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The phenomenon of mixed convection heat transfer in a homogeneous mixture is delib-
erated thoroughly in this study for cooper-water nanofluids flowing inside a lid-driven
square cavity. By adopting the Oberbeck–Boussinesq approximation and using the single-
phase nanofluid model, the governing partial differential equations modeling the present
flow are stated mathematically based on the Navier–Stokes and thermal balance formu-
lations, where the important features of the scrutinized medium are presumed to remain
constant at the cold temperature. Note here that the density quantity in the buoyancy
body force is a linear temperature-dependent function. The characteristic quantities are
computed realistically via the commonly used phenomenological laws and the more ac-
curate experimental correlations. A feasible non-dimensionalization procedure has been
employed to derive the dimensionless conservation equations. The resulting nonlinear dif-
ferential equations are solved numerically for realistic boundary conditions by employing
the fourth-order compact finite-difference method (FOCFDM). After performing extensive
validations with the previously published findings, the dynamical and thermal features of
the studied convective nanofluid flow are revealed to be in good agreement for sundry
values of the involved physical parameters. Besides, the present numerical outcomes are
discussed graphically and tabularly with the help of streamlines, isotherms, velocity fields,
temperature distributions, and local heat transfer rate profiles.
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1. Introduction

Heat transfer enhancement issue in nanofluid-filled enclosures via the mixed-convection process has
provided a vast scope for scientific research [1–4] due to its tremendous engineering and energy uses in
everyday life and many field of industry (e.g., cooling equipment, solar collectors, chemical processing
industries, float glass production, and drying technologies). In such a heat transfer occurrence, the
laminar convective flows of nanofluids can be described mathematically by a system of classical [5–12]
fractional [13,14] partial differential equations, which cannot be treated analytically or semi-analytically
because of its higher nonlinearity and coupling equations. This is why several researchers [15–18]
conducted similar problems numerically by applying powerful computational procedures, like the finite
element method (FEM), finite volume method (FVM), and lattice Boltzmann method (LBM).

Energetically, the conventional cooling fluids (e.g., water, methanol, and ethylene glycol) exhibit
remarkable limitations in terms of thermal energy storage and heat transfer efficiency. So, it is rec-
ommended to insert nano-sized solid particles of higher conductivity to improve the thermal features
of the usual fluids [19, 20]. Various types of solid nanomaterials can be incorporated in the base flu-
ids, such as metals, metal oxides, and non-metals. In this context, Tiwari and Das [21] evaluated
numerically the heat transfer enhancement within the mixed convection flows within a square cavity
filled by the copper-water. They conclude that the occurred pattern formation and the heat transfer
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rate were greatly influenced by the higher estimation of the mixed convention parameter and by the
sense of the vertical moving walls. Several explorations have been reported in the literature for con-
vective nanofluid flows [22–26]. For example, Rana and Bhargava [27] examined numerically the heat
transfer enhancement in steady mixed convection nanofluid flow over a vertical plate in the presence
of heat source/sink. In this scrutinization, it was shown that the silver nanoparticles can improve
the cooling performance than the other used chemical species. Similarly, Zaraki et al. [28] adopted
the non-homogeneous model of Buongiorno [29] to perform a theoretical analysis on the heat and
mass transfer of the boundary layer nanofluid flows by analyzing the effects of size/shape/type of
nanoparticles, type of base fluids, and working temperature. In a non-planar geometric configuration,
Mebarek–Oudina [30] implemented an advanced FVM code to reveal the effect of different base fluids
on the thermo-hydrodynamic characteristics of titania-based nanofluids in a cylindrical annulus with a
discrete heat source. Besides, Wakif et al. [31–34] deliberated thoroughly the impacts of the haphazard
motion of solid nanoparticles and their thermo-migration on the thermal appearances of mixtures at a
nanometric scale.

Motivating by the above-discussed research works and the valuable applications of nanofluids, the
present numerical scrutinization has been carried out to disclose the mixed convection heat transfer
features in a two-sided lid-driven square cavity filled by copper-water nanofluids, in the case where the
left cold wall is moving upwards and the right hot wall is moving downwards. The prime novelty of
this study is to combine known phenomenological laws along with accurate experimental correlations
in the proposed single-phase nanofluid model to generate realistic physical results via the fourth-order
compact finite-difference method (FOCFDM).

2. Mathematical formulation

As sketched in Fig. 1, the problem of incompressible laminar flow of water-based nanofluid containing
copper nanomaterials of spherical shape inside a two-dimensional square cavity of length L is simulated

Nanofluidic Medium

Filled by Cu-H O2

x̃, ũ

ỹ, ṽ

x̃ = L

ỹ = L

g

ṽ = V0

ṽ = −V0

T̃ = TC T̃ = TH

∂T̃
∂ỹ

= 0

∂T̃
∂ỹ

= 0

Fig. 1. Geometrical configuration of the present con-
vective nanofluid flow problem.

appropriately with the help of Cartesian coordi-
nates. Thermally, the right wall is heated isother-
mally at a constant temperature TH , whereas the
temperature of the left side-wall is kept unchanged
at the temperature TC = 300K (< TH). Dy-
namically, the studied mixed convective nanofluid
flow is driven by the uniform motion of the ver-
tical walls x̃ = 0 and x̃ = L, their velocities
are expressed respectively as ṽ(x̃ = 0, ỹ, t̃) = V0
and ṽ(x̃ = L, ỹ, t̃) = −V0. On the other hand,
the horizontal walls are selected to be immo-
bile and insulted. By adopting the linear form
of the Oberbeck–Boussinesq approximation along
with the single-phase nanofluid model [21], the
nonlinear partial differential equations describing
the present nanofluid flow problem are written
as [35, 36]:

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0, (1)

ρnf

(
∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ

)
= −∂p̃

∂x̃
+ µnf

(
∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2

)
, (2)
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ρnf

(
∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ

)
= −∂P̃

∂ỹ
+ µnf

(
∂2ṽ

∂x̃2
+
∂2ṽ

∂ỹ2

)
+ (ρβ)nfg

(
T̃ − TC

)
, (3)

(ρCp)nf

(
∂T̃

∂t̃
+ ũ

∂T̃

∂x̃
+ ṽ

∂T̃

∂ỹ

)
= knf

(
∂2T̃

∂x̃2
+
∂2T̃

∂ỹ2

)
. (4)

Here, p̃ is the pressure and P̃ is the modified pressure, where P̃ = p̃+ ρnfgỹ.
Those conservative equations are governed realistically by the following initial and boundary con-

ditions:




ũ
(
x̃, ỹ, t̃ = 0

)
= 0, ũ

(
x̃ = 0, L, ỹ, t̃

)
= 0, ũ

(
x̃, ỹ = 0, L, t̃

)
= 0,

ṽ
(
x̃, ỹ, t̃ = 0

)
= 0, ṽ

(
x̃ = 0, ỹ, t̃

)
= V0, ṽ

(
x̃ = L, ỹ, t̃

)
= −V0, ṽ

(
x̃, ỹ = 0, L, t̃

)
= 0,

T̃
(
x̃, ỹ, t̃ = 0

)
= TC , T̃

(
x̃ = 0, ỹ, t̃

)
= TC , T̃

(
x̃ = L, ỹ, t̃

)
= TH ,

(
∂T̃ /∂ỹ

)
(x̃,ỹ=0,L,t̃) = 0.

(5)

Besides, the thermophysical properties of copper-water nanofluids ρnf , µnf , (ρβ)nf , (ρCp)nf , and knf
are formulated explicitly as functions of the nanoparticles volume fraction χ and other characteristics
by the following expressions [37–43]:





ρnf = ρnpχ+ (1− χ) ρf ,
µnf =

µf

1−34.87
(

dnp
df

)−0.3
χ1.03

,

(ρβ)nf = (ρβ)npχ+ (ρβ)f (1− χ) ,
(ρCP )nf = (ρCP )npχ+ (ρCP )f (1− χ) ,

knf =

[
1 + 4.4Re0.4B Pr0.66

(
TC
TFr

)10(knp

kf

)0.03
χ0.66

]
kf ,

where Pr =
µf (ρCP )f
ρfkf

and ReB =
2ρfkBTC
π µ2f dnp

.

(6)

Table 1. Thermophysical properties of the nanofluid constituents [33,44].

Thermophysical Base fluid Solid nanoparticles
properties Water (H2O) Copper (Cu)
dnp (nm) 0.385 30− 60
ρ (Kgm−3) 997.1 8933

Cp (J Kg−1 K−1) 4179 385
k (W m−1 K−1) 0.613 401
β (×10−4K−1) 2.1 0.167

µ (Pa s) 89× 10−5 —–

In Eq. (5), the subscripts
nf , f , and np are incorporated
to indicate the nanofluid, the
base fluid, and the solid nano-
particles, respectively. More-
over, the pertinent thermophy-
sical properties of the nanofluid
constituents are summarized
clearly in Table 1. Furthermo-
re, the physical meanings of all
pertinent variables, quantities, and parameters are summarized and defined in the nomenclature tables.

To obtain the dimensionless conservation equations, the following dimensionless variables are in-
troduced into the aforestated mathematical formulation:

x =
x̃

L
, y =

ỹ

L
, t =

(
V0
L

)
t̃, U =

ũ

V0
, V =

ṽ

V0
, P =

1

ρfV
2
0

P̃ , T =
T̃ − TC
TH − TC

. (7)

Accordingly, Eqs. (1)–(4) are altered to:

∂U

∂x
+
∂V

∂y
= 0, (8)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −∂P

∂x
+

µr
ρr Rew

(
∂2U

∂x2
+
∂2U

∂y2

)
, (9)
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∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −∂P

∂y
+

µr
ρr Rew

(
∂2V

∂x2
+
∂2V

∂y2

)
+

(ρβ)rRi

ρr
T, (10)

∂T

∂t
+ U

∂T

∂x
+ V

∂T

∂y
=

kr
(ρCP )r PrRew

(
∂2T

∂x2
+
∂2T

∂y2

)
. (11)

In this stage, the initial and boundary conditions given by Eq. (5) are simplified as:





U(x, y, t = 0) = 0, U(x = 0, 1, y, t) = 0, U(x, y = 0, 1, t) = 0,
V (x, y, t = 0) = 0, V (x = 0, y, t) = 1, V (x = 1, y, t) = −1, V (x, y = 0, 1, t) = 0,
T (x, y, t = 0) = 0, T (x = 0, y, t) = 0, T (x = 1, y, t) = 1, (∂T/∂y)(x,y=0,1,t) = 0.

(12)

For more clarification, the dimensionless physical parameters and quantities appeared above are ex-
pressed as follows:





Ri =
Gr

Re2w
, Gr =

(ρβ)f (TH − TC) gL3

νfµf
, Rew =

V0L

νf
,

ρr =
ρnf
ρf

, µr =
µnf
µf

, (ρβ)r =
(ρβ)nf
(ρβ)f

, (ρCP )r =
(ρCP )nf
(ρCP )f

, kr =
knf
kf

.

(13)

Herein, the stream function ψ and the vorticity ω are defined as:




U =
∂ψ

∂y
,

V = −∂ψ
∂x

,

ω =
∂V

∂x
− ∂U

∂y
.

(14)

By incorporating the above expressions into Eqs. (8)–(11), the ψ−ω formulation of the present nanofluid
flow problem is stated as follows:

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (15)

∂ω

∂t
+

(
∂ψ

∂y

)(
∂ω

∂x

)
−
(
∂ψ

∂x

)(
∂ω

∂y

)
=

µr
ρr Rew

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+

(ρβ)rRi

ρr

∂T

∂x
, (16)

∂T

∂t
+

(
∂ψ

∂y

)(
∂T

∂x

)
−
(
∂ψ

∂x

)(
∂T

∂y

)
=

kr
(ρCP )r PrRew

(
∂2T

∂x2
+
∂2T

∂y2

)
. (17)

Generally, Eqs. (16) and (17) can be rewritten as:

∂Γ

∂t
+

(
∂ψ

∂y

)(
∂Γ

∂x

)
−
(
∂ψ

∂x

)(
∂Γ

∂y

)
= ε

(
∂2Γ

∂x2
+
∂2Γ

∂y2

)
+ η

(
∂T

∂x

)
, (18)

in which 



(ε, η)Γ=ω =

(
µr

ρr Rew
,
(ρβ)rRi

ρr

)
,

(ε, η)Γ=T =

(
kr

(ρCP )r PrRew
, 0

)
,

ψ(x = 0, 1, y, t) = 0,
ψ(x, y = 0, 1, t) = 0.

(19)
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3. Solution methodology

By employing the fourth-order compact finite-difference schemes in the (x, y)-directions [45], the first
and second derivatives of a function Φ(x, y, t) are approximated by:





∂Φ

∂x
= Φx −

(
∆x2

6

)(
∂3Φ

∂x3

)
+O

(
∆x4

)
,

∂Φ

∂y
= Φy −

(
∆y2

6

)(
∂3Φ

∂y3

)
+O

(
∆y4

)
,

∂2Φ

∂x2
= Φxx −

(
∆x2

12

)(
∂4Φ

∂x4

)
+O

(
∆x4

)
,

∂2Φ

∂y2
= Φyy −

(
∆y2

12

)(
∂4Φ

∂y4

)
+O

(
∆y4

)
.

(20)

Under the above considerations, the steady-state of Eqs. (15) and (18) leads to the following approxi-
mations:

ψxx + ψyy −
(
∆x2

12

)(
∂4ψ

∂x4

)
−
(
∆y2

12

)(
∂4ψ

∂y4

)
+O

(
∆x4,∆y4

)
= −ω. (21)

εΓxx + εΓyy − ε
(
∆x2

12

)(
∂4Γ

∂x4

)
− ε

(
∆y2

12

)(
∂4Γ

∂y4

)
+O

(
∆x4,∆y4

)
= ψyΓx

− ψxΓy −
(
∆y2

6

)
Γx

(
∂3ψ

∂y3

)
−
(
∆x2

6

)
ψy

(
∂3Γ

∂x3

)
+

(
∆x2

6

)
Γy

(
∂3ψ

∂x3

)

+

(
∆y2

6

)
ψx

(
∂3Γ

∂y3

)
− ηTx + η

(
∆x2

6

)(
∂3T

∂x3

)
+O

(
∆x4,∆x2∆y2,∆y4

)
. (22)

Similarly, we have from Eqs. (15) and (18):

∂3ψ

∂x3
= −∂ω

∂x
− ∂3ψ

∂x∂y2
, (23)

∂4ψ

∂x4
= −∂

2ω

∂x2
− ∂4ψ

∂x2∂y2
, (24)

∂3ψ

∂y3
= −∂ω

∂y
− ∂3ψ

∂y∂x2
, (25)

∂4ψ

∂y4
= −∂

2ω

∂y2
− ∂4ψ

∂y2∂x2
, (26)

∂3Γ

∂x3
=

1

ε

(
∂2ψ

∂x∂y

)(
∂Γ

∂x

)
+

1

ε

(
∂ψ

∂y

)(
∂2Γ

∂x2

)
− 1

ε

(
∂2ψ

∂x2

)(
∂Γ

∂y

)
− 1

ε

(
∂ψ

∂x

)(
∂2Γ

∂x∂y

)

− η

ε

(
∂2T

∂x2

)
−
(

∂3Γ

∂x∂y2

)
, (27)

∂4Γ

∂x4
=

1

ε

(
∂3ψ

∂x2∂y

)(
∂Γ

∂x

)
+

1

ε

(
∂2ψ

∂x∂y

)(
∂2Γ

∂x2

)
+

1

ε

(
∂2ψ

∂x∂y

)(
∂2Γ

∂x2

)

+
1

ε

(
∂ψ

∂y

)(
∂3Γ

∂x3

)
− 1

ε

(
∂3ψ

∂x3

)(
∂Γ

∂y

)
− 1

ε

(
∂2ψ

∂x2

)(
∂2Γ

∂x∂y

)

− 1

ε

(
∂2ψ

∂x2

)(
∂2Γ

∂x∂y

)
− 1

ε

(
∂ψ

∂x

)(
∂3Γ

∂x2∂y

)
− η

ε

(
∂3T

∂x3

)
−
(

∂4Γ

∂x2∂y2

)
. (28)

After many simplifications and rearrangements, we get finally the following fourth-order compact
formulation (FOCF):
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ψxx + ψyy = −ω +A, (29)

ε (1 +B) Γxx + ε (1 + C) Γyy = (ψy +D) Γx − (ψx + E) Γy −
(
η

Υ1

)
Tx + F, (30)

in which

A = −
(
∆x2

12

)
ωxx −

(
∆y2

12

)
ωyy −∆xyψxxyy, (31)

B = −1

ε

(
∆x2

6

)
ψxy +

1

ε2

(
∆x2

12

)
ψyψy, (32)

C =
1

ε

(
∆y2

6

)
ψxy +

1

ε2

(
∆y2

12

)
ψxψx, (33)

D = ∆xyψxxy −
1

ε

(
∆x2

12

)
ψyψxy +

1

ε

(
∆y2

12

)
ψxψyy, (34)

E = ∆xyψxyy −
1

ε

(
∆x2

12

)
ψyψxx +

1

ε

(
∆y2

12

)
ψxψxy, (35)

F = ∆xyψyΓxyy −∆xyψxΓxxy −
1

ε

(
∆x2

6

)
ψxxΓxy +

(
∆y2

6

)
ψyyΓxy +

∆xy

ε
ψxψyΓxy

− 1

ε

(
∆x2

12
− ∆y2

12

)
ΓxΓy −∆xyΓxxyy + ηG, (36)

G =
Υ2

Υ1

(
∆x2

12

)
ψxyTx +

(
Υ2

Υ1
+

1

Υ1
2

)(
∆x2

12

)
ψyTxx −

(
Υ2

Υ1

)(
∆x2

12

)
ψxxTy

−
(
Υ2

Υ1

∆x2

12
+

1

Υ2
1

∆y2

12

)
ψxTxy −

∆xy

Υ1
Txyy, (37)

∆xy =
∆x2

12
+

∆y2

12
(38)

Υ1 =
µr

ρr Rew
, (39)

Υ2 =
kr

(ρCP )r PrRew
. (40)

It bears noting here that the resulting differential system along with their associated boundary con-
ditions can be integrated numerically via the alternating directions implicit iteration as explained by
Peaceman and Rachford [46]. In this framework, the system of Eqs. (15) and (18) is rewritten as follow:

ψn +∆t

(
∂2ψ

∂x2

)n+1

+∆t

(
∂2ψ

∂y2

)n+1

= −∆t ωn + ψn+1, (41)

Γn+1 +∆t

(
∂ψ

∂y

)n(∂Γ
∂x

)n+1

−∆t

(
∂ψ

∂x

)n(∂Γ
∂y

)n+1

= ε∆t

[(
∂2Γ

∂x2

)n+1

+

(
∂2Γ

∂y2

)n+1
]
+ η∆t

(
∂T

∂x

)n+1

+ Γn. (42)

According to Erturk and Gökcöl [47], the solution of Eqs. (41) and (42) converges always to a stationary
regime. In this respect, different residual errors can be evaluated:

(Re s1)ψ = max

(∣∣∣∣∣
ψn+1
i−1,j − 2ψn+1

i,j + ψn+1
i+1,j

∆x2
+
ψn+1
i,j−1 − 2ψn+1

i,j + ψn+1
i,j+1

∆y2
+ ωn+1

i,j −An+1
i,j

∣∣∣∣∣

)
, (43)
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(Re s1)Γ = max




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε
(
1 + Bn+1

i,j

)
Γn+1
i−1,j−2Γn+1

i,j +Γn+1
i+1,j

∆x2 + ε
(
1 + Cn+1

i,j

)
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, (44)

(Re s2)ψ = max

(∣∣∣∣∣
ψn+1
i,j − ψni,j
ψn+1
i,j

∣∣∣∣∣

)
, (45)

(Re s2)Γ = max

(∣∣∣∣∣
Γn+1
i,j − Γni,j

Γn+1
i,j

∣∣∣∣∣

)
. (46)
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Fig. 2. Generated grid points at the (a) wall and the (b) corner.

To reach relative accuracies of about
(Re s2)ψ = 10−10 and (Re s2)Γ = 10−9,
the following convergence criterion is
adopted:

max
(
(Re s1)ψ, (Re s1)Γ

)
6 10−6. (47)

As recommended by Störtkuhl et
al. [48], the singularity arising from the vorticity boundary conditions is removed at the corner and
wall points by employing the finite element bilinear shape functions, which lead to the following. In
this study, we follow Störtkuh et al. for the boundary conditions and use the next approximative
expressions:

— At the walls:

1

3∆h2



• • •
1/2 −4 1/2
1 1 1


ψ +

1

9



• • •

1/2 2 1/2
1/4 1 1/4


ω = − Vw

∆h
. (48)

— At the corner:

1

3∆h2



• • •
• −2 1/2
• 1/2 1


ψ +

1

9



• • •
• 1 1/2
• 1/2 1/4


ω = − Vw

2∆h
. (49)

Here, Vw represents the velocity of the considered wall. Based on the above approximations and their
schematical illustrations shown in Fig. 2, the nodal vorticity ωb is computed numerically as:

— At the walls:

ωb = −
9Vw
2∆h

− 3

2∆h2
(ψd + ψe + ψf )−

1

8
(2ωa + 2ωc + ωd + 4ωe + ωf ) . (50)

— At the corner:

ωb = −
9Vw
2∆h

− 3

∆h2
ψf −

1

4
(2ωc + 2ωe + ωf ) . (51)

The local heat transfer rate Nu i.e., local Nusselt number) and its averaged value Nu are scrutinized
at the vertical cold wall x = 0 in the stationary regime as follows:

Nu(y) = −kr
(
∂T

∂x

)

x=0

, (52)

Nu =

∫ 1

0
Nu(y) dy. (53)
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4. Results and discussion

Table 2. Comparison between the present nu-
merical results and those of the existing literature

in terms of Nu for various values of Ra.

Ra 103 104 105

De Vahl Davis [49] 1.118 2.243 4.519
Barakos et al. [50] 1.114 2.245 4.510
Khanafer et al. [51] 1.118 2.245 4.522

Present results 1.117 2.242 4.922

To prove the exactness of the results exhibited in
the present numerical outcomes, the proposed fourth-
order compact finite-difference algorithm has been
coded in FORTRAN language and then tested mul-
tiply with the results reported previously for the nat-
ural and mixed convections by De Vahl Davis [49],
Barakos et al. [50], Khanafer et al. [51], Khanafer and
Chamkha [35] and Waheed [36] as shown in Table 2

and Table 3. As expected, it is found an admissible agreement with the comparing literature works.
Indeed, the applied implicit schemes are unconditionally stable and their convergences are assured
technically during the computational executions via the residual errors defined by Eqs. (43)–(46).

Table 3. Comparison between the present numerical results and those of the existing literature in terms of Nu
for various values of Rew, when Gr = 100.

Rew Present results Khanafer and Chamkha [35] Waheed [36]
100 2.052 2.01 2.03116
400 4.083 3.91 4.02462
1000 6.599 6.33 6.48423

Table 4. Numerical estimation of the effective
values of the average Nusselt number Nu and ther-
mal enhancement ET for various values of χ, when

Ri = 8 and dnp = 30 nm.

χ Nu ET =
(Nuχ 6=0−Nuχ=0)×100

Nuχ=0

0.00 2.6200 —–
0.01 2.6683 1.8435%
0.02 2.6826 2.3893%
0.03 2.6872 2.5648%
0.04 2.6839 2.6450%

After executing properly the established FOCFDM
code, several graphical and tabular results have been
outputted numerically in Figs. 3–12 and Table 4 for
streamlines ψ(x, y), isotherms T (x, y), longitudinal
velocity fields U(x = 0.5, y), horizontal temperature
distributions T (x, y = 0.5), and local Nusselt num-
ber profiles Nu. Those illustrations are done corre-
spondingly for sundry values of the embedded physi-
cal parameters, namely mixed convection parameter
(i.e., Richardson number) Ri, nanoparticles volume
fraction χ, and nanoparticles diameter size dnp, with

default values being selected appropriately Ri = 8, χ = 0.01, and dnp = 30 nm. For revealing the
characteristic of the present dynamical system and its heat transfer feature towards the increasing
values of the mixed convection parameter Ri, various streamlines and isotherms are shown in Fig. 3 for
water H2O and copper-water nanofluid Cu-H2O. From the graphical illustrations of Fig. 3 (left), it is
evident that the mixed convection flow is characterized by a strong circulation motion in the middle
of the cavity with the appearance of counterclockwise rotating main cells. Also, it is perceived the
development of two clockwise secondary cells from either vertical side of the cavity, which are centrally
symmetrical spatially. Further, the deformed isotherms depicted in Fig. 3 (right) prove that the heat
transfer communicated by the mixed convection heat transfer mechanism is more important near the
lower corner of the vertical cold wall x = 0 because of the higher value of the temperature gradient.
Due to the domination of the natural convection over the forced convection, the mixed convection
parameter Ri is intensified numerically, which leads to a slight change in the flow pattern as seen in
Fig. 3 (left). As the main results of this augmentation, the magnitude of the longitudinal velocity
U(x = 0.5, y) along the vertical mid-plane x = 0.5 is improved remarkably as elucidated in Fig. 4 and
the horizontal temperature T (x, y = 0.5) throughout the mid-plane y = 0.5 is enhanced near the cold
wall x = 0 and diminished near the hot wall x = 1 as emphasized in Fig. 5. Further, the distribution
of heat transfer rate through the cold wall x = 0 is estimated locally for different values of the mixed
convection parameter Ri as displayed in Fig. 6. From this graphical demonstration, it is noticed a
significant upsurge in the local heat transfer rate Nu(y) near the upper corner of the cold wall x = 0
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as long as the physical parameter Ri is strengthened. However, a reverse trend is witnessed far from
the upper corner of the cold wall x = 0.
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Fig. 3. Streamline shapes (left) and isotherm contours (right) of water (dashed line) and copper-water
nanofluid (solid line) for various values of Ri, when χ = 0.01 and dnp = 30 nm.

Fundamentally, the nanoparticles loading causes an increase in the effective value of the dynamic
viscosity of the nanofluidic medium. For this reason, the magnitude of the longitudinal velocity
U(x = 0.5, y) shows a declining trend along the vertical mid-plane x = 0.5 in Fig. 7, when the nanopar-
ticles volume fraction χ is increased. A dual behavior is perceived in Fig. 8 for the profiles of the hori-
zontal temperature T (x, y = 0.5) throughout the mid-plane y = 0.5, which is dwindled near the cold
wall x = 0 and amplified near the hot wall x = 1. As a result of this nonlinear thermal distribution, an
enhancement in the local heat transfer rate Nu(y) is remarked near the upper corner of the cold wall
x = 0 with the higher estimate values of the nanoparticles volume fraction χ as ascertained in Fig. 9.
Whilst, an opposite variation is witnessed near the lower corner of the cold wall x = 0. Despite this
contrast, the results of Table 4 confirm that the averaged heat transfer rate Nu and its corresponding
thermal enhancement ET are increasing functions of the nanoparticles volume fraction χ. From a
physical standpoint, an increase in the nanoparticles diameter size dnp improves somewhat the fluidity
feature of the homogeneous nanofluidic medium and leads to a quiet escalation in the magnitude of
the longitudinal velocity U(x = 0.5, y) along the vertical mid-plane x = 0.5 as disclosed in Fig. 10.

The reason behind this fact is that the nanofluid viscosity µnf = µf
[
1− 34.87(dnp/df )

−0.3χ1.03
]−1

is
a decreasing function of the dimensional parameter dnp. Other thermal feature id explored in Fig. 11
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Fig. 4. Longitudinal velocity profi-
les along the mid-plane x = 0.5 for
various values of Ri, when χ = 0.01

and dnp = 30 nm.

Fig. 5. Horizontal temperature pro-
files along the mid-plane y = 0.5 for
various values of Ri, when χ = 0.01

and dnp = 30 nm.

Fig. 6. Local Nusselt number profi-
les at the vertical cold wall x = 0 for
various values of Ri, when χ = 0.01

and dnp = 30 nm.

Fig. 7. Longitudinal velocity profi-
les along the mid-plane x = 0.5 for
various values of Ri, when χ = 0.01

and dnp = 30 nm.

Fig. 8. Horizontal temperature pro-
files along the mid-plane y = 0.5 for
various values of χ, when Ri = 8 and

dnp = 30 nm.

Fig. 9. Local Nusselt number pro-
files at the vertical cold wall x = 0
for various values of χ, when Ri = 8

and dnp = 30 nm.

Fig. 10. Longitudinal velocity pro-
files along the mid-plane x = 0.5 for
various values of dnp, when Ri = 8

and χ = 0.01.

Fig. 11. Horizontal temperature pro-
files along the mid-plane x = 0.5 for
various values of dnp, when Ri = 8

and χ = 0.01.

Fig. 12. Local Nusselt number
profiles at the vertical cold wall x =
0 for various values of dnp, when

Ri = 8 and χ = 0.01.

concerning the effect of the nanoparticles diameter size dnp on the distribution of the temperature
T (x, y = 0.5) throughout the horizontal mid-plane y = 0.5. From this graphical representation, it is
obvious that the geometrical parameter dnp has a slight enhancing thermal impact on the nanofluidic
medium. This fact is explained by the enlargement in the surface exchange between the solid nanopar-
ticles and the surrounding base fluid, which in turn improves some bits the local heat transfer rate at
the cold wall x = 0.5 as clarified in Fig. 12.
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5. Conclusion

The main concluding remarks are itemized as follows:

— The proposed FOCFDM numerical algorithm shows a flexible capability in solving a complex
differential system of coupled partial differential equations (PDEs), which is too complicated to be
solved analytically or semi-analytically for a two-dimensional geometrical convective flow.

— The present FOCFDM outcomes are validated multiply with those reported previously by pioneer-
ing researchers.

— The longitudinal motion of the nanofluid is boosted either by the increase in both the mixed
convection parameter Ri and the nanoparticles diameter size dnp. However, the nanoparticles
volume fraction χ exhibits a postponing impact of the nanofluid motion.

— The mixed convection parameter Ri and the nanoparticles volume fraction χ show a dual behavior
against the temperature distribution.

— The nanoparticles loading and the higher values of the nanoparticles diameter size dnp enhance the
heat transfer rate at the cold wall.
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[48] Störtkuhl T., Zenger C., Zimmer S. An asymptotic solution for the singularity at the angular point of the
lid driven cavity. International Journal of Numerical Methods for Heat & Fluid Flow. 4 (1), 47–59 (1994).

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 807–820 (2021)



820 Zaydan M., Wakif A., Essaghir E., Sehaqui R.

[49] De Vahl Davis G. Natural convection of air in a square cavity: A benchmark numerical solution. Interna-
tional Journal for Numerical Methods in Fluids. 3, 249–264 (1983).

[50] Barakos G., Mitsoulis E., Assimacopoulos D. Natural convection flow in a square cavity revisited: Laminar
and turbulent models with wall functions. International Journal for Numerical Methods in Fluids. 18,
695–719 (1994).

[51] Khanafer K., Vafai K., Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional
enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer. 46 (19), 3639–3653
(2003).

Чисельне дослiдження характеристик змiшаної конвекцiйної
теплопередачi в мiдно-водному нанофлюїдному середовищi, що

займає квадратну геометричну порожнину

Зайдан М., Вакiф А., Ессагiр Е., Сехакi Р.

Лабораторiя механiки, Факультет наук Ан-Чок,
Унiверситет Хасана II Касабланка, Марокко

В представленiй роботi явище змiшаної конвекцiйно-теплової передачi в однорiдних
сумiшах ретельно дослiджується для випадку мiдно-водяної нанорiдини, що протiкає
усерединi квадратної порожнини. Застосовуючи наближення Обербека–Буссiнеска та
використовуючи однофазну нанорiдку модель, диференцiальнi рiвняння зi частинни-
ми похiдними, що моделюють реальний потiк, сформульованi математично на основi
теорiї Нав’є–Стокса та теплового балансу, де важливi особливостi дослiджуваного се-
редовища вважаються постiйними при низьких температурах. Зазначимо, що величи-
на густини в об’ємнiй силi плавучостi тiла є лiнiйною функцiєю, залежною вiд темпе-
ратури. Характернi величини реалiстично обчислюються за допомогою загальновжи-
ваних феноменологiчних законiв та бiльш точних експериментальних кореляцiй. Для
виведення безрозмiрних рiвнянь збереження застосовано процедуру знерозмiрення.
Отриманi нелiнiйнi диференцiальнi рiвняння розв’язано чисельно для реалiстичних
граничних умов за допомогою компактного скiнченно-рiзницевого методу четвертого
порядку (КСРМЧП). Пiсля проведення значних перевiрок з опублiкованими ранi-
ше результатами, з’ясовано, що динамiчнi та тепловi характеристики, отриманi для
дослiджуваного конвективного потоку нанорiдини добре узгоджуються для рiзних
значень задiяних фiзичних параметрiв. Крiм того, представленi чисельнi результа-
ти обговоренi графiчно та таблично за допомогою потокових лiнiй, iзотерм, полiв
швидкостi, розподiлу температури та локальних профiлiв теплопередачi.

Ключовi слова: нанорiдина, змiшана конвекцiя, квадратна порожнина, чисельне
моделювання.
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