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This paper presents a new method to solve a challenging problem and a topic of current
research namely the selection of optimal shape parameters for the Radial Basis Function
(RBF) collocation methods in both interpolation and nonlinear Partial Differential Equa-
tions (PDEs) problems. To this intent, a compromise must be made to achieve the conflict
between accuracy and stability referred to as the trade-off or uncertainty principle. The
use of genetic algorithm and path-following continuation allows us on the one hand to avoid
the local optimum issue associated with RBF interpolation matrices, which are inherently
ill-conditioned and on the other side, to map the original optimization problem of defining
a shape parameter into a root-finding problem. Our computational experiments applied
on nonlinear problems in structural calculations using our proposed adaptive algorithm
based on genetic optimization with automatic selection of the shape parameter can yield
more accuracy and a good precision compared to the same state of the art algorithm from
literature with a fixed and given shape parameter and Finite Element Method (FEM).
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1. Introduction

In recent years, the use of meshless methods has become important in many fields of engineering due to
their simplicity in multivariate scattered data approximation [1] and their usefulness in solving many
real-world engineering problems, the meshless methods are precisely discovered to attempt avoiding
the lack of accuracy coming from the distortion of mesh as in FEM, where this distortion leads to
the important lack of accuracy in the simulations, and also it attempt for minimizing the difficult
step which is the mesh construction. These methods are a numerical method that require no mesh
connections within the computational domain, they constitute a real revolution since the publication of
Smooth Particle Hydrodynamics (SPH) method by the Astrophysicist Lucie [2] and the mathematicians
Gingold and Monaghan [3]. The many interesting advantages of these methods are the absence of nodal
connectivity, the mathematical simplicity and ease of implementation. So there is no need for numerical
integrations, which reduces the computational cost compared to FEM. The meshless methods can be
classified in two classes: (i) the meshless methods of Galerkin type [4,5] and of collocation type [6–8].
The first class combines the meshless methods with the weak formulation of PDEs and often these
methods require a domain partition. The Diffuse Element Method (DEM) introduced by Nayroles et
al. in 1992 [9] is the first meshless method using the formulation of Galerkin type, in 1994 Belyrsho et
al. [5] proposed the Element Free Galerkin Method using the Moving Least Squares method (MLS).
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The collocation type methods, unlike the Galerkin type methods, use the strong form of PDEs. In
1990 a robust method has been proposed by Kansa [6, 10] which developed the Radial Basis Function
(RBF) method for solving PDE of elliptic, parabolic, and hyperbolic types.

The history of RBFs goes back to 1971, where Hardy [11] innovated probably the most famous
RBF, Multi-Quadratics (MQ) function, to deal with surface fitting on topography and irregular sur-
faces, Yoon [12] showed that the MQ RBF can also converges exponentially in a Sobolev space for
PDEs and Madych [13] showed that the rate of kernels MQ, Inverse Multiquadric (IMQ), and Gaus-
sian (GA) are exponential converge on reproducing kernel Hilbert space. Moreover, depending on how
the RBFs are chosen, high-order or spectral convergence can be achieved [14, 15]. This method based
on the interpolation theory using RBFs has been used successfully in the following works [16, 17], and
it is becoming a best choice as a method for the numerical solution of PDEs [18,19]. The MQ RBF was
extended by Ferreira et al. [20, 21] for the analysis of composite beams, plates and shells. Chen and
his coworkers [22,23] developed a new meshless method called the Method of Approximate Particular
Solution (MAPS) which utilized RBF integrations to approximate the particular solution for PDEs
while simultaneously satisfying the boundary conditions. More recent research conducted mostly by
Fornberg and his coworkers [24–26], they showed that one may be able to overcome the condition-
ing problems of the traditional RBF approach by using other techniques such as the Contour–Pade
algorithm. A review of the theory of RBF approximation is given by Powell [16].

RBF method is based on a shape parameter, the choice of this one has a significant impact on
the accuracy of the RBF method, Carlson and Foley [27] showed that the influence of location of
collocation data points is less than shape parameter on the accuracy of the optimal solution, the
infinitely smooth RBFs typically leads to exponential convergence when the node density increases
and the shape parameter decreases. These results have been observed numerically for the commonly
used RBFs and proved theoretically for MQ and IMQ RBFs [28–31]. Kansa and Carlson [32] showed
that variable shape parameters are also useful, they distribute some values in an interval to use them
in variable shape parameter. Several strategies have been proposed for selecting the shape parameter.
Hardy [11] demonstrated that an optimal shape parameter could be selected in R2 using c = 0.815×d,
where d = (1/N)

∑
dj , and dj is the distance from a given data point x(j) and its neighbor close.Later,

Franke [33] compared about 30 interpolation schemes in two dimensions, he found that two of the most
accurate schemes were methods based on RBF interpolation so he proposed another form using c =
D/(0.8

√
N), where D is the diameter of the smallest circle that includes all of the interpolation points.

Both of these provided relatively good shape parameters, especially when the calculations are performed
on single precision arithmetic. Fasshauer and McCourt [34] also proposed a new approach which can
stably evaluate the RBF interpolants. Foley [35] proposed another scheme for the computation of a
better value for the shape parameter c using another observation from [27], he showed that the optimal
value for c is about the same for the MQ and the inverse MQ interpolants, and he proposed computing
the RBF shape parameters by minimizing the Root–Mean–Square Error (RMSE) evaluated at a set of
test points [35]. For different values of the shape parameters using a common set of training points,
the shape parameter corresponding to the minimum RMSE were selected. Other methods, which tend
to utilize a trail-and-error approach, yield results which are not optimally accurate or which ignore the
effect of the precision of the solver.

In 1999 Rippa [36] presented an algorithm for selecting a good value for c by minimizing a cost
function from which the data vector was sampled. This procedure is more advantageous than the
procedure of Foley, as it does not require a set of test points. Recently in 2018 Chen et al. [37] present
a novel sample solution approach for achieving a reasonably good shape parameter of the MQ-RBF
in the Kansa method to resolve of problems with unknown analytical solution, the optimal shape
parameter of the considered problem is chosen by considering the same problems using a guessing
analytical solution. The obtained optimal shape parameter for the considered problem with sample
solution is obtained numerically and is considered as an alternative optimal shape parameter for the
original problem. At the level of the Moving Least Square Method (MLS), research on the optimal
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shape parameter of RBF is rare. Zheng et al. [38] presented an idea for measurement of the optimal
shape parameter of Moving Least Squares approximation based on RBF, Hence the results obtained
show that MLS using RBF with the optimal shape parameter are much better than the polynomial
Least Squares.

Further efforts have utilized global optimization methods such as Genetic Algorithms (GAs) [39,40].
This latter is a search algorithm suitable for optimization problems due to its processing approach,
its structure, and it is able to return a set of optimal solutions because of their simplicity and easy
operations with minimum requirements. GAs have been used successfully in a wide variety of problems.
Recently in 2016 Biazar and Hosami [41] present an algorithm that suggested to determine a valid
interval in variable shape parameter. Esmaeilbeigi and Hosseini [40] presented a new approach based
on the GA to find a good shape parameter in the resolution of partial differential equations by the
Kansa method from where the results obtained show that the proposed algorithm based on the Genetic
optimization is efficient and provides a reasonable shape parameter with acceptable solution precision.
Afiatdoust and Esmaeilbeigi [39] propose to apply the genetic algorithm to determine good shape
parameters of RBF for solving ordinary differential equations from where the results show that the
algorithm provides reasonable shape parameters as well as precision acceptable in linear and nonlinear
cases compared to other methods. Weikuan et al. [42] suggested a new RBF neural network method
based on the Genetic Algorithms for weight optimization and the number of hidden neurons, then
connected concurrently the weight using the least mean square method, the results showed that the
GA is reliable for changing the neural network structure.

In our previous work [43], we developed a novel approach based on the RBF collocation method
and a shape parameter search algorithm that determines the optimal shape parameter with a good
precision of the results whatever the points distribution, in this work an optimization algorithm [44,45]
is used to search the shape parameter and coupled with a high order algorithm to solve equilibrium
equations in large deformations for a nonlinear elastic structure (geometrical nonlinearity). In this
paper we propose a new method based on genetic algorithm, to find good variable shape parameters
of kernel methods based on RBF, for the resolution of nonlinear problems. For the numerical analysis,
we are interested by nonlinear problems in the structural calculation. In this context, we consider two
bi-dimensional examples, one on a structure in tension (see section 6.1) and the other in bending (see
section 6.2).

2. RBF collocation approximation

Consider the Euclidean norm ‖ · ‖2 on R
d and a vector x in R

d, the RBF have the form φ(‖x − xj‖2)
which is defined strictly positive. The RBF collocation approximation can be written as:

s(x) =

N∑

j=1

αj φ(‖x − xj‖2). (1)

The nearest neighbors points xj is a set of points to the point x, which are included in a local support
domain Ω ⊂ R

d. The functions φ(‖x−xj‖2) contain the shape parameters ci such as the multi-quadrics
functions:

φi(‖x− xj‖2) =
(
c21 + ‖x− xj‖22

)q
(2)

and the exponential functions:
φi(‖x− xj‖2) = e(c

2
2 ‖x−xj‖22). (3)

By enforcing the interpolation constraints as follows:

s(xi) = f(xi), (4)

which leads to determine the unknowns coefficients α = [α1, . . . , αN ]
T using the interpolation matrix

Rij = φ(‖xi − xj‖), i, j = 1, . . . , N as follows:
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α = R−1f, (5)

where f = [f(x1), . . . , f(xN )]
T .

The approximation of the function s(x) is given:

s(x) = 〈φ(x)〉R−1f. (6)

The choice of a good shape parameter c makes it possible to ensure the existence of R−1 and a well-
conditioned R. As shown in the section 1, there are several research works which are interested in
finding the best optimal value of c. Note that we cannot determine the theoretical value of c. Our
contribution to this work is to develop a novel approach based on GA that determines the optimal
parameter c with a good precision for nonlinear elastic problem.

3. Nonlinear elastic problem statement in strong form

The equations of equilibrium in strong formulation for a nonlinear elastic structure in large defor-
mations [8, 43] assume that the displacements and forces imposed are proportional to a single scalar
parameter λ called the load parameter as follows:




(div T )i = ∂jTij = 0 ∀x ∈ Ω
Sij = Dijkl ⊗ γkl(U) ∀x ∈ Ω,

γ(U)ij =
1

2
(∂jUi + ∂iUj) +

1

2
∂iUk∂jUk ∀x ∈ Ω,

Ui = λUdi (x) ∀x ∈ Γ1 = ∂ΩD,
Tij ·Nj = λFi ∀x ∈ Γ2 = ∂ΩF ,

(7)

where T and S represent the first and second tensor of Piola–Kirchhoff respectively, D is the elastic
behavior tensor, Ω is the domain occupied by the structure, ∂ΩU and ∂ΩF are the boundary of an
imposed displacement Ud and applied loading F respectively. N is the normal applied towards the
outside of the boundary ∂ΩF .

We can rewrite the problem (7) in matrix form:




[L] {T} = {0} in Ω,
{T} = [III ] + [B(g(U))] {S} ,
{S} = [D] {γ} ,

{γ} =
(
[II] +

1

2
[A(g(U))]

)
{g(U)} ,

{U} = λ {Ud} on ∂ΩU ,
[N ] · {T} = λ {F} on ∂ΩF ,

(8)

where

[L] =

[
∂
∂x 0 ∂

∂y 0

0 ∂
∂y 0 ∂

∂x

]
; [III] =




1 0 0
0 1 0
0 0 1
0 0 1


 ; [B(g(U))] =




Ux,x 0 Ux,y
0 Uy,y Uy,x
0 Ux,y Ux,x
Uy,x 0 Uy,y


 ;

[II] =




1 0 0 0
0 0 1 1
0 1 0 0


 ; [A(g(U))] =



Ux,x 0 Uy,x 0
0 Ux,y 0 Uy,y
Ux,y Ux,x Uy,y Uy,x


 ;

[N ] =

[
Nx 0 Ny 0
0 Ny 0 Nx

]
; {g(U)} =





Ux,x
Ux,y
Uy,x
Uy,y




.
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4. Numerical Path-following continuation and the local RBF approximation

Taylor series development is used to search the unknowns variables of problem (8):




{T (a)} = {T0}+
N0∑
p=1

ap {Tp} ,

{S(a)} = {S0}+
N0∑
p=1

ap {Sp} ,

{γ(a)} = {γ0}+
N0∑
p=1

ap {γp} ,

{U(a)} = {U0}+
N0∑
p=1

ap {Up} ,

λ(a) = λ0 +
N0∑
p=1

apλp.

(9)

Where ({T0}, {S0}, {γ0}, {U0} and λ0) is a known solution point and “a” is the arclength along a
solution arc (u(a), λ(a)). Note that (u(a), λ(a)) depends smoothly on the parameter “a” and x =
(uT , λ)T . Using pseudoarc-length parametrization [8, 46] as shown in the previous paper [43], we add
an equation to close our system and to obtain a nonsingular Jacobian for the our problem statement.
In this context, we get an additional condition by projecting the pair (U −U0, λ− λ0) on the tangent
direction U1, λ1 as follows:

a = 〈U − U0〉 · U1 + (λ− λ0) · λ1. (10)

Therefore, the following equations depending of the order p are obtained:
{
‖U1‖2 + λ21 = 1 for p = 1,
〈Up〉 · {U1}+ λp.λ1 = 0 for p > 2.

(11)

We inject the developments in Eq. (9) into the non-linear problem (8) and identify the terms having
the same powers of the parameter “a” to obtain a sequence of linear problems:
Problem at order 1 :





[L]{T1} = {0},
{T1} = [G(g(U0))]{S1}+ [Ŝ0]{g(U1)},
{S1} = [D]{γ1},
{γ1} = [H(g((U0))] {g(U1)} ,
{U1} = λ1{Ud},
[N ] ·

{
[H(g(U0))][D][G(g(U0))] + [Ŝ0]{g(U1)}

}
= λ1{F}.

(12)

Problem at order p such that 2 6 p 6 Norder:



[L]{Tp} = {0},
{Tp} = [G(g(U0))]{Sp}+ [Ŝ0]{g(Uk)}+ {T ∗

p },
{Sp} = [D]{γp},
{γp} = [H(g(U0))]{g(Up)}+ {γ∗p},
{Up} = λk

{
Ud
}
,

[N ] ·
{
{[H][D][G] + [Ŝ0]} {g(Up)}

}
= λp{F} − [N ]

{
[H][D]{γ∗p}+ {T ∗

p }
}
,

(13)

where
[H(g(U0))] = [II] + [A(g(U0))] , [G(g(U0))] = [III ] + [B(g(U0))] ,

{
γ∗p
}
=

1

2

p−1∑

r=1

[A(g(Ur))] {g(Up−r)} ,
{
T ∗
p

}
=

p−1∑

r=1

[B(g(Ur))] {Sp−r} ,

and [Ŝ0] is a matrix which contains the stress components of the starting solution of each order:
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[
Ŝ0

]
=




S0
11 S0

12 0 0
0 0 S0

12 S0
22

S0
12 S0

22 0 0
0 0 S0

11 S0
12


 . (14)

We approximate the principle unknown {Up} by the local RBF method and we inject this approximation
in the problems (11)–(13) to obtain after the assembly technique a compact problems as follows:
Order 1 : 




{U∗
1 } = [KT ]

−1{F},
λ1 =

1√
〈U∗

1 〉{U∗
1 }+1

,

{U1} = λ1{U∗
1 }.

(15)

Order p for 2 6 p 6 Norder: 



{Un-lin} = [KT ]
−1{Fp},

λp =
−〈U∗

p 〉{U1}
〈U∗

p 〉{U1}+λ1 ,

{Up} = λp{U∗
1 }+ {U∗

p},
(16)

where [KT ] is the stiffness tangent matrix at the starting point ({T0}, {S0}, {γ0}, {U0}). The new
starting point of the new solution branch is obtained by continuation procedure {T (amax)}, {S(amax)},
{γ(amax)}, {U(amax)}, where amax is the convergence radius [8, 46]:

amax =

(
ε
‖ {U1} ‖
‖ {UN0} ‖

) 1
N0−1

. (17)

5. Estimation of optimum variable shape parameter in high-order RBF collocation ap-
proach

Genetic algorithms are part of evolutionary algorithms which are based on genetics and natural selec-
tion [47]. Their operation is extremely simple. We start from an initial population of arbitrarily chosen
potential solutions (population). We assess their relative performance (fitness). These performances
allow us to create another population of potential solutions by crossover, mutations, and selection
which are simple evolutionary operators. This cycle must be repeated to find a satisfactory solution.

The purpose is to use a search algorithm using genetic algorithm to determine good shape parameter
c in the RBF collocation method. In this study, the genetic algorithm is tested to determine good c for
the simulation of large deformation problems. For a given distribution of points, this proposed strategy
allows to determinate automatically and quickly the best value α, to build the shapes functions, with a
good precision. We consider that the shape parameter c = α×ds where α is a coefficient to determinate
and ds is the average distance between points where ds = 1

N

∑N
j=1 dj and dj is the distance between

the jth point and its nearest natural neighbor. The proposed genetic algorithm for the optimal value
search of the coefficient α is presented in the Fig. 1. The idea is to minimize the relative error of the
displacement at order 1 of the high order RBF collocation algorithm as shown this figure. This first
order error estimator allows us to ensure a well-conditioned tangent matrix [KT ] of the high order
algorithm which is the same used in the other orders k > 2. For this reason, in the minimization of
the relative error, we are limited to the displacement at order 1 to determine βoptimal.

In general, we can obtain the generation of the “Population” as follows:

Population = zeros(Npopulation,digits + 1),

Population = [randi([0 9], [Npopulation 1]), . . . , (18)

randi([0 9], [Npopulation digits])],

where “Npopulation” represents the number of values α to be tested for each iteration, “digits” is the
number of digits after the decimal point and “randi” is a random function between 1 and 40 where
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the shape parameter α varies in the interval [1, 40]. We also assume a single number after the decimal
point which limited in the interval [0, 9]. The satisfactory solution is controlled by the displacement
relative error which must be lower of ε. If the relative errors of the tested values are greater of the
tolerance parameter ε, we change the values to be tested. We test the values of the new “Population”
in the second iteration. The same procedure is repeated until the relative error is less than ε. This
genetic algorithm strategy is similar to that used recently by Hassouna and Timesli (2021) [48].

YesNo

Initialization:

β = zeros(1, NP ); Population = [Randi([1 40], [NP digits])]

Iteration: n = 1

Iteration: n = n+ 1

i = 1 : 2

β(1 : NP ) = β(1 : NP ) + Population(1 : NP , i) · 10(1−i)

j = 1 : 4Shape functions update with shape
parameter α = β(j)ds

{Uln} = [KT ]
−1{F}

λ1 = 1√
〈Uln〉{Uln}+1

{U1}n = λ1{Uln}
error(j) =

1

2

‖{U1}n − {U1}n−1‖
‖{U1}n + {U1}n−1‖

min(error(1 : NP )) < ε

Find j equivalent to the mini-
mum error (min(error))

βoptimal = β(j)

Selection of Population(imax,1:S) and
Population(imin,1:S) which are equivalent
to the max(error) and min(error) repec-
tively

Replace Population(imax,1) with Population(imin,1)

Fig. 1. Genetic algorithm strategy for finding the optimal value of β based on the first order error estimator.

6. Numerical results

In this application, using the proposed high order algorithm, we study the effect of the shape parameter
on the solution of the nonlinear elastic problem. The accuracy of this numerical solution is controlled
by the FEM method as a reference solution.

6.1. Bi-dimensional structure in tension

We propose to study a problem of elastic rectangular plate of length 100mm and width 50mm, this
plate is fixed at x = 0 and subjected to a tensile force λF , with F = 1MPa. The physical characteristics
of the material are: Young’s modulus E = 200GPa and Poisson’s ratio ν = 0.34. The parameters of
the high order algorithm are the truncation order p = 15 and the tolerance parameter η = 10−8.

We performed a simulation using the proposed strong RBF approximation with the distributed
points number 441 and the MQ function. Figure 3 represents the structure before and after deformation,
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where the representation of the initial state in black color and the deformed configuration in red color
for λ = 309870. In the RBF method, the value of the shape parameter affects the accuracy and the
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Fig. 2. Condition number for the MQ RBF interpo-
lation.

Fig. 3. Initial and deformed configurations of the
plate for λ = 309870 using a distribution of 21 × 21

points.

conditioning of the system matrix. It is necessary to avoid a small shape parameter to ensure that the
matrix of the system is well conditioned. However, obtaining a good accuracy for the RBF method
requires a small shape parameter. Note that this choice leads to ill-conditioned matrix. Therefore, the
solution is to find a compromise to get the best results in terms of accuracy and conditioning. This is
called the Uncertainty Principle [49]. The stability result of the proposed method can be determined
by the condition number, which is defined as follows:

κ(R) = ‖R‖‖R−1‖, (19)

where the R is the momentum matrix assigned to the MQ RBF interpolation. The resulting system
matrix must have a condition number in the range [1013, 1015] [49]. We present in Fig. 2 the condition
number for the MQ RBF interpolation in each point of the domain. This figure shows that the condition
number is in the range mentioned before for all steps.
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Fig. 4. Evolution of load λ versus displacements u
and v in x direction for the new algorithm with dif-
ferent values of q and FEM at point of coordinate

(x = 0, y = 100).

Fig. 5. Evolution of the optimal shape parameter
αoptimal versus number of steps for the new algorithm.

Figure 4 shows the evolution of load λF versus displacements u and v at point of coordinate
(x = 0, y = 100). These results are obtained by the proposed algorithm, using the GA for finding the
good shape parameter and the two functions MQ and IMQ, and compared by FEM.
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Figure 5 presents the evolution of the optimal shape parameter αoptimal with respect to number of
steps for the new algorithm which shows that αoptimal varies versus the number of steps. Therefore
the parameter αoptimal can vary slightly with respect to the increase in loading or deformation.

6.2. Bi-dimensional structure in bending

In this second example, we consider a bi-dimensional elastic plate without contact in bending clamped
at the left end, and subjected at the right end to an imposed load λF ; with F = 1MPa. The
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Fig. 6. Initial and deformed configurations of
the plate for λ = 9458.9 using a distribution

of 101× 6 points.

used mechanical and geometrical characteristics of the
considered structure are: Young’s modulus E = 210GPa,
Poisson’s ratio ν = 0.3, length L = 200mm and height
l = 10mm. These data are chosen according to the same
study as in the previous example. The obtained result is
compared with the ones obtained by the FEM. Regarding
the high order algorithm, we use the same parameters of
the previous example with the distributed points number
606. Figure 6 shows the initial and deformed configura-
tions of plate in bending, where the representation of the
initial state in black color and the deformed configuration
in red color for λ = 9458.9.

Figure 7 represents the evolution of displacements u
and v versus loading parameter λ at point of coordinate
(x = 0, y = 200) using the proposed algorithm with the
MQ function where q = 0.5 and q = 0.25. We can see
that the calculation by the high order algorithm based

on FEM stops because the convergence radius of this high order algorithm tends to zero which shows
the advantage of the high order RBF algorithm based on genetic algorithm to simulate this kind of
problems.
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Fig. 7. Evolution of load λ versus displacements u
and v in x direction for the new algorithm, with dif-
ferent values of q using a distribution of 101×6 points,

and FEM at point of coordinate (x = 0, y = 100).

Fig. 8. Evolution of the optimal shape parameter
αoptimal versus number of steps for the new algorithm

using a distribution of 101× 6 points.

Figure 8 presents the evolution of the optimal shape parameter αoptimal with respect to number of
steps for the new algorithm in the case of bending for the both values q = 0.5 and q = 0.25.
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Figure 9 represents the evolution of displacements u and v versus loading parameter λ at point of
coordinate (x = 0, y = 200) using the proposed algorithm with the MQ function where q = 0.5 and
different distributions of point 101 × 6 and 141 × 8. We can observe that the calculation by the high
order algorithm converges better towards the FEM solution using the distribution 141×8, that we can
consider it the optimal distribution to obtain good results.
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Fig. 9. Evolution of load λ versus displacements u
and v in x direction for the new algorithm with q =
0.5, and FEM at point of coordinate (x = 0, y = 100).

Fig. 10. Evolution of the optimal shape parameter
αoptimal versus number of steps for the new algorithm

with q = 0.5.

Figure 10 presents the evolution of the optimal shape parameter αoptimal with respect to number
of steps for the new algorithm for the both distributions of point 101 × 6 and 141 × 8. So this figure
shows that the values of αoptimal depend on distribution of point. This is the advantage of the proposed
algorithm which adapts with the distribution of points to find better results.

7. Conclusion

In the present new algorithm based on RBF functions, the accuracy depending on the value of the
shape parameter is satisfied by a strategy for selecting optimal shape parameter. The determination
of good shapes parameters is always the subject of exceptional researches. The shape parameter can
be computed efficiently by using the optimization technique of the relative error of the displacement
at first order based on GA. In this context, we propose a new adaptive algorithm, based on the
strong form RBF approximation with automatic selection of the shape parameter, for solving nonlinear
elasticity problem with large deformation. In this adaptive algorithm, we are coupled a collocation-
path following method with a strategy based on genetic algorithm for determining optimal choice of
the shape parameter. Numerical results show that the proposed adaptive algorithm with automatic
selection of the shape parameter can produce more accuracy compared to the same algorithm with a
fixed and given shape parameter. In addition, for structure modeling in large deformation, this new
adaptive algorithm gives good results with a good precision compared to FEM.
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Стаття презентує новий метод для розв’язання складної проблеми та обговорення
поточних дослiджень, а саме: вибiр оптимальних параметрiв форми для радiальної
базисної функцiї (РБФ) метода колокацiї, як iнтерполяцiї, так i нелiнiйних диферен-
цiальних рiвнянь у частинних похiдних. Для цього потрiбно досягти компромiсу мiж
точнiстю та стабiльнiстю, що називається принципом компромiсу або невизначеностi.
Використання генетичного алгоритму та продовження шляху дозволяє нам, з одного
боку, уникнути локальної оптимальної проблеми, яка пов’язана з iнтерполяцiйними
матрицями РБФ, а з iншого боку, — вiдобразити оригiнальну проблему оптимiзацiї
визначення параметра форми у проблему пошуку кореня. Нашi обчислювальнi експе-
рименти, що застосовуються до нелiнiйних задач у структурних розрахунках, вико-
ристовуючи запропонований адаптивний алгоритм на основi генетичної оптимiзацiї з
автоматичним вибором параметра форми, можуть давати бiльшу точнiсть порiвняно
з арт-алгоритмом з лiтератури з фiксованим i даним параметром форми та методом
скiнченних елементiв.

Ключовi слова: великi деформацiї, сильна форма, метод колокацiї РБФ, генетич-
ний алгоритм, автоматичний вибiр параметра форми.
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