norm
in L>°(2) may depend on n). [

Lemma 2. Suppose that the hypotheses of Theorem 2 are satisfied. Then the sequence u, is in-
creasing with respect to n, u, > 0 in €2, and for every w CC € there exists ¢, > 0 (independent on n)
such that

up(x) 2 ¢y >0, Ve, Vnel (14)

Moreover there exists the pointwise limit u > ¢, of the sequence wu,,.

Proof. [Proof of the Lemma 2] Due to 0 < f,, < fn41 and vy(z) > 0,

—di ()—2 r(z) _ fn fn—i—l
dlv(a(x)|Vun|P Vun) + b(z)u " = (u N l)’Y(m) < @

So that
- div(a(:n)|Vun|p(x)_2Vun) + div(a(az)|Vun+1|p(x)_2Vun+1) + b(z)ul ™ — b(a:)u:f_ﬂ

(un+1+%ﬂ>v(x) B (%-F%H)V(x)

(un_i_n%rl)“/(w) <Un+1+%+1>ﬁ/(x)

Let choose (up — upt1)+ = max{u, — up+1,0} as test function in (15). In the left hand side we
use (5) and the monotonicity of the p(x)-laplacian operator as well as the monotonicity of the function
t — [t|"®)=1¢. For the right hand, using the fact that y(z) > 0 and f,41 > 0, it follows

1 ¥(z) 1 v(z)
<Un+1 + ’I’L——|—1> - <Un + ’I’L——|—1> (Un - Un+1)+ < 0. (16)

< fat

(15)

By (16), one can get
@ [ 1V~ )P <0,
Q

which implies that (u, — up+1)+ = 0 a.e. in Q, that is, u, < up4q for every n € N. Since the
sequence (uy) is increasing with respect to n, we only need to prove that (14) holds for u;. Due
to Lemma 1, u; € L>®(R), i.e., there exists a constant ¢y (depending only on © and N) such that
[utll Loy < el fill e (€2) < co, then
—div(a(:n)|Vu1|p(m)_2Vu1) + b(a:)ug(x) = h h

> >0
(ug + 1)@ 7 (co +1)7@)

Since (C()—i—fﬁ is not identically zero, the strong maximum principle implies that u; > 0 in Q (see [22]).

Since u,, = u; for every n € N, (14) holds for w,, (with the same constant ¢, which is then independent
on n). [
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Proof. [Proof of the Theorem 2| In virtue of the Lemma 1 and Lemma 2, there exists at least one
nonnegative weak solution u,, € VVO1 P (')(Q) N L () of problem (10). [

3. A priori estimates

In the remainder of this section, we denote by C; i = 1,2,3,... various positive constants depending
only on the data of the problem, but not on n.

Lemma 3. Let k > 0 be fixed. The sequence (Ty(uy)), where u, is a solution to (13), is bounded in
Wy ().

Proof. Taking T} (u,) as a test function in (13), one can obtain
/ a(z) |V, [P® 2V, - VT (uy) +/ b(z)ul ™ Ty (uy) = / %Tk(un)
Q Q 2 (Jun| +7)”

Using (5), fn < f, Tk(up) # 0, and dropping the nonegative order term,

k
[ 9T P < Sl a7)

As a consequence of Proposition 4 and (17), Tj(uy,) is bounded in VVO1 P (')(Q). [

Lemma 4. Suppose that the hypotheses of Theorem 1 are satisfied. Then, the sequence u, is
bounded in Wol’q(')(Q), where q(-) is given by (9). Moreover (un rle) (e )) belongs to L'(Q2).

Proof. Taking o(z,u) = (u, 4+ 1)7® — 1, as test function in (13), by (4), (5), and the fact that for
a.e. € () Vu

Volz,u) = V(@) (un + 1) In(u, + 1) + fy(w)m7

we obtain
— |vun|p(x) r(z) y(x) _
gl a/ﬂ—(l ) +u/ [(un +1) 1]
up + 1)@ — 1]
u +ﬁ) )
Using the fact that |uy,|® > 21707 (1 + u,,)?®) — 1 (here 6(z) = r(x) and 0(z) = ~(z)),

- Wun’p(w) 1—r+ / (z)+
9l—r L 1) ~v(x)
gl a/g(lJrun)l—V(x) + I Q(u +1)

01/ [V [P (uy 4+ 1)7) In(uy, + 1) + /f

1
<@+——¢/74f{/WwW”ﬂw+DWWMw+D-ﬂ&
217" Jq Q

The last term in (18) can be estimated by application of Young’s inequality

_1=y(=) _ A=v@)(p(z)—1)
(1 ) W1+ 1) [ O = (1 20)' T2 (L 1) i[O (1 )T

|V, [P

p(@)—(1—7(z)) p(x) _¥Pnl 0
< Cs5(1 +up) (In(1 + up))P™ + E(un )@

(19)

Let choose € = 200‘, then by (18) and (19) one can obtain

1 |Vun|p:c 1—pTt / (z)+
S N e Y 4+ 1)@ +()
2/9(1+un)1—v<w> + I Q(u +1)

< Cyi+Cs / (up, 4+ 1)P@==7ED) (I (4, 4 1))P@ . (20)
Q
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The hypothesis (3) implies (1 + t)P@)=1=7@)=¢(In(1 + ¢))P(®) is bounded for all z € Q and ¢t € R*. By
another application of Youngs inequality, the next is true

(un + 1)P@=0=7@) (In(u, + 1))P@) = (u, + 1)7 @@ ey 4 1P@E=1=r@)=e (1 (4, 4 1))P@)
e(uy, + 1)r@H1@) 4 Cg. (21)

Therefore, by (20), (21),

Vu, p(z) () (s
/Q—(l‘—l—u )‘1_%96) +/Q(Un +1) @+ < . (22)

Since r(z) > 0 and y(z) > 0, then

J < [ < [ s yn <o (23)
Q Q Q

The inequality (23) implies that (up rle) )) is bounded in L'(Q). Let g(z) < p(z), using Young’s
inequality and (22), it follows

[ g = [T
Q Q (un + 1)(1 w(x)) p(z)

Nun’p(x (1—v(z)) =22 __
(u, + 1)1=7(@) DT
s 08/9 (un + 1)1—’7(1) +Cy Q(un +1) @) —a(@)

< Cuo+ Cy [ (o + 1) 21
Set q(x)
(1 =) s = i)
Then this equality and (23)—(24) yield
/ |V, 1) < Ciy, (25)

Lemma 5. Let u, be a solution to problem (13). Then

1
/ ul® < —— / £, Vk>0, lim [ '@ =0,
{un>k} Pk S sky 1E|>0 )5

uniformly with respect to n, for every measurable subset E in €.

Proof. Let k > 0 and v; be a sequence of increasing, positive, uniformly bounded C'*°(€2) functions,
such that ¥;(s) — X{s>k}, as j — +oco. Choosing ¥;(uy) in (13), using (5),

r(@)y). _
uéml%wm<l%%+%wmwww

Therefore, as 7 tends to infinity and that k7 < (k: + %)77 < (un + %)’Y(m) in the set {u, > k},

| wme— [ (26)
{un>k} PR ) fu >k}
By (26), for any measurable subset F in 2, we have
/ uh®) = / ul@ / W@ < KB+ L / f. (27)
E En{un,<k} En{un>k} pkY {un>k}
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Since f € L'(Q), we may choose k = k. large enough such that

/ f<e (28)
{un>k}
Therefore, the estimates (27)—(28) imply that
/ W@ <t £
E pkd
and lemma is thus proved. ]

Lemma 6. Let u, be a solution to problem (13). Then

|Pgi|m / |Vun,|?® =0, uniformly with respect to n, (29)
—0JR

for every measurable subset E in Q and q(-) given by (9).

Proof. Let £ > 0, by Lemma 4, we may choose k = k. large enough such that

/ |V, |7®) < e (30)
En{un>k}

From the estimate (17) and that g(x) < p(x), it comes

/ |V T (un)|7®) < e. (31)
En{un<k}

By (30) and (31), for any measurable subset E in €2, we have

/|wn|q —/ |vun|q<f>+/ IV, [9%) < 2e.
Enf{un<k} En{un>k}

As a result |V, |?®) is equiintegrable in L'(Q). Thus (29) is proved. [

4. Proof of the main theorem

By Lemma 3, the sequence (uy), is bounded in VVO1 ’q(')(Q). Therefore, there exists a function u €
Wol’q(')(Q) such that (up to a subsequence)

{ up = u  in Wy (Q), (32)

U, — u a.e. in .

Proposition 5. If the sequence Tj(u,) of the truncates of the solutions u, of (13) is bounded in
Wol’p(')(Q). Then
Ti(upn) = T (u) strongly in Wol’p(')(Q), (33)

as n — oo, for every k > 0. In particular Vu,, - Vu a.e. in 2.

Proof. By Lemma 3 T} (uy,) is bounded in W, Lp( )(Q), it weakly converges in this space to its pointwise
limit Ty (u). Moreover, since f,, > 0 and u,, > 0 a.e., we have that

—div(a(az)|Vun|p(m)_2Vun) + b(z)ul™ >0,

for all n € N and k£ > 0.

Now we fix ¢ € C’&(Q) such that 0 < ¢ < 1 on 2 and such that ¢ = 1 on a fixed subset w of €.
Then, thanks to the monotonicity of the p(x)-laplacian operator, (5), and that Tj(u,) > Ti(u) (since
Up — u < uy), we can conclude that the following holds
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0< 8 [ (1974 P2V T ) = [9T40) PO 29T ) - D(Thi) = Tiw)
tv /w W (T () — Ti(w))
=5 | (197w P2V () = VTP VT, ) -V (Ti) = Tiw)e
v [ T ) = Tl
=5 [ 19T(00) VT ) P2V ((Thi) = ()]
=8 [ VT )P 2T ) - V9T ) = ()]
=8 | VTP VT () - V() ~ Tiu))o

v [ 0 Defun) - Ti(w)s (34)
Q

By Lemma 5, we obtain
u;(x) NAC) strongly in Ll(Q)'

Therefore, since T}, (u,) strongly converges to Tj(u) in LPO(Q) (Lemma 3),
[ @) = T 0, as n . (35)
Q

It’s well known that |V7T}(u) [P =2V T, (u) € Lp/(')(Q), and V(T (un) — T (u))¢ tends to zero weakly

in LP(Q), therefore one can get e
/Q VT (1) PO 2V Ty () - V(T () — Te(w))d — 0, as n — oo. (36)
Vo [Ty (un) — Ty (u)] strongly converges to zero in LP()(Q). Thus
[ 9T )PV T ) - TolTL ) = Tilw)] = 0. a5 = . (37)
From (34)—(37),
/w (VT4 () P2V Ty (1) = VT () P92V T () ) - ¥ (Ti(un) = Ti(w)) = 0,

then Ty (uy) strongly converges to Ty (u) in Wol’p(')(w) for all £ > 0, i.e., since w is arbitrary, that
T} (up,) strongly converges to Ty (u) inVVllof(')(Q).

Choosing ¢ = 1 and repeating the same proof, we obtain that Tj(u,) strongly converges to T} (u)
in Wol’p(')(ﬂ), then Vu,, = Vu a.e. in €. [
Proof. [Proof of the Theorem 1] It is easy to pass to the limit in the right hand side of problems (13).
On the other hand, using Lemma 2,

Y T P T
(w2

for every ¢ € C}(Q), using Lebesgue Theorem and (32), it follows that

fim [ e[ S (39)
n=oo Jq (un 4 %)'y(m) q uY(®@)

By the same argument, we get
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lim b(m)u;(x)goz/ur(x)go. (39)

For the first term, by Proposition 5 we have that
()| Vun |P@ 2V, — a(z)|VulP™2Vu  ae. in Q,

furthermore a(z)|Vu, |[P*)~2Vu,, is majorette by B|Vu,[P®~1. Observe that p(z) — 1 < g¢(x), by
Lemma 6 and Vitali’s Theorem, we have

li_r}n a(2)|Vu, PP 2V, - Vo = / a(z)|VuP®) 2V - V. (40)
n—oo 0
Hence from (38)—(39) we can deduce (7). [
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HeniHiliHi eninTUYHI pPiBHAHHSA 31 3MIHHUMUN NOKAa3HUKaMWU, WO
BKJ1IOYaOTb CUHIYASIPHY HENiHIAHICTb

Xenidpi I'Y, Enb Tandi 1.2

! Kagedpa mamemamuru ma ingopmamuru, Assicupcoruti yrnisepcumem, Assicup,
eya. Hdidyw Mypa Asotcup, 2, Anorcup
Jlabopamopisa npuksadnoi mamemamuru, Badoci Moxmapcvkuli ynisepcumem,
Annaba B.P. 12, Arorcup
2 JIa6opamopis LIPIM, Hayionasvha wrora npuriaonux nayk Xoypibea,
Cyaman Myaati Caumancokutd ynisepcumem, Mapoxko

VY cTaTTi TOBOANTHCS ICHYBAHHS Ta PETYISPHICTD CIA0KUX JTOIATHAX PO3B’sA3KIB JJIsd KJIacy
HEJIHITHUX eJIINTUIHAX PIBHIHD 13 HETIHIHOIO CHHTYJISIPHICTIO, WIeHAMHI HUZKYIOTO ITOPSI-
Ky Ta L' B 3a7amni npocropis CobovieBa 3i 3MiHHEME ITOKa3HHKAME. JI0BeIeHO, IO “IeH
HI2KYOTO TIOPSAJIKY Ma€ JedKUil Peryaspu3yiounit BILIMB Ha Po3B’s30K. Ilsa pobora y3a-
raJIbHIOE JIesiKi pe3yJsibTaTh, HaBeseHi B [1-3] .

Knrouosi cnosa: npocmopu Cobonesa 3i 3MIHHUMU NOKASHUKAMU, CUHLYAAPHA HEATHIT-
HICMD, eNINMUYHE PIBHAHMA.
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