odeling
MATHEMATICAL MODELING AND COMPUTING, Vol.8, No. 4, pp. 736-746 (2021) I\/I @P”ti"g

athematical

A modified choice function hyper-heuristic with Boltzmann function

Mellouli O., Hafidi I., Metrane A.

LIPIM, ENSA Khouribga, University Sultan Moulay Slimane,
Bd Béni Amir, B.P. 77, Khouribga, Morocco

(Received 23 May 2021; Accepted 7 June 2021)

Hyper-heuristics are a subclass of high-level research methods that function in a low-level
heuristic research space. Their aim objective is to improve the level of generality for
solving combinatorial optimization problems using two main components: a methodology
for the heuristic selection and a move acceptance criterion, to ensure intensification and
diversification [1]. Thus, rather than working directly on the problem’s solutions and
selecting one of them to proceed to the next step at each stage, hyper-heuristics operates on
a low-level heuristic research space. The choice function is one of the hyper-heuristics that
have proven their efficiency in solving combinatorial optimization problems [2—4]. At each
iteration, the selection of heuristics is dependent on a score calculated by combining three
different measures to guarantee both intensification and diversification for the heuristics
choice process. The heuristic with the highest score is therefore chosen to be applied to
the problem. Therefore, the key to the success of the choice function is to choose the
correct weight parameters of its three measures. In this study, we make a state of the
art in hyper-heuristic research and propose a new method that automatically controls
these weight parameters based on the Boltzmann function. The results obtained from its
application on five problem domains are compared with those of the standard, modified
choice function proposed by Drake et al. [2, 3].

Keywords: hyper-heuristics, combinatorial optimization, choice function, modified
choice function, heuristic selection, heuristic generation, Boltzmann function.

2010 MSC: 35Q20, 90C27, 90C59 DOI: 10.23939/mmc2021.04.736

1. Introduction

For several years, heuristic methods were a success in the field of combinatorial research, they showed
efficiency in solving difficult real problems [1,5]. However, they presented several limitations and
difficulties where new problems come up, so it is necessary to find how to adapt them to its structure
or even to the resolution of several instances of the same problem. And here came the motivation
behind hyper-heuristics, which main purpose is to automate the design and adaptation of heuristics
for solving difficult combinatorial research problems by raising the level of abstraction and generality in
the research process. Hyper-heuristics as a promising field was considered in several research studies [1].
Hyper-heuristics take a set of heuristics as a search space in order to select or generate in each iteration
the best heuristic to apply to converge to solutions with acceptable quality. So, given one or more
problems and one or more different instances, hyper-heuristics generates an suitable combination of
these components based on a variety of low-Level heuristics to efficiently solve the given problem [1-3].

The next sections will discuss the evolution of hyper-heuristics over the years, so section 2 will
present a state-of-the-art of hyper-heuristic research by presenting their new definition as well as their
classification. Section 3 and 4 will present the standard modified choice function and the new proposed
version including Boltzmann function. And the last section will be devoted to a presentation of the
experimental results.

736 (© 2021 Lviv Polytechnic National University

A modified choice function hyper-heuristic with Boltzmann function 737

2. Hyper-heuristic research state of the art

In combinatorial optimization world, the word ’hyper-heuristic’ was first used in 2001 as ’a heuristic
to choose heuristics’ [6]. At each decision point, the high-level heuristic selects the low-level heuristics
to be used based on a predefined move acceptance criterion and a selection methodology. However,
a tracking in the history of heuristic automation shows that the idea goes back to the 1960s [7-9].
Over the years, research studies in hyper-heuristics passed to a new phase which is the automatic
generation of heuristics, through a high-level heuristic and by combining the components of many
low-level heuristics, a new heuristic suited to the search problem is automatically generated.

In [1], Edmund K. and Burke et al. classified hyper-heuristics according to two dimensions: “the
nature of the heuristic research space and the source of feedback during learning” (Edmund K. and
Burke et al., 2010), Fig.1. So instead of “heuristic to choose heuristics”, the definition of the term
“hyper-heuristic” has been generalized to include even automatic generation: “A hyper-heuristic is an
automated methodology for selecting or generating heuristics to solve difficult combinatorial research
problems” (Edmund K. and Burke et al., 2010).

~ =

Non-learning Hyper-heuristics

Heuristic selection

Hyper-Heuristics Omline learning Hyper-heuristics

Heuristic generation

Offline learning Hyper-heuristics

The naturc of the heuristic research space The source of feedback during Jearning

Fig. 1. Hyper-heuristic classification based on the nature of the search space of the heuristic and the source of
feedback during learning.

This classification defines the dimension of “the nature of the heuristic research space” by giving
two categories of hyper-heuristics [1]:

e Heuristic Selection: which picks and chooses a heuristic from a collection of pre-existing heuris-
tics.

e Heuristic generation: which generates automatically a heuristic from the components of a col-
lection of pre-existing heuristics.

The second dimension focuses on the learning side of hyper-heuristics. In this dimension, we have three

categories [1]:

e Hyper-heuristics with no learning: are hyper-heuristics that do not use learning in the selection
or generation process.

e Hyper-heuristics with an online learning: are hyper-heuristics that learn when they solve
problem instance.

e Hyper-heuristics with an Offline learning: are hyper-heuristics who learn a mechanism to
generalize to unseen instances via the learning from the execution of many instances

In the next sections, we will present some representative examples of classification based on the nature
of the heuristic research space. It will not be an exhaustive survey, the aim of this section is to illustrate
the implementation of hyper-heuristics

2.1. Heuristic selection methodologies

In selection hyper-heuristic, based on a selection process, with an approval judgement taken at each
point based on the acceptance criteria, a low-level heuristic is selected and applied to the problem,

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 736-746 (2021)

738 Mellouli O., Hafidi |., Metrane A.

Algorithm 1 Hyper-heuristic Scheduling Algorithm (HHSA).
Configure the algorithm parameters
Input the problem domain
Generate the initial population of solution Z = {z1, 29, ..., 25 }
From the candidate pool H;, select randomly a heuristic H
while the stop criterion is not reached
Use the selected algorithm H; to update Z
F; = ImprovementDetection (Z)
F5 = DiversityDetection (Z)
if 1/J(HZ, Fl, Fg) then
Randomly select a new H;
Z + Perturb(2)
Output the best solution meted.

A Hyper-heuristic Approach to Scheduling a Sales Summit [6]. The term ‘Hyper-heuristic’
appeared in 2001 with Colling et al. and has been applied to Scheduling a Sales Summit problem [6].
Based on two acceptance criteria, only improving that only accepts moves that improve the solution and
all moves where improving and non-improving moves are all accepted, this work studied three distinct
types of hyper-heuristic approaches: random approaches, greedy approaches, and choice function based
approaches [6].

For the random approach, three approaches are considered [6]:

e SimpleRandom: at each iteration and while the stop criteria is not reached, the algorithm choose
randomly a low-level heuristic to apply.

e RandomDescent: this approach looks like the first one, the only difference is that the randomly
chosen heuristic will be executed until the met a local optimum.

¢ RandomPermDescent: this approach is identical to RandomDescent, except this time, at the
beginning, we choose a random sequence of low-level heuristics and we execute a cycle to the next
heuristic if the application of the current heuristic is not improving.

Greedy method executes all low-level heuristics to the current solution and chooses the one with the
best solution. In this approach, the versions of the two acceptance criteria (Only Improving and All
moves) are similar [6].

The third group of hyper-heuristic methods introduces a choice function F; this hyper-heuristic
determines which low-level heuristic to call next. Given the current state of learning about the solution
space region being explored, the choice function F calculates the probability that a particular low-level
heuristic is relevant. This choice function records, for each low-level heuristic, its recent performances
(f1), about its effectiveness for a consecutive heuristic peer (f2) the time period since the last call of
the heuristic (f3) [6].

A hyper-heuristic Scheduling Algorithm for Cloud [28]. This paper presents the Hyper-
Heuristic Scheduling Algorithm (HHSA), a heuristic scheduling algorithm that guide cloud computing
systems find better planning solutions. The principle behind this algorithm is to combine intensification
and diversification in finding solutions during the convergence process, by dynamically determining
which low-level heuristics should be used to identify better solution candidates using diversity detection
and improvement detection operators, as shown in Fig. 2 [28].

At the beginning, in Line 1, the parameters of the algorithm are defined, the maximum number
of iterations to run the low-level heuristic algorithm selected, and the number of iterations when the
selected heuristic does not improve the solutions. Line 2 reads the search problem to be solved, Line 3
initializes the solution population Z = {z1,z9,...,2n}, where N is the size of the population. In
line 4, a randomly low-level heuristic H = {H;, Ho, ..., H,}, simulated annealing, genetic algorithm,
particle swarm optimization, and ant colony optimization are the candidate of the low-level heuristics

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 736-746 (2021)

A modified choice function hyper-heuristic with Boltzmann function 739

pool. The chosen heuristic, H;, would then be run until the stop criterion is reached, as indicated
in Lines 5-13. More precisely, to maintain a balance between the intensification and diversification
of research directions, the H; heuristic selected will evolve the Z solution for the maximum number
of iterations, defined in the parameters, using the ¢(H;, Fy, Fy) determination function, as defined in
equation 1 [10].

The intensification and diversification of research directions depend on the knowledge given by the
improvement detection operator Fj and the diversity detection operator Fy (as shown in Lines 7 and

8) [10].

False if H € S and F5 = true,
Y(H;, Fy, Fy) = ¢ False if H € Sand F) = true and F5 = true, (1)
True otherwise.

Where S is the set of SSBHAs (Single-Solution-Based Heuristic Algorithms) and are only used in Fy; P
is the set of PBHAs (Population-Based Heuristic Algorithms) and are used in F and F5. The proposed
algorithm, when ¢ (H;, F1, Fy) returns true, will select a random Hi heuristic algorithm and return the
Z solution to the perturbation operator in order to improve the output, as shown in lines 9-11 [10].

Parallel cooperative optimization through hyper- heuristics [11]. This article discusses a
cooperative approach for solving optimization problems. The proposed algorithm is a hyper-heuristic
that combines three well-known canonical metaheuristics of varying degrees of effectiveness. The
Parallel Optimizer With Hyper-heuristics (POWH) algorithm is built on the master-slave model (Fig. 3)
and consists of several metaheuristics that collaborate and function simultaneously in a distributed
computing environments [11]. It is organized using an A-team architecture (Talukdar et al., 1998),
with the following metaheuristics serving as autonomous agents: Simulated Annealing (SA), Genetic
Algorithm (GA), and Ant Colony Optimization (ACO).

In the control scheme, a rating index (Ind), that evaluates each metaheuristic’s output once a
processor becomes idle, guides the selection of suitable metaheuristics. The strategy with the highest
ranking will be considered for the next execution [11].

MASTER Filter
-~ ™y
(_.4/ Best Solution
Qbjective Function
— New Initial

Best Solution N
Sclution
Fguatians of the madel v

I s

- New Initial . New Initial

Best Salution N erne Best Solution X

. Salution Solution
L

SLAVE

Self-contained Metaheuristic Self tained Metaheuristic

Fig. 2. Model of the Parallel Optimizer With Hyper-heuristic.

2.2. Heuristic generation methodologies.

The principle of automatic generation is to consider the determination of the algorithm as an opti-
mization problem where we look for the algorithm that will give the maximum performance [12-16].
Genetic programming is an appropriate method of generation hyper-heuristics due to the syntax of an
algorithm that can be interpreted as a tree.

Indeed, many studies in the literature use genetic programming to generate algorithms automati-
cally [5,17-22]. The concept is to interpret low-level heuristics using a tree. The nodes represent the
algorithm’s instructions, the inner nodes represent the usual high-level functions used in each com-

Mathematical Modeling and Computing, Vol. 8, No. 4, pp.736-746 (2021)

740 Mellouli O., Hafidi |., Metrane A.

puter algorithm, and the leaf nodes represent functions that work on the problem’s solution. As the
genetic algorithm runs, the generation of heuristics evolves from one generation to another by apply-
ing mutation operators, crossover and reproduction to converge to a personalized heuristic generated
automatically for the problem. This method enables hyper-heuristics to achieve a higher degree of gen-
erality and independence, as a customized heuristic is created automatically for each distinct problem,
and for each distinct instance of the same problem. Fig. 4 explains the process of genetic programming.
The implementation of mutation, crossover, and reproduction operators generates a new generation
P(t + 1) from the previous generation of algorithms P(t). To evaluate the output of the algorithm
proposed on a group of instances of the problem, a fitness function must be determined. This method
is repeated for many generations in order to converge by the end of the process to a suitable algorithm
for solving the problem.

Population P(1) Population P(t+1)

jele}
Mutation O OO Q \

Crossover

chruduclmn '—' O
O O C)

Instances

Fig. 3. Evolutionary process of the heuristic generation.

Automatic Design of Algorithms for the Travelling Salesman Problem (Nicolas
Acevedo, 2020) [23]. The hyper-heuristic was used to solve the TSP problem in this work. The
following elements must be defined before initiating the automatic generation phase:

e Definition of the data structure for the storage of TSP solutions:
— Lists to stores the cities, their coordinates (x,y) and the circuit generated by the algorithm,

— A matrix to store inter-city distances.

— The central point coordinates.

e Design of the grammar of the automatic generation: in this step, two types of functions must be
defined:

— The basic functions of programming languages [23]: they will have two variables P1 and P2,
considering that 1 corresponds to the true value and 0 to the false value, so any function will
return true or false: While(P1, P2), while P1 returns true, P2 will be executed; AND(P1, P2),
if P1 and P2 returns true, both of them will be executed and the function AND will returns
true; IfThen(P1, P2) performs P2 only if P1 is evaluated as true,

— The functions of the TSP problem: the functions of this part are defined exclusively for the TSP
problem. Loyola and Ai have chosen to use two types of functions: Constructive and circuit
modification functions. Although the tour is incomplete, the constructive terminals insert cities
to it. It returns “1” when a city is inserted to the circuit and “0” when the tour is completed.
The tour modification terminals alter the tour that has been created up to this stage. If the
tour has been modified, it returns “1”, otherwise, it returns “0.”

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 736-746 (2021)

A modified choice function hyper-heuristic with Boltzmann function 741

e Design of the fitness function [23|: Loyola and Ai chose tree metrics to measure an algorithm’s
performance: the algorithm’s efficiency, feasibility, and size. The cost of the produced circuit is
used to determine its efficiency/quality, which reflects the relative error when compared to the
optimal solution of each instance. An algorithm is considered as feasible if it produces feasible
solutions (acceptable tours) for the TSP. The variation of the number of cities in the created circuit
is used to determine feasibility. The third metric is the algorithm’s size; this metric is critical for
decoding the algorithm proposed by automatic generation. The algorithm’s size is then determined
by the deviation of the number of nodes in comparison to a target number of nodes.

e The definition of the set of instances that will be used to evaluate the algorithm’s suggested solu-
tions.

e The definition of the parameters of the Genetic programming: Population size, probability of
selection, mutation and crossover, etc.

3. The modified choice function

The modified choice function is a famous selection heuristic that ranks low-heuristics according to three
distinct metrics, emphasizing the intensification and diversification parameters [2,3|. To rate heuristics
at each iteration of a search, a rank is assigned to each low-heuristic using the modified choice function
F calculated as:

J(hi) = @4 f1(hi) + Py fo(hg, hi) + 6t f3(hi), (2)

where ¢ is the current iteration.
The first metric (f1) represents the historical achievements of a low-level heuristic. For a low-level
heuristic hj, the value of f1, described as:

fi(hy) = Zqﬁ"-l%, (3)

n
where @ is a value between 0 and 1 that places more focus on historical performance, I,,(h;) represents
the solution value variation and T5,(h;) represents the time required to call all the past n invocations
of the heuristic h;.

The second metric (f3) recognizes heuristics that work well when used in sequence. f; is defined

as follows: h)
§ : n— 1 ks

where ® has similar meaning as in f1, I,(hg, h;) represents the solution value variation and T}, (hg, h;)
is the time required to call all the past n invocations of the heuristic h; after hy.

The time (7(hj)) since the Choice Function last selected each heuristic is the third measure (f3).
This ensures that all heuristics have a probability of being chosen.

fa(hy) = 7(hy). (5)

If the performance of the solution increases at each stage, ¢ is awarded generously while 0 is severely
punished [2,3]. If the solution performance degrades by using a low-level heuristic, the diversification
of the research process is guaranteed by linearly decreasing ¢ and improving . The aim of this strategy
is to consider the intensification variable major determinant in calculating F', with the parameters ¢;

and ¢; defined as:

& = 0.99, if quality improves,
L max{¢; — 0.01,0.01}, if quality deteriorates,

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 736-746 (2021)

742 Mellouli O., Hafidi |., Metrane A.

S =1—d,, (6)

¢ will always have some effect on the F' value since the 0.01 is used as the minimum weight.

4. The Modified Choice Function with Boltzmann Function

In the standard Modified Choice Function proposed by Drake et al. [2,3], ¢ and § increase and decrease
according to the quality of the solution with a constant equal to 0.01. In our work, we propose a new
method to control these weight parameters based on Boltzmann function. Boltzmann function has
shown efficiency with the Simulate Annealing algorithm [24-30] as an acceptance probability function
which allows to avoid getting stuck at a local minimum. The temperature T' gradually reduces so that
the probability of accepting an up-hill move also gradually reduces.

With the same principle, in our work, the parameters ¢; and §; are defined as shown in the
equations (12) and (13) so that they will increase and decrease gradually according to the quality of
the solution and the temperature T', the temperature T gradually reduces so that the probability of
accepting a non-improving heuristic also gradually reduces. This new version of the Modified Choice
Function by the inclusion of Boltzmann Function allows the diversification at the beginning of the
research process by starting with d; bigger than ¢; so the third measure will have the higher weight,
and rewards the intensification by the end of the research process as the ¢, increase gradually. So the

Modified Choice function will be defined as follow:

J(hi) = @4 f1(h) + Py fa(hg, hi) + 6t f3(hs). (7)

With L(h)
ilhs) = Z(ﬁ”‘lﬁ(h?)’ ©

n—1 (hk’h])
Pltebs) = 20", ey ?)
f3(hj) = 7(hy). (10)
And i)

Sp=e T, (11)
O =1-6, (12)

where t is the current iteration and 7' is the temperature.

5. Experimental results

The suggested Modified Choice Function Hyper-heuristic with Boltzmann function (MCF-F) and the
standard Modified Choice Function Hyper-heuristic (MCF-S) of Drake et al. [2,3] are compared in this
section. All tests were performed over a collection of 5 known problem domains (SAT, Flow Shop, Bin
Packing, Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP)), in order to judge
the performance of the proposed hyper-heuristic. The results of the tests represent, for each hyper-
heuristic, the average of five runs. Table1 shows formula one score of the two hyper-heuristics, the
hyper-heuristic with the best performance gets 10 points and the second gets 8 points. An evaluation of
hyper-heuristics scores shows that integrating Boltzmann Function into the Modified Choice Function
Hyper-heuristic leads to a significant performance when compared to Drake et al.’s Modified Choice
Function hyper-heuristic |2, 3|.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 736-746 (2021)

A modified choice function hyper-heuristic with Boltzmann function 743

Using the Formula One scoring system as a to compare the two hyper-heuristics gives a good
indication about their performances over all five problem domains, it allows us to see that one method
excels some different domains over another. Using the Formula One scoring framework as a comparative
tool provides a clear indicator of performance in all five problem domains, it also allows us to see
if one method outperforms the other one in specific domains. As shown, the proposed Modified
Choice Function Hyper-heuristic with Boltzmann Function outperforms the standard Modified Choice
Function Hyper-heuristic in three of the five problem domains evaluated: Bin Packing, Flow Shop, and

SAT.

Table 1. Formula one score of the stan- Table 2. Comparison of the objective
dard and the proposed modified choice function values performance of MCF-S
function in each problem domain. and MCF-B.
MCF-S MCF-B Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Bin Packing 40 50 Bin Packing =+ s+ =+ =+ s+

Flow Shop 42 48 Flow Shop =+ = =+ =+ =+

TSP 50 40 TSP = = = = =

SAT 40 50 SAT s+ s+ s+ s+ s+

VRP 50 40 VRP S— S— S— S— S—

Table 3. The ratio of performance of the objective function value of the MCF-B when compared to the MCF-S.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
Average Best Solution Average Best Solution Average Best Solution Average Best Solution Average Best Solution
Bin Packing 3% 8% 13% 44% 3% 2% 1% 7% 7% 20%
Flow Shop 0.25% 1% -0.06% 1% 0.36% 0.32% 0.53% 0.41% 0.33% 0.15%
TSP -3% % 2% 8% -1% —6% -1% -3% -1% -3%
SAT 12% 67% 16% 70% 16% 74% 15% 52% 32% 25%
VRP -9% —56% -13% -40% -20% -61% -18% —66% -20% -22%

Every cell of Table2 tests the difference in performance between the two hyperheuristics on the
obtained objective values: s+ (s—) indicates that MCF-B (MCF-S) performs statistically considerably
better than MCF-S (MCF-B), while =+ (=-) indicates there was no statistically meaningful difference
in results between MCF-B and MCF-S, but MCF-B performs slightly higher (lower) on average.

Table 3 shows the ratio of performance of MCF-B when compared with the MCF-S. When the
objective function values are compared, it is clear that the Modified Choice Function Hyper-heuristic
with Boltzmann Function outperforms in all five instances of the SAT, with a ratio of performance that
can achieve 32% on average and 74% on the best solution found by the two hyper-heuristics. Conversely,
in the VRP, the standard Modified Choice Function Hyper-heuristic gives better performance in all 5
instances, with a ratio of performance that can achieve 20% on average and 66% on the best solution
found by the two hyper-heuristics.

For the Bin Packing problem, the difference is statistically significant in 2 of 5 instances for the
MCF-B with a ratio of performance > 5% and a slight better performance for the other 3 instances.
For the other two problem domains, there is no significant performance variation, however, the MCF-B
performs slightly better than MCF-S for the Flow Shop and slightly worse for TSP.

This shows that the performance of a method not only vary when the problem domain changes but
also for each instance of the same problem domain. Fig. 4 shows how many times each hyper-heuristic
can do better (a. on average and b. on the best solution found by the hyper-heuristic). In terms of the
cumulative number of instances, where each hyper-heuristic outperformed one another, the modified
choice function with Boltzmann Function outperformed the standard Modified Choice Function, in 14
cases on average and 15 cases for the best solution. Whereas, the standard Modified Choice Function
outperformed the modified choice function in 11 cases on average and 10 cases for the best solution.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 736-746 (2021)

744 Mellouli O., Hafidi |., Metrane A.

u MCF-5 m MCF-B m MCF-5 mMCF-B
5
4 w4
g §
£
83 g3
£ =
k] k]
¥ ¥
E £
Z, 3
a 0
BinPacking FlowShop BinPacking FlowShop
Problem Domain Problem Domain
a b

Fig. 4. Number of instances in which each Hyper-Heuristic (MCF-S and MCF-B) performs best (a) on average
of the 5 runs and (b) on the best solution found by the Hyper-heuristic.

6. Conclusion

In this work, we have presented a state of the art of hyper-heuristics research by describing how
their definition has evolved from a “heuristic to choose heuristics” to “an automated methodology
for selecting or generating heuristics to solve difficult combinatorial search problems”, and we have
presented how they are classified based on this definition. We have described a new version of the
modified choice function proposed by Drake et al. [2,3] which manages in a different way the weight
parameters of intensification and diversification components of the choice function by the inclusion
of Boltzmann Function. The Modified Choice Function of Drake et al. [2,3] aggressively rewards the
intensification weight and heavily punishes the diversification component each time an improvement
is made. This proposed Modified Choice Function by the integration of Boltzmann Function allows
the diversification at the beginning of the research process and rewards the intensification by the end
of the research process. We have shown that the key of success of the choice function is therefore
to choose the correct weight parameters for its three measures. As future work, we plan to present
different ways to manage those weight parameters to improve even more the problems resolution and
to analyze which method suits better to each problem domain.

[1] Burke E. K., Hyde M., Kendall G., Ochoa G., Ozcan E., Woodward J. R. A classification of hyper-heuristic
approaches in Handbook of Metaheuristics. Springer US. 449468 (2010).

[2] Drake J. H., Ozcan E., Burke E. K. An Improved Choice Function Heuristic Selection for Cross Domain
Heuristic Search. PPSN 2012: Parallel Problem Solving from Nature — PPSN XII. 307-316 (2012).

[3] Drake J. H., Ozcan E., Burke E. K. A Modified Choice Function hyper-heuristic controlling unary and
binary operators. 2015 IEEE Congress on Evolutionary Computation (CEC). 3389-3396 (2015).

[4] Tay J. C., Ho N. B. Evolving dispatching rules using genetic programming for solving multi-objective flex-
ible job-shop problems. Computers & Industrial Engineering. 54 (3), 453-473 (2008).

[5] Lyaqini S., Nachaoui M., Quafafou M. Non-smooth classification model based on new smoothing technique.
Journal of Physics: Conference Series. 1743 (1), 012025 (2021).

[6] Cowling P. I., Kendall G., Soubeiga E. A Hyperheuristic Approach to Scheduling a Sales Summit. PATAT
2000: Practice and Theory of Automated Timetabling ITI. 2079, 176-190 (2001).

[7] Crowston W. B., Glover F., Thompson G. L., Trawick J. D. Probabilistic and parametric learning com-
binations of local job shop scheduling rules. ONR research memorandum, Carnegie-Mellon University,
Pittsburgh (1963).

[8] Fisher H., Thompson G. L. Probabilistic learning combinations of local job-shop scheduling rules. In:
Muth J. F., Thompson G. L. (eds). Industrial Scheduling. 225-251 (1963).

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 736-746 (2021)

A modified choice function hyper-heuristic with Boltzmann function 745

9
[10]
11)
12)

[13]

14
15]
[16]
17)
18]
[19]
[20]
[21)
[22]
23]
[24)
[25)
[26]
[27)
28]
[20]

[30]

Fisher H., Thompson G. L. Probabilistic learning combinations of local job-shop scheduling rules. In:
Factory Scheduling Conference, Carnegie Institue of Technology. May 10-12 (1961).

Nachaoui M., Chakib A., Nachaoui A. An efficient evolutionary algorithm for a shape optimization problem.
Applied and Computational Mathematics. 19 (2), 220-244 (2020).

Oteiza P. P., Rodriguez D. A., Brignole N. B. Parallel cooperative optimization through hyper-heuristics.
Computer Aided Chemical Engineering. 44, 805-810 (2018).

Burke E. K., Hyde M., Kendall G., Ochoa G., Ozcan E., Woodward J. Exploring hyper-heuristic method-
ologies with genetic programming. Computational Intelligence. 177-201 (2009).

Burke E. K., Hyde M. R., Kendall G., Woodward J. Automatic heuristic generation with genetic program-
ming: evolving a jack-of-all-trades or a master of one. GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation. 1559-1565 (2007).

Burke E. K., Hyde M. R., Kendall G., Woodward J. R. The scalability of evolved on line bin packing heuris-
tics. 2007 IEEE Congress on Evolutionary Computation. 2530-2537 (2007).

Burke E. K., Hyde M. R., Kendall G. Evolving bin packing heuristics with genetic programming. Parallel
Problem Solving from Nature — PPSN IX. 860-869 (2006).

Dimopoulos C., Zalzala A. M. S. Investigating the use of genetic programming for a classic one-machine
scheduling problem. Advances in Engineering Software. 32 (6), 489-498 (2001).

Fukunaga A. Automated discovery of composite SAT variable selection heuristics. Proceedings of the
National Conference on Artificial Intelligence (AAAT). 641-648 (2002).

Fukunaga A. S. Automated discovery of local search heuristics for satisfiability testing. Evol. Comput. 16
(1), 31-61 (2008).

Fukunaga A. S. Evolving local search heuristics for SAT using genetic programming. Genetic and Evolu-
tionary Computation — GECCO-2004. 483-494 (2004).

Geiger C. D., Uzsoy R., Aytug H. Rapid modeling and dis- covery of priority dispatching rules: an au-
tonomous learning approach. Journal of Scheduling. 9, 7-34 (2006).

Keller R. E., Poli R. Cost-benefit investigation of a genetic-programming hyperheuristic. EA 2007: Artifi-
cial Evolution. 13-24 (2007).

Keller R. E., Poli R. Linear genetic programming of parsimonious metaheuristics. 2007 IEEE Congress on
Evolutionary Computation. 4508-4515 (2007).

Acevedo N., Barra C. R., Bolton C. C., Parada V. Automatic design of specialized algorithms for the binary
knapsack problem. Expert Systems with Applications. 141, 112908 (2020).

Eglese R. W. Simulated annealing: A tool for operational research. FEuropean Journal of Operational
Research. 46 (3), 271-281 (1990).

Fleischer M. A. Simulated annealing: Past, present, and future. Proceedings of the 1995 Winter Simulation
Conference. 155-161 (1995).

Koulamas C., Antony S. R., Jaen R. A survey of simulated annealing applications to operations research
problems. Omega. 22 (1), 41-56 (1994).

Kirkpatrick S., Gelatt Jr, C. D., Vecchi M. P. Optimization by Simulated Annealing. Science. 220 (4598),
671-680 (1983).

Romeo F., Sangiovanni-Vincentelli A. A theoretical frame-work for simulated annealing. Algorithmica. 6,
Article number: 302 (1991).

Suman B., Kumar P. A survey of simulated annealing as a tool for single and multiobjective optimization.
Journal of the Operational Research Society. 57 (10), 1143-1160 (2006).

Alahyane M., Hakim A., Laghrib A., Raghay S. A lattice Boltzmann method applied to the fluid image
registration. Applied Mathematics and Computation. 349, 421-438 (2019).

Mathematical Modeling and Computing, Vol.8, No. 4, pp. 736-746 (2021)

746

Mellouli O., Hafidi |., Metrane A.

lNnep-eBpuctnka moaundgikoBaHoi pyHkKLiT BMOOpy 3a cyHKLiED

BonbumaHa

Mennyni O., Tadiai 1., Merpane A.

LIPIM, ENSA Xypi6za, Ynisepcumem Cysmana Mynsan Caimana,
Bd Béni Amir, B.P. 77, Xypi6za, Mapoxko

Tinmep-eBpucTuka — 11€ MiAK/IAC METOIB JTOCTIIZKEHHST BUCOKOTO PiBHS, K1 (PYHKITIOHYIOTH
¥ IIPOCTOPi €BPUCTUYHUX JOC/IIZKeHb HU3LKOTO PIiBHS. IXHs MeTa — HOKDAIIUTH DPiBEHb
3araJbHOCTI JJIsT PO3B’A3yBaHHSI 38129 KOMOIHATOPHOI ONTHUMIi3alil 3a JIOMOMOTOIO JBOX
OCHOBHMX KOMIIOHEHTIB: METOJOJIOTII €BPUCTUIHOrO BUOOPY Ta KPUTEPIIO0 MPUAHATHOCTI
X071y st 3abesneuensst inTencudikanil Ta qusepcudikari [1]. Takum uuHOM, 3aMicTh TO-
ro, 1mob 6e3mocepeTHLO MPAIIOBATH HAJT PO3B’I3KaMU 33121 Ta 00UpATH OJINH 3 HUX, 100
IepeiiTu JI0 HACTYITHOTO KPOKY Ha KOXKHOMY €Talli, Tillep-eBPUCTHUKA JIi€ Y IIPOCTOPi €B-
PUCTHYHOIO JIOC/I2KEeHHsT HU3bKOrO piBHs. DyHKIS BUOOPY € OIHIEIO 3 rimmep-eBPUCTUK,
aKi JjoBesin cBoo ebeKTUBHICTD y PO3B’d3aHui 3a1a4 KoMmbinaTopuol onrumizanii [2-4]. Ha
KOXKHIl iTeparlil Bubip €eBpUCTUKY 3aJI€2KUTh BiJ OIIHKU, OOYMC/IEHOT MIJISTXOM TOETHAHHS
TPHOX PI3HUX MOKA3HUKIB, 10O rapaHTyBaTH fK iHTeHcudiKalio, Tak i auBepcudikalio
mporiecy BUOOPY €BpUCTUKU. TOMY JIjisi PO3B’sI3yBaHH 3ajladi BUOUPAETHCS €BPUCTHUKA, 3
HaiiBumuMm G6astom. OTKe, KJIFOYEM 0 yCIiXy B BuOOpi OYHKINI € BUOIp IpaBUIHLHUX Ba-
rOBUX IMapaMmerpiB s Tphox 11 Mip. ¥ Iiff pobOTi BUKOHAHO CydYacCHE Till€PEBPUCTUIHE
JOCJIPKEHHST Ta 3aIllPOIIOHOBAHO HOBHUII METO[I, KWl aBTOMATUYIHO KEPY€E IMMU BATOBU-
MU TapaMerpamu Ha ocHOBi dyukmil Bonbiivana. IIpoBereHo mopiBHAHHS pe3yJ/IbTATIB,
OTPUMAaHUX BHACIIJIOK HOI'0 3aCTOCYBaHHS JI0 II'ITU IIPEJIMETHUX 00JIacTell, 3 Pe3yIbTaTa-
MU MEeTOJIy CTaHaapTHOI MogudiKoBaHOl MYHKIIT BUOOPY, fKi 3ampononoBani JIpeitkoM Ta

i [2,3].

Knrouosi cnoBa: zinep-espucmuxa, KomMOTHAMOPHA ONMUMIZAULA, PYHKUIA 6ubOPY,
Mmoduirosara Pynryis eubopy, espucmuuHul ubip, ePUCTMUYHG 2eHEPALIs, OYHKUIA
Boavuymana.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp.736-746 (2021)

