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In this work, we study an impulsive mathematical model proposed by Chavez et al. [1]
to describe the dynamics of cancer growth and HIV infection, when chemotherapy and
HIV treatment are combined. To better understand these complex biological phenomena,
we study the stability of equilibrium points. To do this, we construct an appropriate
Lyapunov function for the first equilibrium point while the indirect Lyapunov method is
used for the second one. None of the equilibrium points obtained allow us to study the
stability of the chemotherapeutic dynamics, we then propose a bifurcation of the model
and make a study of the bifurcated system which contributes to a better understanding of
the underlying biochemical processes which govern this highly active antiretroviral therapy.
This shows that this mathematical model is sufficiently realistic to formulate the impact
of this treatment.

Keywords: equilibrium point, stability, HIV(AIDS)-cancer model, Lyapunov direct
method.

2010 MSC: 34K20, 37C75, 37C25 DOI: 10.23939/mmc2021.04.783

1. Introduction

The body’s natural defence system is called immune. It consists of antibodies, white blood cells,
chemicals and proteins which attack and remove viruses and bacteria from the body. The C D4 T cells
are blood cells (lymphocyte) whose role is to signal CD8'T cells to destroy bacteria and viruses [2].
HIV is a lentivirus which attacks and damages the immune system namely the CD47T cells, that
normally coordinate the adaptive T- and B-cell response to defend the body against intracellular
pathogens [3]. It spreads through exchange of body fluids, including blood, semen, pre-seminal fluid,
rectal fluid, vaginal fluids, and breast milk, from an infected person. Several tens of millions of cases
of AIDS are recorded and almost 2 million people are affected each year, of which several hundred
thousand die each year (see the web pages of WHO [4]). We can therefore understand the interest
that researchers have in studying different models describing the evolution of this disease as well as
the impact of different treatments.

Many proposals of mathematical models describing the dynamics of the AIDS pandemic are made by
researchers to predict the evolution of the epidemic and study the most effective prevention strategies |2,
3,5-7]. The need to evaluate intervention strategies for newly emerging and re-emerging pathogens
has proven that the impact of mathematical modeling on public health is real.

In this work, we study an impulsive mathematical model proposed in Chavez et al. [1] to describe the
dynamics of cancer growth and HIV infection, when chemotherapy and treatment for HIV, namely,
highly active antiretroviral therapy (HAART) are included. This model presented in the form of a
nonlinear partial differential equations system was solved numerically under a relevant set of a given
boundary and initial conditions. The authors carried out a quantitative analysis from numerical results
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784 Salih H. W., Nachaoui A.

using the values of the model parameters. However, the stability of the model has not been studied.
Optimal control theory [6,8-11] can be used to study the behavior of the system but it is important
to be able to analyze the stability of a model without having to solve the differential equations.

To better understand this complex biological phenomena, we study the equilibrium points stability.
To do this, we study the stability of certain points of equilibrium using a Lyapunov function [12], [13].
For other equilibrium points, where this technique does not allow us to conclude, we use the indirect
Lyapunov method [14]. Stability analysis as performed in the present study contributes to a better
understanding of the underlying biochemical processes that govern highly active antiretroviral therapy.

In addition, the study of stability analysis describes the potency of this mathematical model to be
realistic enough to formulate the impact of this treatment.

2. The mathematical models

The body has defence system is called immune. It consists of antibodies, white blood cells, chemicals
and proteins which attack and remove viruses and bacteria from the body. From [1],

. z1\/4] 3/4 -
z1(t) =m [1 - <?) :1:1/ — kyzqxe — p1(1 — e %)y, (1)
. T1+ T2 + Ty _
xg(t) =S5+ x9 |:7‘2 <1 - T —pklxl - kg(l - ERT)x5 —pg(l — € %) — M2, (2)
i3(t) = Eko(1 — epr)r2m5 — (0 + p3)z3, (3)
j}4(t) = axsz + k‘Q(l — f)(l — 5RT)332335 — pg(l — €_m6)$4 — U4y, (4)
&5(t) = Npua(l — epr)za — psxs, (5)
LEG(t) = —de (6)
Table 1. Symbols and values of the parameters used in system (1)—(6). where z(t) is cancer cells,
; +
Symbol Value Parameter T2 (t) 18 Healthy cpaTT
Ty 0.18 Intrinsic growth rate of cancer cells cells, T3 (t) is latently n-
ro ) 0(()).03106 Intrin;ilc growth gate of h(zalthy C’DET cells fected CDATT CGHS, l‘4(t)
c .00 x Taximum density of cancer cells . +
k1 1.00 x 1078 Rate of cancer cells killed by immune system ?nfected cp4aTT C?HS7 L5 (t)
ko 2.40 x 1077 Infection rate of healthy CDATT cells by HIV is HIV, and z¢(t) is chemo-
D1 0.90 Intrinsic killing rate of cancer cells by drug therapeutic dynamic’ which
D2 0.60 Intrinsic killing rate of healthy C DA™ T cells by drug deled foll D R
s 1.00 x 10* Growth rate of healthy CD4™"T cells modeled as Iollows. rug's
m 1.50 x 10° Effective carrying capacity of the system effectiveness is assumed to
o 0.02 Death rate of CD4TT cells be bounded and limited to
s 0.05 Death rate of latent infected cells . L f th 1l
44 0.30 Death rate of infected cells glven phases O. € ce .Cy_
s 3.00 Death rate of virus cles. Chemo is responsible
d 0.90 Drug elimination rate for a pl“OpOl“tiOIl of (1 _ 6—1‘6)
a 3.00 x 1074 Development rate of latent cells into infected cells £ dead 1l Th duct
din 2.40 Drug influx per injection ol dead cells. € products
Tp 21 Period of drug application P (1 — 6_“%) and P, (1 — 6_%)
p 0.10 Proportion of immune cells loss du to killing of cancer cells constitute the cell dose re-
ERT 0.75 RTI-based treatment efficacy fth d of
epr 0.7 PI- based treatment efficacy sponses o € cancer, and o
¢ 0.03 Proportion of healthy CD4+T cells moving to latent infected state the healthy and infected o
N 1.00 x 10? Bursting factor for virus growth cells.

The drug is eliminated with rate d. An expeditious drug distribution is considered in throughout
the body, and with the impulsive control:

re(tT) =din +26(t7), t=nTp, ncN. (7)
All parameters of the system along their values are displayed in Table 1.
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2.1. Stationary states

To study the local stability of system (1)—(6), we evaluate all equilibrium points of (1-(6) and use both
Lyapunov direct method and the Lyapunov indirect method.

To evaluate the equilibrium points let (z1,...,z¢) be a stationary state of system (1)—(6). Then it
satisfies 2; = 0 for ¢ = 1,2,...,6, that is to say

il 3
0=r [1 — <%> 4} i — kixoxy —p1(1 —e ")z, (8)
r1+x2+ 2 —
0=s+uz [7‘2 (1—#> —pk1x1 — ko(1 — err)ws —pa(1 — e *%) — pa |, 9)
0 = &ka(1 — epr)woxs — aws — p3ws, (10)
0=axs+ ko(1 —&)(1 — epp)xoxs — p2(l — e *0)xy — pgxy, (11)
0= Nps(l —epr)ry — psxs, (12)
0 = —dus. (13)

From (13) z¢ = 0. Taking x5 = 0 one can get from (12) that x4 = 0, and (10) implies that x5 = 0.
Equation (8) implies two solutions z1 = 0 or 1 # 0. In the case of x; = 0, x2 is obtained from (9) as
the roots of the following polynomial of degree 2

ms — roxs + (mry — mpyg)xs = 0.

The roots of this polynomial are

1 2 1 2
a:_m<r2_m_,/w> o 5:__m<_r2_m+1/w>_
279 m 279 m

We get that Ey = (0,,0,0,0,0), Ep; = (0,5,0,0,0,0) are always steady states. Since [ is negative
then Fp; biologically meaningless. The root @ > 0, thus Ej is the only biologically significant trivial
steady state, i.e. Fy is the unique infection-free equilibrium.

4
Now when x1 # 0 then x; = m and we obtain from (9) that x9 is a root of the following
equation of degree six
—k‘%c 6 —47’1/4;:1)’63/4

x5 4 (kfery — — kycpg)xh + By + Boal + Bsxh 4+ By + sri = 0.

where
6r2k2c1/2
By = ki‘cs + 47’17’2145% _mme 47‘1k£1)’c?’/4u2,
Ar3k 1/4
By = 4r k3¢ s + 6r2k3ryct/? — Mot 6r2k3cl/?,

m

:

B3 = GT%k%clps + 47"I’T2k101/4 — — 47"I’klcl/4u2,
m

By = —7“11 — pky — rf‘rgc + 47‘%]{7161/48 + ri‘rg - r‘ll,ug.

The roots of this equation give rise to the following stationary states F; = (d;,¢5,0,0,0,0), j =1,...,6,
where

4
ric

(r1 + kel /4eg)?’

7"4116

(r1 + ke /eyt
T%C

B (r1 + l<361/4€g—',)47

01 = g1 = 166.6576446,

dg = €9 = 49.24344613 + 124.72313381,
€3 = —132.5722684 + 74.27706588%,
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T4C
op=—Hn = —2.277TT7778 - 10?2,
Tt kgt
P G 5 = —132.5722684 — 74.27706588i
P (k)T T ' ' 7
T4C
5 = 1 £6 = 49.24344613 — 124.7231338i,

(r1 + k61/488)4 ’

Since (g4,6;), j = 2,...,6 are negatives or complex we deduce that E; = (;,¢;,0,0,0,0), j =
2,...,6 are biologically meaningless. The equilibrium point FE; is the only biologically significant,
since (e1,01) are positives.

If x5 # 0 from (12) it follows, that Nu4(1 — epr)zy = puszs, which gives

_ Nupy(1 —epr)zs
Ty = .

14
M5 (14)
From (10)
fkg(l — eRT)T2x5 = (a + p3)xs (15)
Substituting (15) in (11) implies
gy = — 1313 (16)
a+(1=¢&us
Combining (14), (16) and (15)
(a+ pa)ps
Ta(t) = . 17
{0 = Nhsglat (1 9m)(L—err)(1— pn) "
Now substitute(17) in (9) we get
(s + zalra(m — 3) — pam))
r3 = . (18)
w2(psr2 + k(1 — err)mNpuz(1l — epr))
Taking x1 = 0, one can get the first infection equilibrium E; = (0,74, I1, L1, V3,0), where
(a + pa) s
T = , 19
! ngf(a—l-(l—f)ug)(l—ERT)(l—EP[) ( )
I = pis(ms + Ti[ra(m — T7) — pam]) (20)
Ty (psr2 + k(1 — err)mNus(1 — epr))’
Nug(1 —
V= M[h (21)
Hs
M3
Ly=—F7-—"—. 22
o 2
If z1 # 0 then from equation (8)
4
71 = ne (23)

(r1 + kcl/4x0)t"

Equation (23) combined with equations (14)—(17) imply that the second infection equilibrium FEyg is
given by Eg = (Cy,Th, I2, L2, V2,0), where T7 is given by equation (19),

o — r‘llc I — ws(ms + To[ro(m — Ty — C1) — Pkympus — paml])
((rl + kl)T101/4)4’ Tl(,u57‘2 -+ k‘Q(l — 5RT)mN,u4(1 — €p1))
Nug(l —
Lz:Lb’ Vz:M[}
a+ (1 —8&pus M5

To sum up, we have to study four stationary states Fy, Fq, E7 and Fg.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp.783-796 (2021)



On the stability of a mathematical model for HIV(AIDS) — cancer dynamics 787

2.2. Local stability of the equilibrium points

2.2.1. Lyapunov Stability

V(xy1,xe, 3, 24, T5,T6) = )\13:% + A2x§ + )\333% + )\4@21 + )\5a:§ + )\61’%.

For simplicity, suppose A; = 1 for i = 1,2,...,6, then differentiating V' with respect to ¢

V@1, x2,23, T4, T5, T6) = 2[T181 + ToT2 + T35 + T4Ty + T5T5 + TeT
1/4
=2 [zl <7‘1 [1 — (ﬂ) } 33?/4/91962331 —p1(1 - 6_%)371)
c

r1+x9 +x _
+ z9 <8+332 [7"2 (1 - %) — pkixy — ko(1 — egrr)xs — pa(l — e ) —M2}>

+ x3 (Ek2(1 — err)m2m5 — axs — pas) + x4(axs + ko (1 — €)(1 — erp)m2zs
—pa(l — € ™) ay — pazs) + x5(Npa(l — epr)zy — psws) + $6(—d$6):| . (24)

Replacing Fy in (24) we get that V(0,a,0,0,0,0) > 0, which imply that the infection-free equilib-
rium Ej is unstable. The same conclusion can be made for E7, indeed by replacing E7 in (24) we get
that V(O,Tl, I,L1,V1,0) > 0. This means that in this last case, the state of a person at early stage
of HIV infection is unstable and may develop cancer. A person with no cancer infected with HIV, at
the beginning of an illness, and did not develop cancer. But it is possible that he will develop cancer
because the body begins to lose immunity due to the HIV virus.

Now for both equilibrium points Fy, Eg, since Lyapunov direct method is more complex to show
that the both equilibrium points F3, Eg are positive or negative, we use Lyapunov Indirect method to
study the stability.

2.2.2. Indirect method

In what follows, the system (1)—(6) will be linearized around its stationary states, and the characteristic
equation for each case will be determined. Rewrite the system (1)-6) as a nonlinear sytem & = f(z),
the corresponding linearized system at the equilibrium point Ey = (e1,61,0,0,0,0) is of the form

or1 (3 1 1 IS I
a 47”161/4 7‘161/4 101 | 11 1€1%2 — P1€1T6;

0 20 )
% = —01 (7’_2 +pk1> 1+ 1o (1 - 81"’_71> Ty — 2y - ka(1 — err)d175 — p2dazs,
m m m
ox
8—153 = (—a — p3)xs + ko (1 — €)0q 5,
ox
8—154 = axg — paxa + ko (1 = §)(1 — epr)dizs,
ox
6—: = Nps(1 — epr)zs — psxs,
63:6
=0 — _d 25
ot 6, (25)
Note that system (25) can be expressed in the following matrix form:
Jfl I
:ﬁg T2
ol ™ (26)
T4 Ty
Jf5 I5
:If(; L6
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where A; is given by

%7‘1(%)1/4—7"1(%)1/4—k1(51 —k'1€1 0 0 0 —pié1
—01(52 + pk1) ro(1 — ££201) 0 T —k2(1 — egr)o1 —p2b2
A = 0 0 —a— p3 0 Eka(1 — epr)o1 0
0 0 a — 4 ko(1 = &)1 —err)dr 0
0 0 0 N/J4(1—6p1) — U5 0
0 0 0 0 0 —d

The matrix A; of this linear system is the Jacobian matrix J(f)(E;) of system (1)—(6) at the
equilibrium point Ey = (e1,61,0,0,0,0). To use the indirect method we must study the eigenvalues of
this matrix.

The characteristic equation of system (25) for the equilibrium point E; is given by

P(A) = det (J(f)(E1) — Als) ,

where Ig is the identity matrix of order 6. The structure of the sparse matrix J(f)(E;) allows us an
easy computation of P()), that is,

3 1 1
PN = Sr— —ri— — k16 — A

(12 (1= 22 -0 (= g = N = (a0, (21

m

Then, the roots of this characteristic equation are:

31 1 €1+20
AN =11 <Z€1ﬁ — m) — k101, Ao =19 <1— %)7 A3 = —(a+ ps),
1

M= —pa, As=—ps, Ag= —d.

From the parameters in Table 1, we have rl%(ﬁ — Cl%) < k161 and 1 < % which imply that all

roots of the characteristic equation (27) have negative real parts. Therefore, E is locally asymptotically
stable. This means that in this case, a patient who is not infected with HIV but has cancer cell which
is at the beginning of a disease has immunity which helps disease to control the growth cancer cells
and decrease the rate of death.

Consider the linearized system at the equilibrium point Eg = (C1, T3, I3, Lo, V3, 0):

8951
v Anzr — k1Crza — p1Crae,
8952 7‘2T1
—— = Aoz + Apxo — ——x4 — Axzzs — poThx6,
ot m
8953
E = A31$2 — ((1 + mg):Eg + A32:E5,
8954
e Apwo — psws + axy + Agoxs — polawg,
83:5
ke Npa(1 —epr)zy — psxs,
t
63:6
=0 — _d 28
ot 6 (28)
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which can be written in matrix form as:

x1 A —k1Cy 0 0 0  —pCh x1

To Ay Ao 0 = —Axz —poTh T2

€3 | _ 0 Az —(a+ps) 0 Asz 0 3 (29)
Xy 0 Ay — U3 —a Agp —p2l> 7

3f5 0 0 0 Nm4(1 —€p1) —ms5 0 xT5

z6 0 0 0 0 0 —d T

where 5 )
1/4 T2
An=n <ch/ - m) — kT, Ao =-T (E —p/ﬂ) ,
Cy+211 + I
Aoy — 1 <1 _GHhth
m
Aoz =ko(1 —err)Th, Asi =Eko(1—err)Va, Ase = Eka(1 —epr)Th,
An = k(1 —err)(1 = Vo, Asp = ko(1 = &)1 —err)Th.
The matrix of this linear system is the Jacobian matrix J(f)(Es) of system(1)—(6) at the equilibrium
point Eg = (C1,T1, Iz, La, V2, 0).
Again, the structure of the sparse matrix J(f)(Eg) allows us an easy computation of P()), the
characteristic equation of system (28):

> — pk1C1 — ko(1 — egr)Va — po,

P(X) = det(J(f)(Es) — Me)
= (A1 = A)(A22 = A)(—a — p3 — A)(—a = A)(—p5 — A)(—=d — A). (30)

The roots of this characteristic equation are:

3 1/4 1
)\1 =T (ZCI/ — m) — lel,

2T I
Az:@(l_w

IR ) i a1~ can)Va i da = —(a-+ )

AL =—a, As= —H5;s A¢ = —d.

Some calculations using the values of the parameters and we end up with 7"1(%011/ g #) < kiTy

and 79(1 — %) < pk1C1 + ko(1 — egp)Va + po. So, six roots A;, ¢ = 1,...,6 are negatives and
therefore, Eyg is locally asymptotically stable.

This means that a patient who is infected with HIV and has cancer cell which is at the beginning
of a disease is in a stable condition in terms of the rate of cancer cells growth.

Note that, in all the equilibrium points of this system, the component representing the chemother-
apeutic dynamic is zero. This does not make it possible to study the steady state around a positive
value of this variable, i.e. after the start of chemotherapy treatment. In order to remedy this problem,
we propose in the following section, based on the theory of bifurcation [15,16], a study of stability by
introducing a small perturbation of the variable representing the chemotherapeutic dynamic.

2.3. Bifurcation of the Mathematical model

Bifurcation theory refers to the study of qualitative changes to the state of a system as a parameter is
varied. Otherwise the bifurcation of a differential equation is concerned with changes in the qualitative
behavior of its phase portrait as a parameter (or set of parameters) varies.
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Perturbation theory examines parameter dependence of solutions locally [15-17]. To present basic
ideas simply, consider a one-parameter family of functions: for each z in a set R and real parameter
in a punctured neighborhood of € = 0, the values of the functions f(z,e) are in a metric space. The
range is a metric space so that convergence of f as ¢ — 0 can be discussed. f(z,¢) is to be regarded
as a solution of some set of equations containing € as a parameter.

The equations are called a regularly perturbed problem if all solutions f(z,e) converge uniformly
on Rase— 0.

If there is a solution which does not converge uniformly, the problem is called singularly perturbed.

Let us bifurcate the model (1)—(6) by adding a small parameter € at the level of zg, the variable
representing the chemotherapeutic dynamic, which results in the following model,

1/4
T =71 |:1 — (ﬂ) :| :17?4 — k71:171:172 — p1(1 — €_x6)$1, (31)
C
. r1+2x2+x _
To = S+ X9 |:7‘2 <1—$> —pk;lgjl_kg(l—eRT)l‘5—p2(1—e mS)—,UQ , (32)
T3 = fk’g(l — €RT):E2:E5 — (a + ,ug):Eg, (33)
iy = axs + ka(1 — €)(1 — epr)wazs — pa(l — € %)y — pazy, (34)
5 = Npg(l —epr)ry — psxs, (35)
Te=¢€— d:EG. (36)

As for the first model, we study the existence and the stability of the steady state for the bifurcated
model. First, let’s start by finding the stationary states of this system. Taking #; =0fori=1,2,...,6
in (31)—(36), then equation (36) implies that

T — E (37)

If z5 = 0, then (35) implies that x4 = 0, and (33) implies that z3 = 0. The trivial case where
equation (31) will be satisfied is z; = 0. In this case z2 is obtained as a root of the second degree
polynomial

ms — 7‘2:17% + m(rg — U2 —pg(l — e%s))xg =0,

which gives rise to two points of equilibrium FEyy = (0, ay, 0,0,0,e/d), Ep1 = (0, Sp,0,0,0,e/d), where

1 —c —e

ap = "oy <m( —rotpp—Pi(l—e7))+ \/777,2(7‘2 —p2 — Py(1— eT))2 — 4r23m> )
1 —c —

By = —% <m( — 1o+ g — P1(1 — eT)) — \/mZ(rg — g — P2(1 — 67))2 - 4r23m> .

As (3, is negative, Fpo1 has no physical meaning, so we only retain Fpg as the equilibrium point
representing the infection-free state.

4
ric .
- and z9 is

If z1 # 0, since x4 is also non-zero, we obtain from (31) and (32) that z; = m

a root of the following degree 6 polynomial equation:

Alr
fnsz + Agzs + Aszs + Aszy + Aerh + Arag + sAT = 0,

where,
Al :7’1(— 1+Cl/4) —P161/4(1—€%6),

47’2

Ay =Mk, Az = (ro— Po(1—ed) — pg) Ay — —2 A, A3,

m

A=A A AY (s — Po(1— e ) — o) + D2 AT,

Mathematical Modeling and Computing, Vol. 8, No. 4, pp.783-796 (2021)



On the stability of a mathematical model for HIV(AIDS) — cancer dynamics 791

Ay =643 A (= 2+ Po(1 =€) + i) — As Ay A3 — —= A} Ay,
A6 = 6814%14% - 4A?A2 (7"2 - P2(1 - 6%6) - ,u2) - %A%’

A7 = A%(T‘Q - P2(1 - 6%6) - ,u2) - 4814%142

Denoting these roots by ep;, i = 1,...,6 we obtain 6 equilibrium points: Ep; = (s, €8, 0,0,0,¢/d),
i=1,...,6, where
1226.067470, 6, ric
g — . e —
bl ) bl (Al — A25b1)4’
rie
(Ay — Agepp)?’

4

(A — Agepg)?’

4
ric

(A) — Agepg)?’
T%C

(A — Ageps)?’
ric

(A — Agepg)?’

Op2 = b2 = 6.201000500 10%°,

Op3 = €p3 = 376.3119874 + 1148.012350¢,

Ops = epa = —989.3457222 + 744.3816457¢,

Ops = ey = —989.3457222 — 744.3816457¢,

O = €pg = 376.3119874 — 1148.012350:.

Since (33, 063, €4 Oba, Eb5, Ob5, Eb6s Op6 ) are complex, Eyz, Fyy, Eps and Epg do not have physical meaning,
we therefore only retain Ey; and Ejo, as points of equilibrium requiring a study of stability.
In the case x5 # 0 we get from (35)

_ Nua(l—epr)

T . 38
’ M5 ! (38)
Replacing x5 in (33)
a+ pu3)x
k(1 — epr)Tars = (%)3 (39)

This last equation combined with (34) leads to

. f[pz(l—e%s) +,u4]9€4'
i a+(1—&us

By combining (40) and (38) with (39) we obtain

(40)

oy = Ms(a+lt3)[p2(1—€_§) + pua] ' (41)
ko(1 —err)Npa(l —epr)(a+ (1 — §)us)
Now equation (32) will be satisfied for two cases: in the trivial case 1 = 0, the equation giving x4 is
obtained as a function of x3 from equation (32)

s aalra (1= 2) a1 e7) - ]
Tora s + kzm(l — ERT)/MN(I — EP[) '

Tyg = Mg

In the non-trivial case z1 # 0, equation (31) gives x; as a function of z9 as follows

4

(7‘1 +c(/<:13:2 —p1(1 — 6_5)))4'

Tr1 =
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Introducing this last equation with (41) in (32) implies

s+ xo[re (1 — E22) — phyay — pa(1 — e%s) — o]
xorapts + kom(1l — err)paN(1 — epr)

Tyg = Mg

So, we get two equilibrium points Ey; = (0, Ty, Iy, Ly, Vi, D) and Eyg = (C,T,1, L, V, D), where
_ Ms(a+u3)[p2(1—€_3) + 4]

k2(1 —erT)Npa(1 —epr)(a+ ps — §pus)’
E[p2(1—eT) + pa] Ly

Ty

[ pr—
’ a+(1-=8&us
_Ty _ e d) —
b 8Tl B) a1 =) o]
Tyrops + kgm(l — ERT)/MN(l — EP[)
V, = Npa(1 _EPI)Lb.
M5
4
o ric -
[r1 4 /4 (kT — p1 (1 — e=5/4))]
T pis(a+ p3) [p2 (1 — €7 @) + pua]
k2(1 —erT)Npa(l —epr)(a+ ps — §pus)’
_ &2 (1—e) + )L
a+(1—=&us
s +T[r2(1 — %) — pk1C —pg(l — e%) — ,ug]
L =mpy
Trops + kom(1 — erp)paN(1 — epy)
vV — N,u4(1 — €P1)L.
M5

Let study the local stability for the equilibrium points. For the points Epy and Ep7 we use the Lyapunov
direct method considering the Lyapunov function

6
V (21,39, 33,34, 35,76) = Y _ 7}
i=1
for which the differential V is given by
. 6
V(.Z'l, T2,X3, T4, L5, x6) =2 Z Tid;
i=1

1/4
=2 [Zﬂl <7”1 [1 - <%) ] 33:1))/4 — k119 — P71 (1 - e_x(")m)

T+ X2 + 24

+ 9 <8+:132 [m(l -
m

) — pkix1 — ko(1 — erp)as — pa(1 —e776) — M2}>

+ 23(Ek2(1 — err)2225 — (a + p3)T3)
+ x4 (aazg + ko(1 = &)(1 — epp)zoms — pg(l - e‘“)u - ,u43:4)

+ x5(Nu4(1 — Ep])x4 - /L5JZ5) + 336(6 - de)] . (42)

Replacing Fyg in (42) we get also that V(zy,zg, 23, 24, 5, 2¢) > 0, and in the same way if we replace

Ey7 we get also that V(z1, x2, 23, 24, x5, 26) > 0. Thus, the system is unstable in these two equilibrium
points.
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Now, one can not obtain the sign of V by the application of the above technique to the equilibrium
points Fy1, Epp and Epg. This is why we propose the use of the Lyapunov indirect method to study
the stability of the system at these study states.

The corresponding linearized system at the equilibrium point Ey = (gp1,0p1,0,0,0,2/d) is given
by

8:E1 —

5 = Cnwy — kiepzg — prepe” dug,

Oz 720p1 _

ot Corz1 + Cooxo — 4 + Cazws — pae™ /LGy x6,

ox

6—153 = —(a+ m3)x3 + C3125,

ox

4 — azg — Cyyay + Cros,

ot

ox

=2 = Nuy(1 — epp)my — pss,

ot

8336

— = —d 43
ot 6 (43)

where 3 1
- B r
Chy = Zrl(a—:bl) /4 _ b7 kb —p1(l—e /), Cy =-— (Ez "’Pkl) 91,

€p1 + 20p1
m

022 =79 <1 — —pk?lebl —p2(1 - e—s/d) — K2, 023 = —]{72(1 - 5RT)5bla

Ca1 = €ka(1 — err)dp1, Cn =pa(l —e ) g, Cao=ka(1 = €)(1 — 7).

This linear system can be written as:

T Ci1 —-kC 0 0 0 —p1€b1€_€/d T
9 Co1 Cos 0 7“2;2;;1 Cos —Pge‘s/débl Ui
T3 _ 0 0 —((1 + m3) 0 C3 0 T3 (44)
Ty 0 0 a 041 042 0 T4
T 0 0 0 Npa(l —epr) —ps 0 5
Z6 0 0 0 0 0 —d 6

The characteristic polynomial of this system is given by

P(X) = det(J(f)(Ep) — M)
= (C11 — A)(Ca2 — N)(—(a+m3) = A)( — (p2(1 — e_a/d) + pa) — A)(=ms — A)(—=d — ). (45)
Therefore, roots of this characteristic equation are:
A =C1, A=0Cn, A3=—(a+pus),
A=—(p2(1—e /) + 1), Xs=—ps, A¢=—d.

It’s easy to see that all these values are non-positive and thus the model is stable at the equilibrium
point (Fjp;). This means in this case that a patient with cancer, not infected with HIV, but who is
treated with a chemotherapeutic dynamic, his disease can be controlled so that the cancer cells are
reduced.

Let us consider the linearization of system (31)—(36) around the equilibrium point Ejs:
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e/d

Z1 Dy1 —kigp 0 0 0  piepe” 1

Tg Do Doy 0 — 2l Das  —poe~/45y, T2

T3 _ 0 0 —(a -+ TTL3) 0 D31 0 €3 (46)
Ty 0 0 a D41 D42 0 T4 ’

Ts 0 0 0 Npgy(l—epr) —ps 0 T5

:ﬁﬁ 0 0 0 0 0 —d Te

where 3 1
—1/4 —e/d r2
Dll = Zrl(EbQ) /4 _ Tlm — k16b2 —P1 (1 —e e/ ), D21 - — (E +pk1> 6b17

 Eb2 + 20m2
m

Day =13 <1 — pkigye — p2(1— e™/) — pia, Doz = —ka(1 — £Rrr)do,

D3y = Eky(1 — err)dp2, Da1 = po(1 — e /%) 4+ g, Dyg = ko(1 — €)(1 — err)dp2.

Once again, the structure of this matrix allows us to easily find an expression of the characteristic
equation:

P(X) = det (J(f)(Ep2) — o)
= (D11 — A)(D22 — A)(—(a +m3) — A) <—(p2(1 — e ) ) - /\) (=ms = A)(=d = A). (47)
The roots of this characteristic equation are:
A=D1, Aa=Dan, A3=—(a+pus),

M=—(p2a(1—e ") ), As=—ps, Xs=—d.

From parameters in Table 1, we show that Di; and Dsy are negative, so six roots A\;, ¢ = 1,...,6 are
negatives. Thus the model is stable. The same interpretation as for the previous case can be done.

In order to study the local stability of system (31)—(36) at the equilibrium point Epg =
(C,T,1,L,V,D), the corresponding linearized system around this point is considered. This gives
rise to the following system:

T Bi1 -k C 0 0 plce_D €1
) Ba1 By 0 — Byz  —poe”PT x2
T3 _ 0 B3 —(CL + mg) 0 Bso 0 &3 (48)
x4 0  Ba a By Bys  —poe I g |
Z5 0 0 0 Nps(1 —epr) —ps 0 x5
Tg 0 0 0 0 0 —d Tg
where 3 1
_ r
By = ZT101/4 M T kT —pi(l—eP), Bx=- (Ez —I-pkl) T,
C+2T+1 _
Bay =19 <1 - 7) — pk1C — ko(1 — err)V —p2(1 — €™ P) — pa,  Bag = —ko(1 — epr)T,

Bsi1 = &ka(1 —err)V,  Bsa = &ka(1 —epr)T, B = ka(1 —egr)(1 = &)V,
Bz =p2(1—e )+ 1) Buz=ko(1—&)(1 —err)T.
Then, the Characteristic polynomial is given by
P(N) = det (J(f)(Eps) — Mo)
= (Bll — )\)(BQQ — )\)(—(CL + m4) — )\) (—(p2(1 — e_D) + ,U4) — )\) (—m5 — )\)(—d — )\) (49)
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From the last equation the eigenvalues of jaccobian equation JJ(f)(Eps) are:
M =B, M=DBxn A=-(a+m3), M=—(p2(l-€eP)+u), As=-ms I=—d.

We conclude from Table1 that By, Bos negatives. This implies that six eigenvalues \;, ¢ = 1,...,6
are negatives and thus the model is stable at Epg. This means that the combination of the treatment
and the chemotherapeutic dynamics of a patient with HIV and developing cancer allows stability in
the course of the disease and the control of the growth of cancer cells which leads to a decrease in the
death rate.

3. Conclusion

In this work, we present the study an impulsive mathematical model proposed in Chavez et al. [1] to
describe the dynamics of cancer growth and HIV infection, when chemotherapy and HIV treatment
are combined. We have considered a first approach for the study of this dynamic system which
consists in looking for the points of equilibrium, that is to say the stationary solutions not showing
the temporal evolution. We have studied the local stability of all these points of model equilibrium.
To do this, we used both the direct Lyapunov method as well as the linearization technique called
the indirect Lyapunov method. We have noticed that no point of equilibrium takes into account the
chemotherapeutic dynamic, because in all cases the variable the representation is zero. To complete
the study, we bifurcated the model by adding a small perturbation in the variable representing the
chemotherapeutic dynamics, then we studied the stability of all the equilibrium points of the system
obtained. Our next work, is to vary several system control parameters. We will then look at what
becomes of the points of equilibrium, in particular those which were stable before modifying the
parameters of the system. We will examine the possible bifurcations that appear. For the values of
the parameters at which such qualitative changes appear, so-called bifurcation values, we will use tools
adopted for construction of the phase portrait.
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paky

Canix X. B.}, Hauayi A.2

! Mamemamuunuti daxysvmem, Ynisepcumem Canaxaddina-Epbins,
Ep6irv, Kypducman, Ipax
2 Jlabopamopis mamemamury Kan Jepe,
Vwisepcumem Hanma, @Pparuisn

VY 1ift poboTi KOCTiIKYETHCA IMITy/IbCHA MAaTEMATHIHA MO/JIEJ/b, 3AIIPOIIOHOBaHA JaBecom
ta in. [1] g onucy munamiku pocry paxy ta BLJI-imdexunil, kosu ximiorepamis noej-
myerbes 3 JikyBanasasM BLJI. IIlo6 kpamie 3posymitu mi ckjajHi Giosoriyi sBUIa, BUB-
9aeThCs CTIHKICTDh TOYOK piBHOBaru. st iboro Oymyerbest Biamosinua dyakmis JIsmynosa
JJIsl TIEPIOl TOYKHM PIBHOBArW, TOJI SK JIjIS JIPYTOl BUKOPUCTOBYETHCS HEPAMUI METO],
JIsanynosa. 2KogHa 3 OTpUMAHUX TOYOK PIBHOBATHM HE JIO3BOJISE JIOC/IIUTHA CTAOLILHICTH
XiMiOTepaneBTUYHOl JUHAMIKHU, 3alIPOIIOHOBAHO PO3/IBOEHHS MOJIEI Ta JOC/IIKEHHS PO3-
JBOEHOI CHUCTEMH, IO CIPUAE KPAIIOMY PO3YMIHHIO OCHOBHHUX OIOXiMIYHUX IIPOIECIB, sIKi
KepyIOTh Ii€I0 BUCOKOAKTHBHOIO aHTUPETPOBIpycHOWO Teparier. Ile mokasye, mo 3ampo-
[IOHOBaHA MaTeMaTHYHA MOJIEJb € JIOCTATHBO PEAJiICTHYHOIO, II00 OLIHUTH BILJIUB TAKOI'O
JIIKyBaHHS.

Knouosi cnosa: mouka pisnosazu, cmabiavhicms, modeav pax-BIJI(CHII), npamud
memod Jlanynosa.
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