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In this work, we propose a deep prediction diabetes system based on a new version of the
support vector machine optimization model. First, we determine three types of patients
(noisy, cord, and interior) basing on specific parameters. Second, we equilibrate the clin-
ical data sets by suppressing noisy and cord patients. Third, we determine the support
vectors by solving an optimization program with a reasonable size. Our system is per-
formed on the well-known diabetes dataset PIMA. The experimental results show that the
proposed method improves the prediction accuracy and the proposed system significantly
outperforms all other versions of SVM as well as literature methods of classification.
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1. Introduction

Diabetes is a major global health problem. According to the report of WHO (World Health Organiza-
tion), diabetes is among the most prevalent diseases among the elderly in the country, and also each
year, an estimated 1.6 million people die from the effects of diabetes [1]. According to the International
Diabetes Federation report, 451 million individuals worldwide have diabetes in 2017, and this number
is expected to increase to 693 million people in the next 26 years [1]. Diabetic is a major chronic disease
that occurs when the pancreas does not produce sufficient insulin or when the body does not properly
use the insulin it produced. There are three types of DM, the pathogenesis of type 1 diabetes mellitus
(T1DM), the pathogeneses of type 2 diabetes mellitus (T2DM) [2] and Gestational Diabetes Mellitus
(GDM). It is very important the diagnosis to prevent the diabetic of type 2 and treat it in time. Many
works have used machine learning (ML) methods to predict diabetes [3]. One of the most efficient
methods for prediction is Support Vector Machine SVM [4–7], it is a machine learning method and
one of the most efficient methods for solving classification problems. SVM has attracted the attention
of researchers because of its good performance in practical applications and solid theoretical founda-
tions [5–7]. SVM has been developed and different versions have emerged and among these versions
we have the following [8–23]: C-SVM: If the data is linearly non-separable, Vapnikh and Cortes [24]
introduce the notion of a soft margin. We introduce N additional variables ξi called slack variables,
where ξi > 0. Then, we solve the following problem:





min
1

2
‖w‖2 + C

N∑

i=1

ξi,

subject to yi(xi.w + b) > 1− ξi,
ξi > 0.

(1)

Define the Lagrangian of the soft margin SVMs:

This work was supported by MENFPESRS and the DDA of Morocco (Nos. Alkhawarizmi/2020/23).

c© 2021 Lviv Polytechnic National University 747



748 El Ouissari A., El Moutaouakil K.

L(w,αi, ξi) =
1

2
‖w‖2 + C

N∑

i=1

ξi −
N∑

i=1

αi [yi(xi.w + b)− 1 + ξi]−
N∑

i=1

βiξi. (2)

By performing the transformation into a dual problem, we obtain the following:




max
α

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjxixj ,

subject to
N∑

i=1

αiyi = 0,

0 6 αi 6 C.

(3)

G-SVM: We also have problems of classification of m points in the real space of n dimension R
n,

representing by the matrix A of dimension m× n, knowing for each point Ai is belonging to the class
+1 or −1 specified by a given diagonal matrix D of dimension m ×m. For this type of problem we
have the linear problem of support vector machine is given by:





min ‖w‖+ νe′y,

subject toD(A.w − eγ) + y > e,

y > 0,

(4)

where ν > 0.
For the non-linear problem of the support vector machine we can do the transformation w = A′Du

then the problem (6) must be in the following form:





min ‖A′Du‖+ νe′y,

subject toD(AA′Du− eγ) + y > e,

y > 0.

(5)

We replace AA′ by a nonlinear kernel function K(A,A′) and ADu by u with u a convex function
of Rm. Then we get the next generalized support vector machines (G-SVM) [9]:





min ‖A′Du‖+ νe′y,

subject toD(k(A′, A)Du− eγ) + y > e,

y > 0.

(6)

F-SVM [10]: In SVM we find that all the training data belong to one of the classes, that is to say,
each entry point belongs to this class or the other class, but in real problems it does not work good
because we find a difference between the training points and that there are more important points
than the other, and also misclassed training points which makes the classification task difficult and
full of errors. To remedy this problem Chun–Fu Lin proposed the notion fuzzy SVM, this technique
is based on each input data is added a value si called fuzzy membership such that 0 6 si 6 1. This
fuzzy membership si can be considered as the position of the corresponding training point xi toward
a class.

ν-SVM [11]: One of the difficulties we face in solving a non-separable problem is finding or pre-
dicting the C value, since the parameter C takes a large value from 0 to infinity, it is very difficult to
determine, Bernhard Scholkopf proposes an extension of C-svm called ν-SVM.

The idea is replaced C by another more intuitive parameter, this parameter is confined between
0 and 1. This parameter roughly represents the fraction of the expected support vectors, so for any
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given ν ∈ [0, 1], we will know a priori how the class will be formed. One of the excellent property of
ν-SVM is that ν control the number of training errors and consequently the support vectors.

LS-SVM [12]: Least Squares Support Vector Machine Classifiers is a version of SVM which pro-
poses by Suykens [12] and it is close to the classical SVM method, but instead of solving the quadratic
problem one seeks to solve a system of linear equations.

OC-SVM [13]: One class Support Vector Machine is a version of SVM [13, 20]. This version is
concerned with only one class, i.e. the target class, and any data that does not belong to this class is
considered extreme. In one-class SVM the convex optimization problem is solved using the quadratic
programming method.

T-SVM [14]: Another version of SVM which solves the problem when we have input data are
corrupted by noise, this version called total support vector machine (TSVM), which is motivated by
the method of total least squares regression.

W-SVM [15]: The idea of the weighted support vector machine (W-SVM) version is as follows:
at each entry point a different weight is added in terms of their importance in the class such that each
different point has a different contribution to the learning of the decision area.

Gr-SVM: Granular Support Vector Machines (G-SVM) is a version that systematically and for-
mally combines the theory of statistical learning with the theory of granular computing. For more
detail and advantage of G-SVM see [17].

S-SVM [18]: another reformulation of SVM called smooth support vector machine(S-SVM). In the
problems of unconstrained optimization of SVM [18], the objective function is not twice differentiable,
and to remedy this problem we use smoothing techniques to fall in a new version vector support
machine (S-SVM).

P-SVM [21]: support vector machine classifiers (P-SVM) is classified the new input data according
to the proximity to one of the two parallel hyperplane that are pushed as far apart as possible. And
to obtain a linear or non-linear P-SVM classifier we solve a system of linear equations.

GEP-SVM [22]: Multisurface proximal support vector machine classification via generalized eigen-
values (GEP-SVM) is an extension of P-SVM but instead of solving a single linear equation system,
we formulate two eigenvalue problems to generate two non-parallel planes; with a necessary condition
is that the input data of each class is as close as possible to their own class and as far as possible from
the other class.

T-SVM [23]: Twin support vector machines (T-SVM) is very similar to GEP-SVM version; but,
they are based on an absolutely different formulation. The T-svm also find to obtain two non-parallel
planes; with a necessary condition is that the input data of each class is as close as possible to their
own class and as far as possible from the other class.

To overcome these drawbacks, we propose a new SVM version called Density Based Support Vector
Machine (DBF-SVM). This version is based on two parameters to know: the radius of the neighborhood
of the data and the number of points contained in this neighborhood. Basing on these parameters,
we determine three types of samples: noisy, cord and interior point. To ensure more consistency of
DBF-SVM, we select a random subset of a noise data, randomly chosen, are injected in the learning
set and during the resolution of the model (RD) we reject them taking according to their weights. As
we show, theoretically, that the cord points data cannot be support vectors, they are destitute form
the learning set. By doing this, we don’t loss generality because we show, mathematically, that a cord
sample keeps its nature even if we introduce any kind of kernel function.

This paper is organized as follows: the second section presents the fuzzy support vector machine,
the third section presents our proposed approach called density based Support Vector Machine (DBF-
SVM), where we explain the mathematical theories of the approach. The fourth section discusses the
experiment results obtained with our DBF-SVM approach on two types of data and its comparison
with other known classifiers. Finally, we conclude the paper by section 5.
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2. Fuzzy Support Vector Machine Theory

Vapnikh and Cortes introduced the notion of a soft margin to overcome the problem of the sutured
constraints, this version is called C-SVM [24]. In this sense, they used N additional slack variables
ξi > 0 to each constraint yi(xi.w + b) > 1. The sum of the slack variables is penalized and integrated
in the objective function: 




Min
1

2
‖w‖2 + C

N∑

i=1

ξi,

Subject to:

yi(φ(xi).w + b) > 1− ξi,
ξi > 0, ∀i = 1, . . . , N.

Where φ is the transformation function extracted from the kernel function K. By performing the
transformation into a dual problem, basing on the slack variables α1, . . . , αN , we obtain the following
optimization problem: 




Max

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjK(xi, xj),

Subject to:
N∑

i=1

αiyi = 0,

0 6 αi 6 C, ∀i = 1, . . . , N.

In SVM we find that all the training data belongs to one of the classes, that is to say, each entry point
belongs to this class or to the other class, but in real problems it doesn’t work well because we find a
difference between the training data, for example we find that some training data is more important
than others, and also misclassified training data, it makes the task of classification difficult and full
of errors. To remedy this problem Chun–Fu Lin [10] proposed the fuzzy SVM concept, this technique
is based on the fact that in each input data we add a value mi called fuzzy membership such that
0 < mi < 1. This fuzzy membership mi can be considered as the position of the corresponding training
point of a class in the classification problem, and based on the importance of the data in their class.

Several works have been done to develop this extension for example A New Fuzzy Support Vector
Machine to Evaluate Credit Risk by Wang [25] which is based on each entry point, the latter has added
two membership values, also the works [26–28] are developments of the fuzzy extension SVM.

We reformulate the problem of classification and take the data set as follows:

(x1, y1,m1), (x2, y2,m2), . . . , (xN , yN ,mN ),

such as xi ∈ R
n.

We add to each entry point a fuzzy membership for this reason all the input data contributes to
the learning of the decision terminal, so the reformulation of the SVM is like this:





Min
1

2
‖w‖2 + C

N∑

i=1

miξi,

Subject to:

yi(φ(xi).w + b) > 1− ξi,
ξi > 0,∀i = 1, . . . , N.

To solve this problem, we use the Lagrange multiplier method:

L(w, ρ, ξ, α, β, b, δ) =
1

2
‖w‖2 + C

N∑

i=1

miξi −
N∑

i=1

αi
(
yi((w.xi) + b)− 1 + ξi

)
−

N∑

i=1

βimiξi.
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Finally, we have the dual problem:





Max
N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjK(xi, xj),

Subject to:
N∑

i=1

αiyi = 0,

0 6 αi 6 miC,∀i = 1, . . . , N.

To determine fuzzy membership, we look for the main properties of the data set, and we relate those
properties to the fuzzy membership, for example Chun [10] assumes that time is the main property of
the dataset, the latter gives the value mi as a function of time and expresses the value of mi as follows:

mi = f(ti)

with 0 < σ 6 mi 6 1 and t1 6 t2 6 . . . 6 tN .
Chun [10] proposes to take that s1 = f(t1) = σ and sN = f(tN ) = 1 and also proposes two types

of fuzzy value,the first one is a linear function type value given by:

mi = f(ti) = ati + b,

and we use board conditions to determine a and b, one finds:

mi = f(ti) =
1− σ
tN − t1

ti +
tNσ − t1
tN − t1

,

and the second is a quadratic function type value given by:

mi = f(ti) = a(ti − b)2 + c,

and we use board conditions to determine a, b and c:

mi = f(ti) = (1− σ)
(
ti − t1
tN − t1

)2

+ σ.

3. Literature review

To predict diabetes by using the Indian Pima Diabetes Dataset (PIDD), many works have used machine
learning (ML) methods. A number of closely related works are discussed in this section [29–32].

In [29] the authors used different methods of machine learning and neural network on the PIMA
dataset to predict diabetics. They used seven machine learning methods which are (LR, KNN, SVM,
NB, DT, RF and AB), and noticed that SVM and LR are giving the best results for the prediction of
diabetics. They also built a neural network with different hidden layers (1, 2 and 3 hidden layers) and
with different epochs (200, 400 and 800 epochs), and found that the neural network with two hidden
layers gave a better result than the others.

Another study which used the logistic regression method for the classification of superseded learning
to predict the risk of type 2 diabetes in individuals is that of Tigga et. al. In [30]. the idea of this study
is to improve the prediction of the Logistics Regression method for predicting the risk of diabetes.

Shuja and all [31] they used a model of classification to predict diabetes based on two phases: the
first phase is preprocessing the data using Smote method to equilibrium the data unbalanced, and the
second phase is to feeding the most efficacy techniques of data mining of classification (Bagging, SVM
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(Support Vector Machine), MLP (Multi-Layer Perceptron), Simple Logistic and Decision Tree) with
the preprocessed data, to obtain an efficient model for predicting type 2 diabetes mellitus.

Delshi and all in [32] they proposed an approach that was used to diagnose Diabetes mellitus
(DM). This method benefits from the Farthest First (FF) clustering algorithm and the Sequential
Minimal Optimization (SMO) classifier algorithm. They used Farthset First (FF) to group the data
into number of clusters and Support Vector Machine (SVM) to classify the output to diabetic and
non-diabetic patients.

4. Density Based Fuzzy Support Vector Machine (DBF-SVM)

Let BD be a set of N samples x1, . . . , xN labeled, respectively, by y1, . . . , yN , distributed via k class
C1, . . . , Ck. In this section, we set a non-negative real r and a positive integer number mp, which
denotes min-points, that allows us to determine three types of data: noise, border and interior. In this
sense, we show that kernel function doesn’t change the interior points nature. In addition, we proof
that this kind of points can not be selected as a support vector. Finally, we show, theoretically, the
influence of the parameter mp on the samples nature.

Definition 1. Let S ⊆ R
n. A point a ∈ R

n is said to be an Interior Point of S if there exists an
r > 0 such that B(a, r) ⊆ S. The set of all interior points of S is denoted by int(S) or S◦.

Definition 2. For a given dataset BD, a non-negative real r and an integer mp, there exist three
kind of samples.

1. A sample x is called Ci-Noise Point (NPi) if |Ci ∩B(x, r)| < mp.

2. A sample x is called Ci-Cord Point (CPi) if |Ci ∩B(x, r)| > mp and x ∈
o︷ ︸︸ ︷

envol(Ci)
3. A sample x is called Ci-Border Point (BPi) if |Ci ∩B(x, r)| < mp and there exists a Ci-cord point

y such as x ∈ B(y, r).

Let K be a kernel function that permits to pass from R
n to R

N via a transformation denoted φ
(n < N).

Lemma 1. If a is a Ci-Cord point for a given ε and minpoints (mp), then φ(a) is also a Ci-Cord
point with appropriate ε′ and the same minpoints (mp).

Proof. As a is a Ci-Cord point, there exist x1, . . . , xp such as ∀l ∈ {1, . . . , p}, ‖xl−a‖ 6 ε and p > mp.
Let by φ the function defined by the equation k(x, y) = φ(x)φ(y).
We have

φ(x)− φ(a) =
n∑

i=1

(xi − ai)
∂φ

∂xi
(a) +

1

2

n∑

i,j=1

(xi − ai)(xj − aj)
∂2φ

∂xi∂xj
(a) + ‖x− a‖2ε(x− a).

Thus

‖φ(x)− φ(a)‖ 6
n∑

i=1

|xi − ai|
∥∥∥∥
∂φ

∂xi
(a)

∥∥∥∥ +
1

2

n∑

i,j=1

|xi − ai||xj − aj |
∥∥∥∥

∂2φ

∂xi∂xj
(a)

∥∥∥∥+ ‖x− a‖2‖ε(x− a)‖,

where lim
x→a

ε(x− a) = 0.

Then

‖φ(x)− φ(a)‖ 6 nK1‖x− a‖∞ +
1

2
nK2‖x− a‖2∞ +M2K3‖x− a‖2∞,

where K1, K2, K3 and M are defined by:

K1 = Max

{∥∥∥∥
∂φ

∂xi
(z)

∥∥∥∥ , i = 1, . . . , n and j = 1, . . . , n and z ∈ BD
}
,
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K2 = Max

{∥∥∥∥
∂2φ

∂xi∂xj
(z)

∥∥∥∥ , i = 1, . . . , n and j = 1, . . . , n and z ∈ BD
}
,

K3 = Sup
{
‖ε(x− a)‖, z ∈ B, where B is the smallest bole containing BD

}
,

M ′‖x− y‖∞ 6 ‖x− y‖ 6M‖x− y‖∞, ∀x, y ∈ R
n.

If we set

K = nK1 +

(
1

2
nK2 +M2K3

)
Maxx,y∈BD‖x− y‖∞.

Then
‖φ(x) − φ(a)‖ 6 K ′‖x− a‖,

where K ′ = K
M ′ .

Finally
∀l ∈ {1, . . . , p}, ‖φ(xl)− φ(a)‖ 6 ε and p > MinPoints.

�

Theorem 1. A cord point can never be selected to be a support vector in the sense of SVM.

Proof. As it is always possible to find an integer N such as DB is linearly separable, we demonstrate
the demanded result for the linear case. Suppose that SVM selects a cord point cp (said it is a+sample)
as support vector. Since the data is linearly separable, the separation zone S determined by SVM must
not contain any sample. Let ∆+ and ∆− be the two lines delimiting S.

As cp is a+ cord point, thus cp ∈ int(envol(C+ ∩B(cp, r))).
Then there exist x+ and y+ from C+ ∩B(cp, r) which are not from the same side of ∆+ said x+.
Thus x+ ∈ S absurd.
As consequence a cord point can never be selected to be a support vector in the sense of svm. �

Proposition 6. For ε fixed, cordPoints(minPoints) is decreasing function for the inclusion operator.

Proof. Let ε be a nonnegative real number. For ∀mps1 ∈ N, ∀mps2 ∈ N such as mps1 6 mps2, we
have

cordPoints(mps2) ⊆ cordPoints(mps1).

In fact, let x ∈ cordPoints(mps2).

Then |Ci ∩B(x, r)| > mps2 and x ∈
o︷ ︸︸ ︷

envol(Ci).
As mps1 6 mps2, we have |Ci ∩B(x, r)| > mps1.
Thus x fulfilled, both, the condition 1) and 2) for mps1. Finely x ∈ cordPoints(mps1). �

Recall the last dual that consists finding multipliers α1, . . . , αn such that:





Max

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjK(xixj),

Subject to:
N∑
i=1

αiyi = 0,

0 6 αi 6 miC, ∀i = 1, . . . , N

and let {α1, . . . , αn} = BM ∪ CM ∪ NM be the set of the Lagrange multipliers, where: BM is the
set of the Lagrange multipliers associated to the boundary samples; CM is the set of the Lagrange
multipliers associated to the Cord samples; NM is the set of the Lagrange multipliers associated to
the noise samples.
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As the elements of BM can’t be a support vector and to ensure a large generalization, we rewrite
the objective function and the constraint of the dual problem:

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjK(xixj) =
∑

αi∈BD
αi −

1

2

∑

αi∈BD

∑

αj∈BD
αiαjyiyjK(xixj)

and
N∑

i=1

αiyi = 0⇔
∑

αi∈BD
αiyi = 0.

Our approach consists solving the following dual model:

(RD)





Max
∑

αi∈D
αi −

1

2

∑

αi∈BM

∑

αj∈BM
αiαjyiyjK(xixj),

Subject to:∑
αi∈BD

αiyi = 0,

0 6 αi 6 miC ∀αi ∈ BM ∀i = 1, . . . , N.

To ensure more consistency of DBF-SVM, we select a random subset of noisy data that are injected
in the learning set and we reject them according to their weights (x having the smallest |BD∩B(x, r)|)
during the resolution of the model (RD).

Basing on these theoretical results, we give the main steps of the proposed DBF-SVM that improves
the classical SVM:
1) We set the parameters r (radius of the neighborhood) and mp (the neighborhood size) statistically;
2) We determine the noisy-subset, cord-subset and interior-subset;
3) We solve the dual problem basing on the cord-subset data only.

5. Experimentation

The proposed method is tested on several datasets, to know One-Gaussian dataset and Skin-noskin
described, respectively, in the section 5.1 and 5.2. This choice is founded on the large numbers law.

Several experimentations have been conducted for all algorithms with different configurations under
a compatible HP, Intel (R) Core (TM) i5- 4210U CPU@ 1.70GHz, 2.40 GHz, and 6.00Go GB of RAM
through Matlab.

As DBF-SVM depends on two parameters (Min-Points mp and radius r of the neighborhood of a
given sample), it will be interesting to study the DBF-SVM consistency. To this end, we calculate the
margin, for several values of those parameters, using the formula:

M =
2

‖w‖ , (7)

where w =
∑ncp

i=1 αiyiφ(xi), then ‖w‖2 =
∑ncp

i=1 αiαjyiyjK(xi, xj) with ncp is the number of cord points.
Then we estimate the number of vector support for different values of the radius r.

5.1. DBF-SVM test on 1-Gaussian dataset

In the following, we give the description of the 1-Gaussian dataset; see Figure 1.

Dataset Name: 1-Gaussian.
Attribute types: Real numbers.
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Instances: Variant [1000, 50000].
Attributes number: 3 (2 inputs+class).
Class number: 2 class.
Description: the first class is obtained by generating 500 6 N 6 25000 points for a red class

distributed as 2-D independent normal with mean (3,0) and unit variance. The second class is obtained
by generating 500 < N < 25000 points for a green class distributed as 2-D independent normal with
mean (0,3) and unit variance.

Notation: 1|G|(instances).
Figure 1 illustrates the obtained results by the classical SVM(kernel=RBF) applied to 1|G|1000.

This example shows that to determine the decision boundary, we need only the border points which
reinforces the theoretical result shown in Theorem1.

Figure 2 illustrates the obtained results by the DBF-SVM (r = 0.4; mp = 12; kernel=RBF) applied
to 1|G|1000. First, the DBF-SVM determines the three kind of data: cord, border and noise points.
Then, we keep only border points (the 1|G|1000 instance becomes 1|G|151; see table 1 row 1.
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Fig. 1. Boundary decision using classical SVM. Fig. 2. Boundary decision using DBF-SVM.

Then, the dual problem of this latter is solved using an adequate optimization method (subject
discussed at the end of the paragraph 2).
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Fig. 3. Learning cpu time versus data size on 1|G|N
instances.

Table 1 gives a statistical study about the re-
mained samples most of which are border points
and represent, in mean, 3.34% of the initial
data; this percent increases with the size of
the 1-Gaussian dataset size (Figure 4). A such
diminution permits a large gain in term of cpu
time to solve the dual problem. In addition,
solving the dual problem basing on, only, the
border points reduces the number of local min-
imum allowing the selection of the optimal sup-
port vectors.

Table 1 presents a comparison between the
classical and the proposed DBF-SVM. First, the
DBF-SVM provides the best classification rate
(see Table 1 columns 3 and 6). Second, the re-
duction of the dual size permits a remarkable gain in term of time (see Table 1 columns 4 and 7).
Third, the performance of the DBF-SVM increases with size of the 1-Gaussian instances (Figure 3);
then we recommend the use of the DBF-SVM for large instances of 1|G|N .
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Table 1. Classical SVM vs Density Based SVM on 1-Gaussians with: RBF=kernel function, r = 0.4, mp = 12.

Method Classical SVM Density Based SVM

Data size Dual
problem

Mean test cor-
rect rate(%)

Mean learning
CPU time (s)

Dual
problem

Mean test cor-
rect rate(%)

Mean learning
CPU time (s)

1|G|1000 800 100 0.9375 151 100 0.7656
1|G|1600 1280 98.24 1.1875 161 98.24 0.8125
1|G|2000 1600 97.84 1.2500 129 97.84 0.7188
1|G|2600 2080 96.93 1.3594 143 96.52 0.6719
1|G|3000 2400 97.04 1.4063 119 98.08 0.6719
1|G|3600 2880 96.12 1.8750 119 95.69 0.7969
1|G|4000 3200 96.68 1.7969 96 98.21 0.5781
1|G|4600 3680 95.18 1.8594 103 94.96 0.5938
1|G|5000 4000 94.88 2.5000 95 94.18 0.7813
1|G|5600 4480 95.77 2.6563 121 97.30 0.7344
1|G|6000 4800 95.92 3.1094 125 97.67 0.7500
1|G|6600 5280 96.37 1.7656 103 97.58 0.5313
1|G|7000 5600 95.91 2.2344 107 96.41 0.7500
1|G|7600 6080 95.73 2.0938 116 96.78 0.6406
1|G|8000 6400 95.24 2.3594 89 96.59 0.7188
1|G|10000 8000 95.52 2.4844 102 96.39 0.5313
1|G|11600 9280 95.63 3.0313 104 96.54 0.7031
1|G|15000 12000 96.10 3.6250 86 96.94 0.6094
1|G|16000 12800 95.68 4.3906 105 97.51 0.6563
1|G|17000 13600 96.12 4.2188 109 97.37 0.5938
1|G|18000 14400 95.71 5.0000 101 97.48 0.7031
1|G|19000 15200 95.69 5.5000 110 97.37 0.4844
1|G|20000 16000 94.63 6.0938 90 96.78 0.7344
1|G|40000 28767 95.11 18.0156 103 97.02 0.6094
1|G|50000 27767 94.00 19.7500 106 94.00 0.5938

Table 2. Consistency of the dual solution (Vector support number and SVM marge)
associated to 1|G|N instances.

Data size 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000
Marge mean 3.49 3.95 1.11 4.91 3.16 5.82 1.82 2.76 5.34 4.52 2.08
Marge Stan-
dard devia-
tion

4.68e-16 0.14 0.02 0 4.68e-16 0 0.14 0 9.36e-16 9.36e-16 4.68e-16

As DBF-SVM depends on the parameter mp, it was obligatory to study it’s consistency. In this
regard, experiments carried out on several instances of 1-g show that DBF-SVM becomes strongly
consistent for values 15 < mp < 30; see Figure 5.

Table 4 and 3 give the DBF-SVM results compared to the other classifiers (Niave Bayes, MLP, Knn,
AdaBoostM1, Random Forest, Random Tree and Classical SVM).

As shown in Table 3, the DBF-SVM confusion matrix contains the most larger number of true
positive samples. Basing on this matrix, we have calculated the most known performance measures
such as the Precision, the Recall and the F-measure; see Table 4. Our proposed method has the best
accuracy.

Table 5 shows the comparison of six classifier methods and our BD-FSVM method, evaluated by
the PIMA dataset, also presents how much our model is capable of distinguishing between classes.

From Table 5 it is obvious to notice that our model BD-FSVM tested on the PIMA datasets gives
better results, and it shows how our algorithm significantly outperforms classical SVM.

Table 6 shows the comparison of six version of SVM and our version BD-FSVM, evaluated by the
PRIMA dataset, also presents how much our model is capable of distinguishing between classes.
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Fig. 4. Dual size versus the instances sizes on 1|G|N
instances.

Fig. 5. Test correct rate versus min points on 1|G|N
instances.

Table 3. Confusion matrix of Niave Bayes, MLP, Knn, AdaBoostM1,
Random Forest, Random Tree and Classical SVM.

Classical SVM DB-SVM
no yes no yes
596 8 no 592 12 no
453 11785 yes 0 12238 yes

NB MLP
no yes no yes
362 242 no 586 18 no
799 11439 yes 2257 9981 yes

KNN Adaboost
no yes no yes
604 0 no 269 335 no
2024 10214 yes 3068 9170 yes

Random Forest Random Tree
no yes no yes
591 13 no 601 3 no
3101 9137 yes 3653 8585 yes

Table 4. Performance of Classical SVM, DBF-SVM, parametric,
non-parametric, and hybrid classifiers on skinnoskin dataset.

Method Accuracy Precision Recall F-measure
Niave Bayes 91.8 9 31.18 59.93 41.02
MLP 82.28 20.61 97.01 34
Knn 84.23 22.98 100 37.37
AdaBoostM1 73.50 8.06 44.53 13.65
Random Forest 75.75 16.01 97.84 27.51
Random Tree 71.53 14.12 99.50 24.740
Classical SVM 96.41 56.81 98.67 72.11
DB SVM 99.90 100 98.01 98.99

From Table 6 it is obvious to notice that our model BD-FSVM tested on the PRIMA datasets gives
better results.
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Table 5. Comparison between different classification
methods and our approach on diabetes dataset.

Method Accuracy Precision Recall F-measure
Niave Bayes 79.3 67.2 62.50 69.40
MLP 76.6 61.1 57.40 68.30
Knn 80.90 68.4 64.50 66.60
AdaBoostM1 81.10 69.2 70.60 66.50
Decision Tree 79.90 64.8 72.80 68.70
Classical SVM 79.70 70.7 55.6 62.7
DB SVM 89.90 83.4 81.6 78.6

Table 6. Comparison between different version of SVM
and our approach for diabetes dataset.

Method Accuracy Precision Recall F-measure
Twin SVM 0.74 0.58 0.75 0.66
OC-SVM 0.51 — — —
Least Squares SVM 0.79 0.67 0.61 0.68
Nu-SVM 0.77 0.66 0.64 0.64
Fuzzy SVM 0.81 0.65 0.66 0.70
Classical SVM 0.79 0.70 0.55 0.62
DB-FSVM 0. 90 0.83 0.82 0.79
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Fig. 6. Box plot of 11 instances of 1|G|N for for differ-
ent values of r.

To study the consistency of the DBF-SVM,
with respect to the r parameter, the radius of
the neighborhood, we carried out a small per-
turbation to r, for several instances of 1|G|N
for different values of N . It should be noted
that the perturbation is generated randomly be-
tween 0.0001 and 0.001. This perturbation leads
to different separation margins that have differ-
ent widths. These latter are calculated using
the formula (7). Then a statistical study were
carried out by calculating the arithmetic mean
and the standard deviation of the widths of the
obtained separation margins; see Table 2. The
small size of the box plot, given in Figure 6,
shows the strong consistency of our method
DBF-SVM when changing the parameter r.

6. Conclusion

In this work, we proposed a new version of SVM called the DB-FSVM as improvement of the classical
one. The method considers a non-negative real number allowing the data division to three types
(noise, border and cord). We used the Pima Indian Diabetes (PID) dataset to evaluate our method.
The experimental results indicate that the proposed method improves the prediction accuracy and DB-
FSVM significantly outperforms all other versions of SVM as well as literature methods of classification.
We show that our model BD-FSVM tested on the PIMA datasets gives better results and an accuracy
of 90%.
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Адаптивний метод опорних векторiв на основi функцiї щiльностi:
застосування до набору даних про дiабет

Ель Уiсарi А., Ель Мутауакiл К.

Лабораторiя iнженерних наук, Полiдисциплiнарний факультет Тази, Марокко

У роботi запропоновано систему глибокого прогнозування дiабету, засновану на но-
вiй версiї моделi машинної оптимiзацiї опорних векторiв. Спочатку визначаються три
типи пацiєнтiв (шум, зв’язковi та внутрiшнi) на основi конкретних параметрiв. Далi
врiвноважуються набори клiнiчних даних, пригнiчуючи шумних та зв’язкових пацiєн-
тiв. Пiсля того визначаються вектори пiдтримки, розв’язуючи програму оптимiзацiї
розумного розмiру. Запропонована система виконується на добре вiдомому наборi да-
них про дiабет PIMA. Результати експериментiв показують, що запропонований ме-
тод покращує точнiсть прогнозування, а запропонована система значно перевершує
всi iншi версiї SVM, а також лiтературнi методи класифiкацiї.

Ключовi слова: метод опорних векторiв, машинне навчання, оптимiзацiя, кла-
сифiкацiя, дiабет.
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