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In this work, we study an impulsive mathematical model proposed by Chavez et al. [1]
to describe the dynamics of cancer growth and HIV infection, when chemotherapy and
HIV treatment are combined. To better understand these complex biological phenomena,
we study the stability of equilibrium points. To do this, we construct an appropriate
Lyapunov function for the first equilibrium point while the indirect Lyapunov method is
used for the second one. None of the equilibrium points obtained allow us to study the
stability of the chemotherapeutic dynamics, we then propose a bifurcation of the model
and make a study of the bifurcated system which contributes to a better understanding of
the underlying biochemical processes which govern this highly active antiretroviral therapy.
This shows that this mathematical model is sufficiently realistic to formulate the impact
of this treatment.
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1. Introduction

The body’s natural defence system is called immune. It consists of antibodies, white blood cells,
chemicals and proteins which attack and remove viruses and bacteria from the body. The CD4+T cells
are blood cells (lymphocyte) whose role is to signal CD8+T cells to destroy bacteria and viruses [2].
HIV is a lentivirus which attacks and damages the immune system namely the CD4+T cells, that
normally coordinate the adaptive T - and B-cell response to defend the body against intracellular
pathogens [3]. It spreads through exchange of body fluids, including blood, semen, pre-seminal fluid,
rectal fluid, vaginal fluids, and breast milk, from an infected person. Several tens of millions of cases
of AIDS are recorded and almost 2 million people are affected each year, of which several hundred
thousand die each year (see the web pages of WHO [4]). We can therefore understand the interest
that researchers have in studying different models describing the evolution of this disease as well as
the impact of different treatments.

Many proposals of mathematical models describing the dynamics of the AIDS pandemic are made by
researchers to predict the evolution of the epidemic and study the most effective prevention strategies [2,
3, 5–7]. The need to evaluate intervention strategies for newly emerging and re-emerging pathogens
has proven that the impact of mathematical modeling on public health is real.

In this work, we study an impulsive mathematical model proposed in Chavez et al. [1] to describe the
dynamics of cancer growth and HIV infection, when chemotherapy and treatment for HIV, namely,
highly active antiretroviral therapy (HAART) are included. This model presented in the form of a
nonlinear partial differential equations system was solved numerically under a relevant set of a given
boundary and initial conditions. The authors carried out a quantitative analysis from numerical results
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using the values of the model parameters. However, the stability of the model has not been studied.
Optimal control theory [6, 8–11] can be used to study the behavior of the system but it is important
to be able to analyze the stability of a model without having to solve the differential equations.

To better understand this complex biological phenomena, we study the equilibrium points stability.
To do this, we study the stability of certain points of equilibrium using a Lyapunov function [12], [13].
For other equilibrium points, where this technique does not allow us to conclude, we use the indirect
Lyapunov method [14]. Stability analysis as performed in the present study contributes to a better
understanding of the underlying biochemical processes that govern highly active antiretroviral therapy.

In addition, the study of stability analysis describes the potency of this mathematical model to be
realistic enough to formulate the impact of this treatment.

2. The mathematical models

The body has defence system is called immune. It consists of antibodies, white blood cells, chemicals
and proteins which attack and remove viruses and bacteria from the body. From [1],

ẋ1(t) = r1

[
1−

(x1
c

)1/4]
x
3/4
1 − k1x1x2 − p1(1− e−x6)x1, (1)

ẋ2(t) = s+ x2

[
r2

(
1− x1 + x2 + x4

m

)
− pk1x1 − k2(1− εRT )x5 − p2(1− e−x6)− µ2

]
, (2)

ẋ3(t) = ξk2(1− εRT )x2x5 − (a+ µ3)x3, (3)

ẋ4(t) = ax3 + k2(1− ξ)(1 − εRT )x2x5 − p2(1− e−x6)x4 − µ4x4, (4)

ẋ5(t) = Nµ4(1− εPI)x4 − µ5x5, (5)

ẋ6(t) = −dx6. (6)

Table 1. Symbols and values of the parameters used in system (1)–(6).

Symbol Value Parameter
r1 0.18 Intrinsic growth rate of cancer cells
r2 0.03 Intrinsic growth rate of healthy CD+T cells
c 1.00 × 106 Maximum density of cancer cells
k1 1.00× 10−8 Rate of cancer cells killed by immune system
k2 2.40× 10−7 Infection rate of healthy CD4+T cells by HIV
p1 0.90 Intrinsic killing rate of cancer cells by drug
p2 0.60 Intrinsic killing rate of healthy CD4+T cells by drug
s 1.00 × 104 Growth rate of healthy CD4+T cells
m 1.50 × 106 Effective carrying capacity of the system
µ2 0.02 Death rate of CD4+T cells
µ3 0.05 Death rate of latent infected cells
µ4 0.30 Death rate of infected cells
µ5 3.00 Death rate of virus
d 0.90 Drug elimination rate
a 3.00× 10−4 Development rate of latent cells into infected cells
dIN 2.40 Drug influx per injection
TD 21 Period of drug application
p 0.10 Proportion of immune cells loss du to killing of cancer cells
εRT 0.75 RTI-based treatment efficacy
εPI 0.7 PI- based treatment efficacy
ξ 0.03 Proportion of healthy CD4+T cells moving to latent infected state
N 1.00 × 103 Bursting factor for virus growth

where x1(t) is cancer cells,
x2(t) is Healthy CD4+T
cells, x3(t) is latently in-
fected CD4+T cells, x4(t)
infected CD4+T cells, x5(t)
is HIV, and x6(t) is chemo-
therapeutic dynamic, which
modeled as follows. Drug’s
effectiveness is assumed to
be bounded and limited to
given phases of the cell cy-
cles. Chemo is responsible
for a proportion of (1− e−x6)
of dead cells. The products
P1(1−e−x6) and P2(1−e−x6)
constitute the cell dose re-
sponses of the cancer, and of
the healthy and infected x2
cells.

The drug is eliminated with rate d. An expeditious drug distribution is considered in throughout
the body, and with the impulsive control:

x6(t
+) = dIN + x6(t

−), t = nTD, n ∈ N. (7)

All parameters of the system along their values are displayed in Table 1.
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2.1. Stationary states

To study the local stability of system (1)–(6), we evaluate all equilibrium points of (1–(6) and use both
Lyapunov direct method and the Lyapunov indirect method.

To evaluate the equilibrium points let (x1, . . . , x6) be a stationary state of system (1)–(6). Then it
satisfies ẋi = 0 for i = 1, 2, . . . , 6, that is to say

0 = r1

[
1−

(x1
c

) 1
4

]
x

3
4
1 − k1x2x1 − p1(1− e−x6)x1, (8)

0 = s+ x2

[
r2

(
1− x1 + x2 + x4

m

)
− pk1x1 − k2(1− εRT )x5 − p2(1− e−x6)− µ2

]
, (9)

0 = ξk2(1− εRT )x2x5 − ax3 − µ3x3, (10)

0 = ax3 + k2(1− ξ)(1 − εRT )x2x5 − p2(1− e−x6)x4 − µ4x4, (11)

0 = Nµ4(1− εPI)x4 − µ5x5, (12)

0 = −dx6. (13)

From (13) x6 = 0. Taking x5 = 0 one can get from (12) that x4 = 0, and (10) implies that x3 = 0.
Equation (8) implies two solutions x1 = 0 or x1 6= 0. In the case of x1 = 0, x2 is obtained from (9) as
the roots of the following polynomial of degree 2

ms− r2x22 + (mr2 −mµ2)x2 = 0.

The roots of this polynomial are

α =
1

2r2
m

(
r2 − µ2 −

√
mµ2r22 + r2s

m

)
and β = − 1

2r2
m

(
−r2 − µ2 +

√
mµ2r22 + r2s

m

)
.

We get that E0 = (0, α, 0, 0, 0, 0), E01 = (0, β, 0, 0, 0, 0) are always steady states. Since β is negative
then E01 biologically meaningless. The root α > 0, thus E0 is the only biologically significant trivial
steady state, i.e. E0 is the unique infection-free equilibrium.

Now when x1 6= 0 then x1 =
r41c

(r1+kc1/4x2)4
and we obtain from (9) that x2 is a root of the following

equation of degree six

−k41c
m

x62 + (k41cr2 −
−4r1k31c3/4

m
− k1cµ2)x52 +B1x

4
2 +B2x

3
2 +B3x

2
2 +B4x2 + sr41 = 0.

where

B1 = k41cs + 4r1r2k
3
1 −

6r21k
2
1c

1/2

m
− 4r1k

3
1c

3/4µ2,

B2 = 4r1k
3
1c

3/4s+ 6r21k
2
1r2c

1/2 − 4r31k1c
1/4

m
− 6r21k

2
1c

1/2,

B3 = 6r21k
2
1c

1/2s+ 4r31r2k1c
1/4 − r41

m
− 4r31k1c

1/4µ2,

B4 = −r41 − pk1 − r41r2c+ 4r31k1c
1/4s+ r41r2 − r41µ2.

The roots of this equation give rise to the following stationary states Ej = (δj , εj , 0, 0, 0, 0), j = 1, . . . , 6,
where

δ1 =
r41c

(r1 + kc1/4ε3)4
, ε1 = 166.6576446,

δ2 =
r41c

(r1 + kc1/4ε4)4
, ε2 = 49.24344613 + 124.7231338i,

δ3 =
r41c

(r1 + kc1/4ε5)4
, ε3 = −132.5722684 + 74.27706588i,
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δ4 =
r41c

(r1 + kc1/4ε6)4
, ε4 = −2.277777778 · 1022,

δ5 =
r41c

(r1 + kc1/4ε7)4
, ε5 = −132.5722684 − 74.27706588i,

δ6 =
r41c

(r1 + kc1/4ε8)4
, ε6 = 49.24344613 − 124.7231338i,

Since (εj , δj), j = 2, . . . , 6 are negatives or complex we deduce that Ej = (δj , εj , 0, 0, 0, 0), j =
2, . . . , 6 are biologically meaningless. The equilibrium point E1 is the only biologically significant,
since (ε1, δ1) are positives.

If x5 6= 0 from (12) it follows, that Nµ4(1− εPI)x4 = µ5x5, which gives

x5 =
Nµ4(1− εPI)x4

µ5
. (14)

From (10)
ξk2(1− εRT )x2x5 = (a+ µ3)x3 (15)

Substituting (15) in (11) implies

x4 =
µ3x3

a+ (1 − ξ)µ3
. (16)

Combining (14), (16) and (15)

x2(t) =
(a+ µ4)µ5

Nk2ξ(a+ (1− ξ)µ3)(1 − εRT )(1− εPI)
. (17)

Now substitute(17) in (9) we get

x3 =
µ5(ms+ x2[r2(m− x22)− µ2m])

x2(µ5r2 + k(1 − εRT )mNµ3(1− εPI))
. (18)

Taking x1 = 0, one can get the first infection equilibrium E7 = (0, T1, I1, L1, V1, 0), where

T1 =
(a+ µ4)µ5

Nk2ξ(a+ (1− ξ)µ3)(1− εRT )(1− εPI)
, (19)

I1 =
µ5(ms+ T1[r2(m− T 2

1 )− µ2m])

T1(µ5r2 + k(1− εRT )mNµ3(1− εPI))
, (20)

V1 =
Nµ4(1− εPI)

µ5
I1, (21)

L1 =
µ3

a+ (1− ξ)µ3
I1. (22)

If x1 6= 0 then from equation (8)

x1 =
r41c

(r1 + kc1/4x2)4
. (23)

Equation (23) combined with equations (14)–(17) imply that the second infection equilibrium E8 is
given by E8 = (C1, T1, I2, L2, V2, 0), where T1 is given by equation (19),

C1 =
r41c

((r1 + k1)T1c1/4)4
, I2 =

µ5(ms+ T2[r2(m− T2 − C1)− Pk1mµ5 − µ2m])

T1(µ5r2 + k2(1− εRT )mNµ4(1− εPI))
,

L2 =
µ3

a+ (1− ξ)µ3
I2, V2 =

Nµ4(1− εPI)
µ5

I2.

To sum up, we have to study four stationary states E0, E1, E7 and E8.
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2.2. Local stability of the equilibrium points

2.2.1. Lyapunov Stability

V (x1, x2, x3, x4, x5, x6) = λ1x
2
1 + λ2x

2
2 + λ3x

2
3 + λ4x

2
4 + λ5x

2
5 + λ6x

2
6.

For simplicity, suppose λi = 1 for i = 1, 2, . . . , 6, then differentiating V with respect to t

V̇ (x1, x2,x3, x4, x5, x6) = 2[x1ẋ1 + x2ẋ2 + x3ẋ3 + x4ẋ4 + x5ẋ5 + x6ẋ6]

= 2

[
x1

(
r1

[
1−

(x1
c

)1/4]
x
3/4
1 k1x2x1 − p1(1− e−x6)x1

)

+ x2

(
s+ x2

[
r2

(
1− x1 + x2 + x4

m

)
− pk1x1 − k2(1− εRT )x5 − p2(1− e−x6)− µ2

])

+ x3 (ξk2(1− εRT )x2x5 − ax3 − µ3x3) + x4
(
ax3 + k2(1− ξ)(1− εRT )x2x5

− p2(1− e−x6)x4 − µ4x4
)
+ x5(Nµ4(1− εPI)x4 − µ5x5) + x6(−dx6)

]
. (24)

Replacing E0 in (24) we get that V̇ (0, α, 0, 0, 0, 0) > 0, which imply that the infection-free equilib-
rium E0 is unstable. The same conclusion can be made for E7, indeed by replacing E7 in (24) we get
that V̇ (0, T1, I1, L1, V1, 0) > 0. This means that in this last case, the state of a person at early stage
of HIV infection is unstable and may develop cancer. A person with no cancer infected with HIV, at
the beginning of an illness, and did not develop cancer. But it is possible that he will develop cancer
because the body begins to lose immunity due to the HIV virus.

Now for both equilibrium points E1, E8, since Lyapunov direct method is more complex to show
that the both equilibrium points E3, E8 are positive or negative, we use Lyapunov Indirect method to
study the stability.

2.2.2. Indirect method

In what follows, the system (1)–(6) will be linearized around its stationary states, and the characteristic
equation for each case will be determined. Rewrite the system (1)–6) as a nonlinear sytem ẋ = f(x),
the corresponding linearized system at the equilibrium point E1 = (ε1, δ1, 0, 0, 0, 0) is of the form

∂x1
∂t

=

(
3

4
r1

1

ε
1/4
1

− r1
1

c1/4
− k1δ1

)
x1 − k1ε1x2 − p1ε1x6,

∂x2
∂t

= −δ1
(r2
m

+ pk1

)
x1 + r2

(
1− ε1 + 2δ1

m

)
x2 −

δ1r2
m

x4 − k2(1− εRT )δ1x5 − p2δ2x6,

∂x3
∂t

= (−a− µ3)x3 + ξk2(1− ε)δ1x5,
∂x4
∂t

= ax3 − µ4x4 + k2(1− ξ)(1− εRT )δ1x5,
∂x5
∂t

= Nµ4(1− εPI)x4 − µ5x5,
∂x6
∂t

= −dx6, (25)

Note that system (25) can be expressed in the following matrix form:



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6




= A1




x1
x2
x3
x4
x5
x6




(26)
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where A1 is given by

A1 =




3
4r1(

1
ε1
)1/4 − r1(1c )1/4 − k1δ1 −k1ε1 0 0 0 −p1ε1
−δ1( r2m + pk1) r2(1− ε1+2δ1

m ) 0 − δ1r2
m −k2(1− εRT )δ1 −p2δ2

0 0 −a− µ3 0 ξk2(1− εRT )δ1 0
0 0 a −µ4 k2(1− ξ)(1− εRT )δ1 0
0 0 0 Nµ4(1− εPI) −µ5 0
0 0 0 0 0 −d



.

The matrix A1 of this linear system is the Jacobian matrix J(f)(E1) of system (1)–(6) at the
equilibrium point E1 = (ε1, δ1, 0, 0, 0, 0). To use the indirect method we must study the eigenvalues of
this matrix.

The characteristic equation of system (25) for the equilibrium point E1 is given by

P (λ) = det (J(f)(E1)− λI6) ,

where I6 is the identity matrix of order 6. The structure of the sparse matrix J(f)(E1) allows us an
easy computation of P (λ), that is,

P (λ) =

(
3

4
r1

1

ε
1/4
1

− r1
1

c1/4
− k1δ1 − λ

)

×
(
r2

(
1− ε1 + 2δ1

m

)
− λ

)
(−a− µ4 − λ)(−µ4 − λ)(−µ5 − λ)(−d− λ). (27)

Then, the roots of this characteristic equation are:

λ1 = r1

(
3

4

1

ε
1/4
1

− 1

c1/4

)
− k1δ1, λ2 = r2

(
1− ε1 + 2δ1

m

)
, λ3 = −(a+ µ3),

λ4 = −µ4, λ5 = −µ5, λ6 = −d.
From the parameters in Table 1, we have r1 3

4(
1

ε
1/4
1

− 1
c1/4

) < k1δ1 and 1 < ε1+2δ1
m which imply that all

roots of the characteristic equation (27) have negative real parts. Therefore, E1 is locally asymptotically
stable. This means that in this case, a patient who is not infected with HIV but has cancer cell which
is at the beginning of a disease has immunity which helps disease to control the growth cancer cells
and decrease the rate of death.

Consider the linearized system at the equilibrium point E8 = (C1, T1, I2, L2, V2, 0):

∂x1
∂t

= A11x1 − k1C1x2 − p1C1x6,

∂x2
∂t

= A21x1 +A22x2 −
r2T1
m

x4 −A23x5 − p2T1x6,

∂x3
∂t

= A31x2 − (a+m3)x3 +A32x5,

∂x4
∂t

= A41x2 − µ3x3 + ax4 +A42x5 − p2I2x6,

∂x5
∂t

= Nµ4(1− εPI)x4 − µ5x5,

∂x6
∂t

= −dx6, (28)
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which can be written in matrix form as:



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6




=




A11 −k1C1 0 0 0 −p1C1

A21 A22 0 − r2T1
m −A23 −p2T1

0 A31 −(a+ µ3) 0 A32 0
0 A41 −µ3 −a A42 −p2I2
0 0 0 Nm4(1− εPI) −m5 0
0 0 0 0 0 −d







x1
x2
x3
x4
x5
x6



, (29)

where

A11 = r1

(
3

4
C

1/4
1 − 1

c1/4

)
− k1T1, A21 = −T1

(r2
m
− pk1

)
,

A22 = r2

(
1− C1 + 2T1 + I2

m

)
− pk1C1 − k2(1− εRT )V2 − µ2,

A23 = k2(1− εRT )T1, A31 = ξk2(1− εRT )V2, A32 = ξk2(1− εRT )T1,
A41 = k2(1− εRT )(1− ξ)V2, A42 = k2(1− ξ)(1 − εRT )T1.

The matrix of this linear system is the Jacobian matrix J(f)(E8) of system(1)–(6) at the equilibrium
point E8 = (C1, T1, I2, L2, V2, 0).

Again, the structure of the sparse matrix J(f)(E8) allows us an easy computation of P (λ), the
characteristic equation of system (28):

P (λ) = det(J(f)(E8)− λI6)
= (A11 − λ)(A22 − λ)(−a− µ3 − λ)(−a− λ)(−µ5 − λ)(−d− λ). (30)

The roots of this characteristic equation are:

λ1 = r1

(
3

4
C

1/4
1 − 1

c1/4

)
− k1T1,

λ2 = r2

(
1− C1 + 2T1 + I2

m

)
− pk1C1 − k2(1− εRT )V2 − µ2, λ3 = −(a+ µ3),

λ4 = −a, λ5 = −µ5, λ6 = −d.

Some calculations using the values of the parameters and we end up with r1(
3
4C

1/4
1 − 1

c1/4
) < k1T1

and r2(1 − C1+2T1+I2
m ) < pk1C1 + k2(1 − εRT )V2 + µ2. So, six roots λi, i = 1, . . . , 6 are negatives and

therefore, E8 is locally asymptotically stable.
This means that a patient who is infected with HIV and has cancer cell which is at the beginning

of a disease is in a stable condition in terms of the rate of cancer cells growth.
Note that, in all the equilibrium points of this system, the component representing the chemother-

apeutic dynamic is zero. This does not make it possible to study the steady state around a positive
value of this variable, i.e. after the start of chemotherapy treatment. In order to remedy this problem,
we propose in the following section, based on the theory of bifurcation [15, 16], a study of stability by
introducing a small perturbation of the variable representing the chemotherapeutic dynamic.

2.3. Bifurcation of the Mathematical model

Bifurcation theory refers to the study of qualitative changes to the state of a system as a parameter is
varied. Otherwise the bifurcation of a differential equation is concerned with changes in the qualitative
behavior of its phase portrait as a parameter (or set of parameters) varies.
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Perturbation theory examines parameter dependence of solutions locally [15–17]. To present basic
ideas simply, consider a one-parameter family of functions: for each x in a set R and real parameter ε
in a punctured neighborhood of ε = 0, the values of the functions f(x, ε) are in a metric space. The
range is a metric space so that convergence of f as ε → 0 can be discussed. f(x, ε) is to be regarded
as a solution of some set of equations containing ε as a parameter.

The equations are called a regularly perturbed problem if all solutions f(x, ε) converge uniformly
on R as ε→ 0.

If there is a solution which does not converge uniformly, the problem is called singularly perturbed.
Let us bifurcate the model (1)–(6) by adding a small parameter ε at the level of x6, the variable

representing the chemotherapeutic dynamic, which results in the following model,

ẋ1 = r1

[
1−

(x1
c

)1/4]
x
3/4
1 − k1x1x2 − p1(1− e−x6)x1, (31)

ẋ2 = s+ x2

[
r2

(
1− x1 + x2 + x4

m

)
− pk1x1 − k2(1− εRT )x5 − p2(1− e−x6)− µ2

]
, (32)

ẋ3 = ξk2(1− εRT )x2x5 − (a+ µ3)x3, (33)

ẋ4 = ax3 + k2(1− ξ)(1 − εRT )x2x5 − p2(1− e−x6)x4 − µ4x4, (34)

ẋ5 = Nµ4(1− εPI)x4 − µ5x5, (35)

ẋ6 = ε− dx6. (36)

As for the first model, we study the existence and the stability of the steady state for the bifurcated
model. First, let’s start by finding the stationary states of this system. Taking ẋi = 0 for i = 1, 2, . . . , 6
in (31)–(36), then equation (36) implies that

x6 =
ε

d
. (37)

If x5 = 0, then (35) implies that x4 = 0, and (33) implies that x3 = 0. The trivial case where
equation (31) will be satisfied is x1 = 0. In this case x2 is obtained as a root of the second degree
polynomial

ms− r2x22 +m
(
r2 − µ2 − p2

(
1− e−ε

d
))
x2 = 0,

which gives rise to two points of equilibrium Eb0 = (0, αb, 0, 0, 0, ε/d), Eb01 = (0, βb, 0, 0, 0, ε/d), where

αb = −
1

2r2

(
m
(
− r2 + µ2 − P1

(
1− e−ε

d
))

+

√
m2
(
r2 − µ2 − P2

(
1− e−ε

d

))2 − 4r2sm

)
,

βb = −
1

2r2

(
m
(
− r2 + µ2 − P1

(
1− e−ε

d
))
−
√
m2
(
r2 − µ2 − P2

(
1− e−ε

d

))2 − 4r2sm

)
.

As βb is negative, Eb01 has no physical meaning, so we only retain Eb0 as the equilibrium point
representing the infection-free state.

If x1 6= 0, since x2 is also non-zero, we obtain from (31) and (32) that x1 =
r41c

(r1+kc1/4x2)4
and x2 is

a root of the following degree 6 polynomial equation:

A4
2r2
m

x62 +A3x
5
2 +A4x

4
2 +A5x

3
2 +A6x

2
2 +A7x2 + sA4

1 = 0,

where,
A1 = r1

(
− 1 + c1/4

)
− P1c

1/4
(
1− e−ε

d
)
,

A2 = c1/4k1, A3 =
(
r2 − P2

(
1− e−ε

d

)
− µ2

)
A4

2 −
4r2
m
A1A

3
2,

A4 = sA4
2 − 4A1A

3
2

(
r2 − P2

(
1− e−ε

d
)
− µ2

)
+

6r2
m
A2

1A
2
2,
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A5 = 6A2
1A2

(
− r2 + P2

(
1− e−ε

d
)
+ µ2

)
− 4sA1A

3
2 −

4r2
m
A3

1A2,

A6 = 6sA2
1A

2
2 − 4A3

1A2

(
r2 − P2

(
1− e−ε

d

)
− µ2

)
− r2
m
A4

1,

A7 = A4
1

(
r2 − P2

(
1− e−ε

d

)
− µ2

)
− 4sA3

1A2.

Denoting these roots by εbi, i = 1, . . . , 6 we obtain 6 equilibrium points: Ebi = (δbi, εbi, 0, 0, 0, ε/d),
i = 1, . . . , 6, where

εb1 = 1226.067470, δb1 =
r41c

(A1 −A2εb1)4
,

δb2 =
r41c

(A1 −A2εb2)4
, εb2 = 6.201000500 1026,

δb3 =
r41c

(A1 −A2εb3)4
, εb3 = 376.3119874 + 1148.012350i,

δb4 =
r41c

(A1 −A2εb4)4
, εb4 = −989.3457222 + 744.3816457i,

δb5 =
r41c

(A1 −A2εb5)4
, εb5 = −989.3457222 − 744.3816457i,

δb6 =
r41c

(A1 −A2εb6)4
, εb6 = 376.3119874 − 1148.012350i.

Since (εb3, δb3, εb4, δb4, εb5, δb5, εb6, δb6) are complex, Eb3, Eb4, Eb5 and Eb6 do not have physical meaning,
we therefore only retain Eb1 and Eb2, as points of equilibrium requiring a study of stability.

In the case x5 6= 0 we get from (35)

x5 =
Nµ4(1− εPI)

µ5
x4. (38)

Replacing x5 in (33)
k2(1− εRT )x2x5 =

(a+ µ3)x3
ξ

. (39)

This last equation combined with (34) leads to

x3 =
ξ
[
p2
(
1− e−ε

d

)
+ µ4

]
x4

a+ (1 − ξ)µ3
· (40)

By combining (40) and (38) with (39) we obtain

x2 =
µ5(a+ µ3)

[
p2
(
1− e− ε

d

)
+ µ4

]

k2(1− εRT )Nµ4(1− εPI)(a+ (1− ξ)µ3)
· (41)

Now equation (32) will be satisfied for two cases: in the trivial case x1 = 0, the equation giving x4 is
obtained as a function of x2 from equation (32)

x4 = mµ4
s+ x2

[
r2
(
1− x2

m

)
− p2

(
1− e−ε

d

)
− µ2

]

x2r2µ5 + k2m(1− εRT )µ4N(1− εPI)
.

In the non-trivial case x1 6= 0, equation (31) gives x1 as a function of x2 as follows

x1 =
r41c(

r1 + c
(
k1x2 − p1

(
1− e− ε

d

)))4 .
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Introducing this last equation with (41) in (32) implies

x4 = mµ4
s+ x2

[
r2
(
1− x1+x2

m

)
− pk1x1 − p2

(
1− e−ε

d

)
− µ2

]

x2r2µ5 + k2m(1− εRT )µ4N(1− εPI)
.

So, we get two equilibrium points Eb7 = (0, Tb, Ib, Lb, Vb,Db) and Eb8 = (C, T, I, L, V,D), where

Tb =
µ5(a+ µ3)

[
p2
(
1− e− ε

d

)
+ µ4

]

k2(1− εRT )Nµ4(1− εPI)(a+ µ3 − ξµ3)
,

Ib =
ξ
[
p2
(
1− e−ε

d

)
+ µ4

]
Lb

a+ (1− ξ)µ3
,

Lb = mµ4
s+ Tb

[
r2
(
1− Tb

m

)
− p2

(
1− e−ε

d

)
− µ2

]

Tbr2µ5 + k2m(1− εRT )µ4N(1− εPI)
,

Vb =
Nµ4(1− εPI)

µ5
Lb.

C =
r41c[

r1 + c1/4
(
k1T − p1

(
1− e−ε/d

))]4 ,

T =
µ5(a+ µ3)

[
p2
(
1− e− ε

d

)
+ µ4

]

k2(1− εRT )Nµ4(1− εPI)(a+ µ3 − ξµ3)
,

I =
ξ
[
p2
(
1− e−ε

d

)
+ µ4

]
L

a+ (1− ξ)µ3
,

L = mµ4
s+ T

[
r2
(
1− C+T

m

)
− pk1C − p2

(
1− e−ε

d

)
− µ2

]

Tr2µ5 + k2m(1− εRT )µ4N(1− εPI)
,

V =
Nµ4(1− εPI)

µ5
L.

Let study the local stability for the equilibrium points. For the points Eb0 and Eb7 we use the Lyapunov
direct method considering the Lyapunov function

V (x1, x2, x3, x4, x5, x6) =

6∑

i=1

x2i

for which the differential V̇ is given by

V̇ (x1, x2,x3, x4, x5, x6) = 2

6∑

i=1

xiẋi

= 2

[
x1

(
r1

[
1−

(x1
c

)1/4]
x
3/4
1 − k1x1x2 − p1

(
1− e−x6

)
x1

)

+ x2

(
s+ x2

[
r2(1−

x1 + x2 + x4
m

)− pk1x1 − k2(1− εRT )x5 − p2
(
1− e−x6

)
− µ2

])

+ x3(ξk2(1 − εRT )x2x5 − (a+ µ3)x3)

+ x4
(
ax3 + k2(1− ξ)(1 − εRT )x2x5 − p2

(
1− e−x6

)
x4 − µ4x4

)

+ x5(Nµ4(1− εPI)x4 − µ5x5) + x6(ε− dx6)
]
. (42)

Replacing Eb0 in (42) we get also that V̇ (x1, x2, x3, x4, x5, x6) > 0, and in the same way if we replace
Eb7 we get also that V̇ (x1, x2, x3, x4, x5, x6) > 0. Thus, the system is unstable in these two equilibrium
points.
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Now, one can not obtain the sign of V̇ by the application of the above technique to the equilibrium
points Eb1, Eb2 and Eb8. This is why we propose the use of the Lyapunov indirect method to study
the stability of the system at these study states.

The corresponding linearized system at the equilibrium point Eb1 = (εb1, δb1, 0, 0, 0, ε/d) is given
by

∂x1
∂t

= C11x1 − k1εb1x2 − p1εb1e−ε/dx6,
∂x2
∂t

= C21x1 + C22x2 −
r2δb1
m

x4 + C23x5 − p2e−ε/dδb1x6,
∂x3
∂t

= −(a+m3)x3 + C31x5,

∂x4
∂t

= ax3 − C41x4 + C42x5,

∂x5
∂t

= Nµ4(1− εPI)x4 − µ5x5,
∂x6
∂t

= −dx6, (43)

where

C11 =
3

4
r1(εb1)

−1/4 − r1
1

c1/4
− k1δb1 − p1

(
1− e−ε/d

)
, C21 = −

(r2
m

+ Pk1

)
δb1,

C22 = r2

(
1− εb1 + 2δb1

m

)
− pk1εb1 − p2

(
1− e−ε/d

)
− µ2, C23 = −k2(1− εRT )δb1,

C31 = ξk2(1− εRT )δb1, C41 = p2
(
1− e−ε/d

)
+ µ4, C42 = k2(1− ξ)(1− εRT )δb1.

This linear system can be written as:




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6




=




C11 −k1C 0 0 0 −p1εb1e−ε/d
C21 C22 0 r2δb1

m C23 −P2e
−ε/dδb1

0 0 −(a+m3) 0 C31 0
0 0 a C41 C42 0
0 0 0 Nµ4(1− εPI) −µ5 0
0 0 0 0 0 −d







x1
x2
x3
x4
x5
x6



. (44)

The characteristic polynomial of this system is given by

P (λ) = det(J(f)(Eb1)− λI6)
= (C11 − λ)(C22 − λ)(−(a+m3)− λ)

(
−
(
p2
(
1− e−ε/d

)
+ µ4

)
− λ

)
(−m5 − λ)(−d− λ). (45)

Therefore, roots of this characteristic equation are:

λ1 = C11, λ2 = C22, λ3 = −(a+ µ3),

λ4 = −
(
p2
(
1− e−ε/d

)
+ µ4

)
, λ5 = −µ5, λ6 = −d.

It’s easy to see that all these values are non-positive and thus the model is stable at the equilibrium
point (Eb1). This means in this case that a patient with cancer, not infected with HIV, but who is
treated with a chemotherapeutic dynamic, his disease can be controlled so that the cancer cells are
reduced.

Let us consider the linearization of system (31)–(36) around the equilibrium point Eb2:
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


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6




=




D11 −k1εb2 0 0 0 p1εb2e
−ε/d

D21 D22 0 − r2δb2
m D23 −p2e−ε/dδb2

0 0 −(a+m3) 0 D31 0
0 0 a D41 D42 0
0 0 0 Nµ4(1− εPI) −µ5 0
0 0 0 0 0 −d







x1
x2
x3
x4
x5
x6



, (46)

where

D11 =
3

4
r1(εb2)

−1/4 − r1
1

c1/4
− k1δb2 − p1

(
1− e−ε/d

)
, D21 = −

(r2
m

+ pk1

)
δb1,

D22 = r2

(
1− εb2 + 2δb2

m

)
− pk1εb2 − p2

(
1− e−ε/d

)
− µ2, D23 = −k2(1− εRT )δb2,

D31 = ξk2(1− εRT )δb2, D41 = p2(1− e−ε/d) + µ4, D42 = k2(1− ξ)(1− εRT )δb2.
Once again, the structure of this matrix allows us to easily find an expression of the characteristic
equation:

P (λ) = det
(
J(f)(Eb2)− λI6

)

= (D11 − λ)(D22 − λ)(−(a+m3)− λ)
(
−
(
p2
(
1− e−ε/d

)
+ µ4

)
− λ

)
(−m5 − λ)(−d− λ). (47)

The roots of this characteristic equation are:

λ1 = D11, λ2 = D22, λ3 = −(a+ µ3),

λ4 = −
(
p2
(
1− e−ε/d

)
+ µ4

)
, λ5 = −µ5, λ6 = −d.

From parameters in Table 1, we show that D11 and D22 are negative, so six roots λi, i = 1, . . . , 6 are
negatives. Thus the model is stable. The same interpretation as for the previous case can be done.

In order to study the local stability of system (31)–(36) at the equilibrium point Eb8 =
(C, T, I, L, V,D), the corresponding linearized system around this point is considered. This gives
rise to the following system:




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6




=




B11 −k1C 0 0 0 p1Ce
−D

B21 B22 0 − r2T
m B23 −p2e−DT

0 B31 −(a+m3) 0 B32 0
0 B41 a B42 B43 −p2e−DI
0 0 0 Nµ4(1− εPI) −µ5 0
0 0 0 0 0 −d







x1
x2
x3
x4
x5
x6



, (48)

where

B11 =
3

4
r1C

1/4 − r1
1

c1/4
− k1T − p1

(
1− e−D

)
, B21 = −

(r2
m

+ pk1

)
T,

B22 = r2

(
1− C + 2T + I

m

)
− pk1C − k2(1− εRT )V − p2

(
1− e−D

)
− µ2, B23 = −k2(1− εRT )T,

B31 = ξk2(1− εRT )V, B32 = ξk2(1− εRT )T, B41 = k2(1− εRT )(1 − ξ)V,
B42 = p2

(
1− e−D

)
+ µ4) B43 = k2(1− ξ)(1− εRT )T.

Then, the Characteristic polynomial is given by

P (λ) = det
(
J(f)(Eb8)− λI6

)

= (B11 − λ)(B22 − λ)(−(a+m4)− λ)
(
−
(
p2
(
1− e−D

)
+ µ4

)
− λ

)
(−m5 − λ)(−d− λ). (49)
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From the last equation the eigenvalues of jaccobian equation JJ(f)(Eb8) are:

λ1 = B11, λ2 = B22, λ3 = −(a+m3), λ4 = −
(
p2
(
1− e−D

)
+ µ4

)
, λ5 = −m5, λ6 = −d.

We conclude from Table 1 that B11, B22 negatives. This implies that six eigenvalues λi, i = 1, . . . , 6
are negatives and thus the model is stable at Eb8. This means that the combination of the treatment
and the chemotherapeutic dynamics of a patient with HIV and developing cancer allows stability in
the course of the disease and the control of the growth of cancer cells which leads to a decrease in the
death rate.

3. Conclusion

In this work, we present the study an impulsive mathematical model proposed in Chavez et al. [1] to
describe the dynamics of cancer growth and HIV infection, when chemotherapy and HIV treatment
are combined. We have considered a first approach for the study of this dynamic system which
consists in looking for the points of equilibrium, that is to say the stationary solutions not showing
the temporal evolution. We have studied the local stability of all these points of model equilibrium.
To do this, we used both the direct Lyapunov method as well as the linearization technique called
the indirect Lyapunov method. We have noticed that no point of equilibrium takes into account the
chemotherapeutic dynamic, because in all cases the variable the representation is zero. To complete
the study, we bifurcated the model by adding a small perturbation in the variable representing the
chemotherapeutic dynamics, then we studied the stability of all the equilibrium points of the system
obtained. Our next work, is to vary several system control parameters. We will then look at what
becomes of the points of equilibrium, in particular those which were stable before modifying the
parameters of the system. We will examine the possible bifurcations that appear. For the values of
the parameters at which such qualitative changes appear, so-called bifurcation values, we will use tools
adopted for construction of the phase portrait.
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Про стабiльнiсть математичної моделi ВIЛ (СНIД) — динамiка
раку

Салiх Х. В.1, Начауї А.2

1Математичний факультет, Унiверситет Салахаддiна-Ербiль,
Ербiль, Курдистан, Iрак

2Лабораторiя математики Жан Лере,
Унiверситет Нанта, Францiя

У цiй роботi дослiджується iмпульсна математична модель, запропонована Чавесом
та iн. [1] для опису динамiки росту раку та ВIЛ-iнфекцiї, коли хiмiотерапiя поєд-
нується з лiкуванням ВIЛ. Щоб краще зрозумiти цi складнi бiологiчнi явища, вив-
чається стiйкiсть точок рiвноваги. Для цього будується вiдповiдна функцiя Ляпунова
для першої точки рiвноваги, тодi як для другої використовується непрямий метод
Ляпунова. Жодна з отриманих точок рiвноваги не дозволяє дослiдити стабiльнiсть
хiмiотерапевтичної динамiки, запропоновано роздвоєння моделi та дослiдження роз-
двоєної системи, що сприяє кращому розумiнню основних бiохiмiчних процесiв, якi
керують цiєю високоактивною антиретровiрусною терапiєю. Це показує, що запро-
понована математична модель є достатньо реалiстичною, щоб оцiнити вплив такого
лiкування.

Ключовi слова: точка рiвноваги, стабiльнiсть, модель рак-ВIЛ(СНIД), прямий
метод Ляпунова.
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