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Vehicle routing problems are widely available in real world application. In this paper, we
tackle the resolution of a specific variant of the problem called in the literature vehicle
routing problem with flexible time windows (VRPFlexTW), when the solution has to
obey several other constraints, such as the consideration of travel, service, and waiting
time together with time-window restrictions. There are proposed two modified versions
of the Multi-objective Adaptive Large Neighbourhood Search (MOALNS). The MOALNS
approach and its different components are described. Also it is listed a computational
comparison between the MOALNS versions and the Ant colony optimiser (ACO) on a few
instances of the VRPFlexTW.
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1. Introduction

The Vehicle Routing Problem (VRP) is described as the problem of finding an optimal collection of
routes from one or several depots to a predetermined number of scattered locations subject to side
constraints enforcing some given importance criteria relative to cost, time, distance or a combination
of these quantities. The basic version of the VRP problem is an extension of the Travelling Salesman
problem [1]. It was originally introduced by [2] under the name of “Truck Dispatching Problem” and
since then carried out the object of many intensive studies in its modeling and resolution aspects.
VRPs nowadays plays a central role in many fields and in some real world application among which
we cite the physical distribution and logistics, supply chain management, finance and so on. There
exists a wide variety of VRPs and a broad literature on this class of problems see for example [3–6].
At its basic form, a VRP can be viewed as: a fleet of vehicles located at a central depot, that must
ensure tours between several customers who have requested a certain merchandise or service. The set
of customers visited by a vehicle refers to its tour and each tour starts and ends at the central depot.
Each customer must be served once and only once and by one and only one vehicle. The objective of
the standard VRP model is to minimize the sum of the distances travelled or the total travel time of
vehicle rounds while meeting customer demand.

The model can be represented as a closed graph G = (V,A) [7], where vertexes are clients V =
0, 1, . . . , n and 0 denotes the origin depot, arcs are the routes i, j linking two clients. There are m
binary variables xijp used to check if a trajectory (ij) is actually travelled by the vehicle p or not. A
second binary variable yip is to enforce the condition that each client will be served by only one vehicle,
hence yip is equal to 1 when the vehicle p visited the node i and 0 otherwise. The mathematical model
could be formulated as follows:

Z = minF, (1a)

s.c.
m∑

p=1

n−1∑

i=1

x0ip 6 m, (1b)
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m∑

p=1

n−1∑

i=1

xi0p 6 m, (1c)

m∑

p=1

ykp 6 1, ∀k = 1, . . . , n, (1d)

n−1∑

j=1

xijp = yip, i = {1, . . . , n}, p = {1, . . . ,m}, (1e)

n∑

j=1

xjip = yip, i = {1, . . . , n}, p = {1, . . . ,m}, (1f)

xijp, yip ∈ {0, 1}, ∀i, j = {1, . . . , n}, p = {1, . . . ,m}. (1g)

The constraints (1b) and (1c) ensure that the number of vehicles leaving the depot is the same as
the number of vehicles entering the depot. The constraint (1d) ensures that each city from 1 to n is
visited by a maximum of one vehicle. The constraints (1e) and (1f) represent the conservation of flow
for each city i and ensure that the number of vehicles crossing all the arcs entering {(j, i),∀j ∈ A} is
equal to the number of vehicles crossing the outgoing arcs {(i, j),∀j ∈ A}. Finally, the binary variables
used xijp and yip are declared by the constraint (1g).

The vehicle routing problem is a classic extension of the travelling salesman problem. Both are
part of the class of NP-complete problems. It is part of the optimization problems for which we do not
know an algorithm allowing to find an exact solution quickly (polynomial time) in all cases.

As the VRP appears in real life, it may have several classes of additional constraints, such as limits
on the vehicle capacity [8,9], time windows for serving customers [3–5], route lengths, or the number of
hours worked by a driver or a distribution clerk. For a recent complete review on the classification of
different VRP variants, see [6, 10]. As with basic VRP, most VRP variants are known to be NP-hard.
In this paper, we are interested in the VRP with flexible time window (VRPFlexTW). It is a relaxation
of the VRPTW where time windows are considered hard constraints that should not be violated.

The layout of the paper is as follows: the next section aim to provide a brief introduction to
the multi-objective VRPFlexTW problem modeling and a comprehensive overview of the popular
resolution techniques used in the literature. Section 2 will present two modified versions of the ALNS
Algorithms and theirs components with application to the considered VRPFLexTW problem. In
section 3, numerical results will be presented and a comparison with other standard techniques such as
ant colony optimization and the standard ALNS is carried out. Eventually, a summary of the results
and discussion will be provided to wrap up this study.

2. Problem formulation of the VRPFlexTW

Let us consider a multi-objective VRPFlexTW formulation that seeks to optimize customer satisfaction
when vehicle routes are constrained by capacity and time windows, while minimizing costs associated
with the distance travelled and the number of vehicles. When one wants to extend the previous
model (1) to the flexible version of the VRPFlexTW, it is necessary to make some modifications to
the mathematical formulation. First of all, remember that a time window is in fact a time interval
in which it is allowed to serve a customer at no additional cost. In our case, this interval is flexible,
that is, with a certain penalty, it is possible to perform the service to customers outside this interval.
It therefore becomes possible to increase the time windows for meeting clients from [ai, bi], ∀i ∈ N
to [ai − a′i, bi + b′i], i ∈ N . The constants a′i and b′i satisfy ai − a′i > Ei and bi + b′i 6 Li, where Ei
and Li are respectively tolerances for serving clients earlier or later than the appointed time interval.
Although the waiting time is permitted at no cost, a client’s satisfaction denoted by µi(zi) will be
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constant on the interval [ai, bi] but will decrease to 0 linearly when the time moves away from the
agreed upon interval limits. The satisfaction function µi is taken as follows:

µi (zi) =





0, zi < Ei,
zi − Ei
ai − Ei

, Ei 6 zi < ai,

1, ai 6 zi 6 bi,
Li − zi
Li − bi

, bi < zi 6 Li,

0, zi > Li.

(2)

Before presenting the mathematical formulation, we define the following notations:

• hk is the transportation cost per unit distance of vehicle k,
• fk is the fixed cost incurred for using vehicle k,
• cij is the distance between vertex i and vertex j,
• si is the service time at vertex i,
• wi is the waiting time at vertex i,
• tij is the time required for travelling from vertex i to vertex j,
• Decision variables:

xijk =

{
1, if vehicle k travels from vertex i to vertex j,
0, otherwise,

(3)

yik =

{
1, if vertex i is served by vehicle k,
0, otherwise.

(4)

Given the above parameters and decision variables, the problem can be formulated as follows:

max
1

n

n∑

i=1

µi(zi), (5)

min

m∑

k=1

hk

n∑

i=0

n∑

j=0

cijxijk +

m∑

k=1

fk

n∑

j=1

x0jk, (6)

n∑

i=0

xijk = yjk, ∀k ∈ {1, 2, . . . ,m}, ∀j ∈ {1, 2, . . . , n}, (7)

n∑

j=0

xijk = yik, ∀k ∈ {1, 2, . . . ,m}, ∀i ∈ {1, 2, . . . , n}, (8)

n∑

i=0

n∑

j=0

xijk (tij + si + wi) 6 rk, ∀k ∈ {1, 2, . . . ,m}, (9)

w0 = s0 = 0, (10)
m∑

k=1

n∑

i=0

xijk (zi +wi + si + tij) = zj, ∀j ∈ {1, 2, . . . , n}, (11)

Ei 6 zi + wi 6 Li, ∀i ∈ {1, 2, . . . , n}, (12)

wi = max {0, Ei − zi} , ∀i ∈ {1, 2, · · · , n}, (13)

xijk ∈ {0, 1}, ∀i, j ∈ {1, 2, . . . , n}, ∀k ∈ {1, 2, . . . ,m}, (14)

yik ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}, ∀k ∈ {1, 2, . . . ,m}, (15)

zi > 0, ∀i ∈ {1, 2, . . . , n}. (16)
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In the model above, Objective (2) is to maximize the customer satisfaction. Objective (3) is to
minimize the total routing costs, which consist of travel costs and fixed vehicle costs. Constraint (4)
guarantees that the vehicle capacity is not exceeded; Constraint (5) ensures that each customer is
served by exactly one vehicle; and Constraint (6) ensures that each route starts and ends at the depot.
Constraints (7), (8) guarantee that each customer is served exactly once. Constraint (9) ensures that
the maximum route time is not exceeded; Constraint (10) defines the waiting and service time at
the depot; Constraint (11) represents the relationship between the arrival time at a vertex and the
departure time from its predecessor; Constraint (12) ensures that customers are served within the
required time; and Constraint (13) defines the waiting time.

3. Multi-objective ALNS Techniques for VRPFlexTW

The use of ALNS in multi-objective combinatorial optimization problems was pioneered by Schaus and
Hartert [11] which emphasized the search process based on non-dominated solutions. The algorithm
has been wildly used as an effective method to solve complicated neighbourhoods in tightly constrained
problems, as searching small neighbourhoods may lead the algorithm to be struck in the local optima.
In this class of algorithms, searching in a larger neighbourhood increases the chance of finding better
solutions thanks to a variety of destroy and reconstruct methods that form an efficient adaptive search
procedure balancing between intensification and diversification. The main process of multi-objective
ALNS algorithm is depicted as follows:

Algorithm 1 Steps of the MOALNS algorithm.

1: initialize feasible solution x
2: set x∗ ← x
3: insert x to feasible solution set
4: initialize adaptive weights
5: while the stopping criteria is not reached
6: select a pair of destruction and reconstruction heuristics di, ri based on the adaptive weights
7: apply di and ri to yield a new solution x′

8: if x′ can be accepted then

9: add x′ to the feasible solution set
10: if x′ is better than x∗ then

11: set x∗ ← x′

12: if x′ is a non dominated solution then

13: insert x′ to Pareto set A
14: update A
15: randomly select x from A
16: update the adaptive weights
17: return x∗

In this study, further improvement in MOALNS framework is considered to obtain the multi-
objective optimal solution routes. The trade-off between objectives prevents a single unique best
solution, instead it creates a set of solutions with optimal compromises of each objective. Thus,
the proposed multi-objective Approach attempts to explore the neighbourhood spaces through the
modification of non-dominated solutions.

We put forward two different alternatives to enhance the MOALNS process. The first approach
is the modified adaptive large neighbourhood search (MALNS). It consists on a framework of meta-
heuristic designed to solve the vehicle routing problem with flexible time windows. The main challenge
is to highlight intensification over diversification within the heuristic search process. In this context, we
incorporate the process of the choice function proposed by [12] into the ALNS algorithm. Therefore,
numerous destroy/reconstruct methods are combined to explore multiple neighbourhoods within the
same search which implicitly defines the large neighbourhood. The second alternative is a hierarchical
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approach composed of two stages as “Cluster first – Route second”. In the first stage, customers are
assigned to vehicles using K-medoids clustering algorithm within a spatio-temporal similarity distance.
In the second stage, the VRPFlexTW is solved using two distinct routing algorithms (i.e., ALNS, GA
and VNS).

3.1. The Modified MOALNS Algorithm

In this subsection, a detailed exposition of the improvements incorporated into the MOALNS algorithm
for solving the VRPFlexTW is proposed. There is studied the integration of the modified choice
function into the mechanism of MOALNS, in order to guide the research to areas where high-quality
solutions are intended by seeking a trade-off between diversification and intensification. The selection
criteria is improved instead of using a standard roulette wheel selection we use an advanced choice
function taking into consideration the performance history of each applied heuristic pair of destruction
and reconstruction operators.

3.1.1. The modified choice Function

The Modified Choice Function (MCF) is an efficient technique presented by [12] as an extension of the
original choice function of [13]. The idea behind this method is to dynamically control the selection
of heuristics on the basis of a combination of three different measures. Thereby, the heuristic to be
selected must have the higher score Ft.

The first measure f1 reflects the past performance of each single heuristic. This measure is repre-
sented by the equation:

f1(hj) =
∑

n

φn−1 In(hj)

Tn(hj)
,

where In(hj) presents the change in fitness function, Tn(hj) is the time it takes the heuristic hj to
produce a solution for an invocation n, and φ is a parameter from the interval [0, 1] highlighting the
recent performance.

The second measure f2 tracks the dependency between a pair of heuristics (hk, hj), by considering
their past performance when selected consecutively. The formula of this measure is given as follows:

f2(hj) =
∑

n

φn−1 In(hk, hj)

Tn(hk, hj)
,

where In(hk, hj) presents the change in fitness function, Tn(hk, hj) is the time it takes to call the
heuristic hj immediately after hk for an invocation n.

The third measure f3 notes the elapsed time (τ(hj)) since an heuristic hj was last called. This
gives the heuristics which are inactive for certain time, an opportunity to be selected.

f3(hj) = τ(hj).

The formulation of the modified choice function is given as follows:

Ft(hj) = φtf1(hj) + φtf2(hk, hj) + δtf3(hj),

where t denotes the number of invocations of heuristic hj indicating an improvement by the used
heuristic.

The measures f1 and f2 bring intensification to the search process while the measure f3 supports
diversification by giving a chance to inactive heuristics to be selected. This is possible by the incor-
poration of the parameters φt and δt. Where φt is an intensification parameter which weights f1 and
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f2 respectively, and δt is the relative weight to f3 and hence it is defined to control the diversification
degree.

At each iteration, if the objective value improves, the value of φt is increased while δt is concurrently
decreased. Conversely, φt is decreased and δt is increased when the objective value does not improve.
The parameters φt and δt are expressed in the following way:

φt(hj) =

{
0.99, if the objective value improves,
max{φt−1 − 0.01, 0.01}, otherwise

and
δt(hj) = 1− φt(hj).

3.2. A Cluster first – Route second approach for solving the VRPFlexTW

In this subsection, we propose an approach which fits into the class of Cluster first – Route second
algorithms to deal with the VRPFlexTW problem. The strategy consists of two phases, clustering and
routing. The first phase aims to define a set of cost-effective feasible clustering using k-medoid algorithm
within an effective spatio-temporal distance similarity which is totally appropriate to the nature of the
VRPFlexTW given that it considers both the spatial and temporal dimensions of the problem, while
phase II is devoted to select the adequate routes, considering that each cluster corresponds to a specific
VRPFlexTW subproblem. It is worth pointing that the choice of the K-Medoid was not arbitrary since
it is more robust to noise and outliers and it is more flexible to be used with any similarity measure
in contrast of other partitioning techniques which are not sensitive to noisy data or must be used only
with distances that are consistent with the mean (e.g. K-Means).

3.2.1. Spatio-temporal distance

In practice, it is interesting to pay attention to the dynamic characteristics of the problem. Thus,
assigning two customers which have a close spatial distance while their time windows of service are
far is inefficient, since the related counterpart which is the waiting time will be increased and thereby
missing opportunities to serve other customers. Therefore, the spatio-temporal measure seeks to explore
the spatial and temporal similarities between customers in terms of both the travel distance and time
windows aspects.

Customer A

Customer B

Customer A Customer B

A

Customer A

Customer B

start
A

end BB

BB

A Astart

start

start end

end

end

A Astart end

B Bstart end

___________________________________________________________
Time t

Fig. 1. Time windows overlap scenarios.

The generalized equation of the spatio-temporal
distance is proposed as follows:

STij = α1dij + α2Tij , (17)

α1 + α2 = 1, α1 > 0, α2 > 0, (18)

where dij denotes the spatial distance between two cus-
tomers i and j. The parameters α1 and α2 are weight
coefficients which control how each distance, spatial dij
and temporal Tij, influence the spatio-temporal dis-
tance. It should be pointed here that before using the
equation (6), both values of dij and Tij must be nor-
malized by their maximum or minimum values.

Consider [Astart, Aend] and [Bstart, Bend] the time
windows of customer A and B respectively, with
Astart < Bstart. Temporal distance between the two
time windows Tij used in the equation above is defined
and addresses three different scenarios (see Fig. 1).
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Three different situations can be considered according to the values of time windows. If Aend <
Bstart, there is therefore no overlap between the two time windows. If Aend > Bstart and Aend < Bend,
there is a partial overlap between the two time windows. Finally, if Astart 6 Bstart and Aend > Bend,
then a total overlap occurs.

Based on the presented cases, when two customers have overlapped time windows, they should be
served in the same time. Then, the temporal distance between them is 0. Else, it can be determined
as in Equation (8):

Tij =

{
Bstart − Aend if Aend < Bstart,

0 if Aend > Bstart.
(19)

3.2.2. Description of our approach

Our methodology can be described on two steps. From one hand, the manner of clustering uses the
K-medoid as a paradigm to tackle the pre-treatment process. On the other hand, the second step
is devoted to select the adequate routes. This is the widespread ideas behind this approach. In the
following, we provide more precise statements related to each step in more details:
Phase 1: It consists in identifying a set of clusters through a K-Medoid algorithm. The main idea of
this iterative clustering algorithm is to divide the input data set into K distinct clusters C1, . . . , CK .
Phase 2: It aims at finding a routing solution by solving each sub-problem related to each cluster.
Then, we collect the solutions related to each sub-problem and gather them to obtain a complete
solution when the sub-solutions will be the routes of the final solution. For this purpose, MOALNS is
used to validate the results obtained in phase 1.

The K-Medoid algorithm used for Phase 1 is an iterative clustering algorithm which aims to divide
the data set into K pre-defined distinct non overlapping clusters as such manner that the group
similarity between cluster center points and data set point will be maximized, and the similarity
distance between groups will be minimized. In this work, we measure the cluster similarity by the
presented spatio-temporal distance between cluster medoids and data-set point. The general concept
of this clustering algorithm can be outlined in the following steps:

• Select K of the N input data points as the initial medoids.
• Associate each data point to the closest medoid x by computing the spatio-temporal distance.
• Define the y point coincidence.
• If swapping x and y minimizes the cost function, swap x and y.
• Repeat the three previous steps until there is no change in the assignments.

In Phase 2 a greedy insertion heuristic introduced by (Solomon, 1987) in order to generate the
initial solution for the process of the routing meta heuristics. This method consists of finding the best
location of a given node by testing the different possible configurations. More explicitly, the algorithm
selects the best feasible insertion place in the current route for each non inserted node considering two
factors: the increase in total cost of the current route after the insertion, and the delay of service start
time of the client following the new inserted client. This process ends when all deleted nodes will be
inserted.

4. Numerical results

To investigate the performance of the ALNS in the context of the considered VRPFLexTW, we ac-
complished several computational tests. The algorithm was examined on a group of small instances
in reference to the benchmark of Solomon, 1987, and its extension the instances of Gehring and
Homberger, 1999. The Solomon set R containing randomized customers is used. We applied the algo-
rithm on a number of Solomon’s Sizes as a benchmark example. The algorithms were implemented in
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Java 7, compiled with Intel compiler Celeron 1.80 GHz core i5 with 8GB RAM. The MALNS approach
was run for 15600 iterations and was applied 10 times to each instance.

The results are showcased in the tables below. Table 1 showcases the optimal values of the Vehicle
routing cost obtained through an the optimisation algorithms. Table 2 shows the optimal number of
vehicles in the solution obtained for each client configuration. Lastly, Table 3 enumerates the execution
time required to converge in each instance.

From the performance tables, we can see that the ALNS approaches are much more suitable to solve
the considered problem in comparison to the Ant Colony Optimiser due to the nature of the population
based mechanisms that seriously limit applicability to large problems and their memory and time-wise
computational constraints. The standard MOALNS is a fairly efficient and fast algorithm thanks to its
superior local search properties. Moreover, the quality of solutions obtained employs less vehicles to
serve all target clients and take less time to compute. However, MOALNS struggles when the search
spaces becomes too large as seen in the Tables when the fleet size is large, the local search becomes
expansive. The modified ALNS using K-medoid is the fastest converging algorithm in this presentation,
it produces smaller clusters sizes in comparison to the standard approaches but it is the less accurate
and the procedure doesn’t improve the optimality of the fitness function. In contrast, the Modified
choice function coupled with MOALNS substantially improves the quality of solutions and reduces the
optimal fleet size however it requires more computations because of its choosing mechanism that relies
on a history of the performance of each optimization operator. The improvement in the quality comes
at the expense of an increase in the run time of the algorithm.

Table 1. Value of the cost function for different numbers of clients.

Solomon size ACO ALNS ALNS + K-medoid ALNS + choice function
100-client 2635 1640 2021 1655
200-client 11074 4846 5887 4818
400-client 31702 12370 14078 12507
600-client 71154 26785 30368 27039
800-client 133482 51281 57444 51730
1000-client 219890 85904 95296 86761

Table 2. Optimal number of vehicles corresponding to each configuration of clients.

Solomon size ACO ALNS ALNS + K-medoid ALNS + choice function
100-client 27 10 14 10
200-client 65 12 16 12
400-client 141 24 30 25
600-client 224 40 49 41
800-client 307 65 76 67
1000-client 398 93 103 92

Table 3. Execution time of the ALNS Algorithm in seconds corresponding to each client configuration.

solomon size ACO ALNS ALNS + K-medoid ALNS + fct choice
100-client 2.47 0.96 0.54 0.59
200-client 7.9 3.86 1.11 1.24
400-client 34.2 34.41 3.78 3.51
600-client 85.53 168.01 8.43 10
800-client 187.36 489.19 21.7 29.55
1000-client 263.75 1086.41 32.41 47.74
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5. Discussion and conclusion

Our main goal in this paper was to provide a comparative analysis between the proposed modified ALNS
approaches using K-medoid and the choice function, in relations to the standard ALNS and the Ant
Colony Optimizer for the VRPFLexTW problem. The state of the art concerning the VRPFlexTW
is laid out and the versions of the modified Adaptive Large Neighbourhood Search are described
and showcased. A comparison between these methods in terms of fleet size, cost optimization and
time execution shows the superiority of the modified ALNS approaches in the flexible version of the
VRPTW due to its interesting mechanism of construction and deconstruction operator that are capable
of attaining quality solutions in shorter execution times and with less computational overhead.
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Модифiкований адаптивний пошук великого околу для проблеми
маршрутизацiї траспортних засобiв з гнучкими часовими вiкнами

Лабдiад Ф., Насрi М., Хафiдi I., Халфi Х.

Нацiональна школа прикладних наук Хурiбги, Унiверситет Султан Мулай Слiмана,
Bd Béni Amir, B.P. 77, Хурiбга, Марокко

Задачi з маршрутизацiєю транспортних засобiв широко доступнi в сучасних засто-
сунках. У цiй статтi розв’язано конкретний варiант цiєї задачi, який в лiтературi
називається задачею маршрутизацiї транспортних засобiв з гнучкими тимчасовими
вiкнами (VRPFlextW), коли розв’язок має задовольняти декiлька додаткових обме-
жень, таких як врахування подорожi, сервiсу та часу очiкування з обмеженнями
часових вiкон. Запропоновано двi модифiкованi версiї багатоцiльового адаптивного
пошуку великого околу (MOALNS), описано пiдходи MOALNS та його компоненти,
проведено обчислювальне порiвняння мiж версiями MOALNS та Optimiser Colony
(ACO) для деяких випадкiв VRPFlexTW.

Ключовi слова: задача маршрутизацiї, гнучкi часовi вiкна, дослiдження операцiй,
чисельне моделювання, адаптивний пошук великого околу, мета-евристичнi алго-
ритми.
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