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1. Introduction

New mobile standards need to use new frequency resources in the range of 1−30GHz. That’s why it is
necessary to study the information transfer methods aimed at improving energy efficiency (i.e. reducing
energy costs), including artificial intelligence [1] for frequency allocation, blockchain technology for
infrastructure sharing, and the search for new signal generation methods and their modulation [2–5] to
overcome intersymbol and interchannel interference. All this leads to a global trend in the development
of telecommunications technologies in the direction of their convergence [6].

Quantitative analysis of network states often reduces to problems related to two-dimensional matri-
ces, with restrictions on the flows values. Therefore, recently, a number of studies have been conducted
using such sections of modern mathematics as topology and tensor analysis [7]. A number of theories
and approximations have been developed that are successfully applied to networks of different origins,
and combined by specifying the term “transport network”. The classic task of research of transport
networks is a problem where the total values of the traffic, absorbing or generating each node of this
network, are set. In this formulation, this problem can be solved by classical methods of the linear
algebra in order to obtain the whole set of solutions for networks of small dimension (up to five nodes).
For the larger networks, the method enables to obtain all solutions of the problem close to a certain
state. This state of the network can be considered as one of the most probable state with optimized
values of the information flows.

2. Problem Statement

We assume that each node of the network is an equal participant and can be both a source and a drain
of information flow. In this case, the matrix of information flows is a square n× n, matrix
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In,n =




i1,1 i1,2 . . . i1,n
i2,1 i2,2 . . . i2,n
. . . . . . . . . . . .
in,1 in,2 . . . in,n


 . (1)

The rows of the matrix are the values of incoming traffic in each node, and the columns are the values
of outgoing traffic for each node of the system. Then for the information matrix, flows of n× n the of
linear equations system can be rewritten in form (2):

f(n) =





i1,1 + i1,2 + . . . + i1,n−1 + i1,n =
∑n

j=1 i1,j = s1,

i2,1 + i2,2 + . . . + i2,n−1 + i2,n =
∑n

j=1 i2,j = s2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

in−1,1 + in−1,2 + . . .+ in−1,n−1 + in−1,n =
∑n

j=1 in−1,j = sn−1,

in,1 + in,2 + . . . + in,n−1 + in,n =
∑n

j=1 in,j = sn,

i1,1 + i2,1 + . . . + in−1,1 + in,1 =
∑n

j=1 ij,1 = d1,

i1,2 + i2,2 + . . . + in−1,2 + in,2 =
∑n

j=1 ij,2 = d2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

i1,n−1 + i2,n−1 + . . .+ in−1,n−1 + in,n−1 =
∑n

j=1 ij,n−1 = dn−1,

i1,n + i2,n + . . . + in−1,n + in,n =
∑n

j=1 ij,n = dn.

(2)

Thus, the problem acquires the meaning of determining the solutions of the linear equations systems
with coefficients (0, 1). Obviously, there are n2 unknown variables, and 2n equations. One equa-
tion depends on others because it was imposed an additional equality condition of input and output
information flows for all network nodes (3):

s1 + s2 + . . .+ sn−2 + sn−1 + sn = d1 + d2 + . . . + dn−2 + dn−1 + dn = S. (3)

The symbol S means the sum of all flows in the network. Thus, the system (2) has n2 unknown
variables and only 2n− 1 independent equations. So, among the solutions of the system there are only
n2 − (2n − 1) = (n − 1)2 independent variables. The general solution of this system is convenient to
find using the matrix form of the of linear algebraic equations system:

‖A‖ · ‖X‖ = ‖b‖. (4)

The notation ‖A‖ is used in (4) for 2n× n2 matrix consisting of the coefficients of the linear algebraic
equations system (2). The notation ‖X‖ is used for the unknown variables vector, with dimension n2

and notation ‖b‖ is for a vector of numbers (s1, s2, . . . , sn−1, sn, d1, d2, . . . , dn−1, dn), with dimension
2n. More detaily matrix ‖A‖ can be represented in the following form (5):

‖A‖ =




(1(n)) (0(n
2−n))

(0(n)) (1(n)) (0(n
2−2n))

(0(n)) (0(n)) (1(n)) (0(n
2−3n))

. . . . . . . . . . . .

(0(n
2−3n)) (1(n)) (0(n)) (0(n))

(0(n
2−2n)) (1(n)) (0(n))

(0(n
2−n)) (1(n))




, ‖X‖ =




i1,1
. . .
i1,n
i2,1
. . .
i2,n
. . .
in,1
. . .
in,n




. (5)

In (5) the notation (1(n)) is used for the sequence of n ones, the notation (0(n)) is used for the sequence
of n zeros.
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3. Main results

3.1. General Solution

As mentioned above, there are n2 unknown variables in the system (4), while it has only 2n−1 linearly
independent equations. We should use Gaussian method for solving and firstly transform matrix ‖A‖
to a simplified form (6):

‖Ã‖ =
(
E2n−1 R
0 . . . 0

)
. (6)

The simplified matrix ‖Ã‖ is obtained by elementary transformations of rows of the matrix ‖A‖ (per-
mutations, addition and subtraction of rows), which do not change the solution of the initial system
and permutations of columns of the matrix, which only change the order of unknown variables in the
initial system. The simplified matrix has a block structure that contains a unit (2n−1)(2n−1) matrix,
and the matrix last row has only zero values. The matrix ‖R‖ is (2n− 1)(n2 − n+ 1) dimension with
only values (−1, 0, 1), as shown below in the example of the problem of 4× 4 dimension.

Therefore one can express the general solution of the system in the following form (7):

‖X‖ =
(
b̃

Õ

)
+

(
−R

En2−n+1

)
· ‖Λ‖. (7)

In (7) the notation b̃ means a column of numbers obtained by transformations of a free column ‖b‖
of the system (4), Õ is a column of zero values, ‖R‖ is a matrix mentioned above, ‖Λ‖ is a vector of
n− 1 dimension with positive integers components:

‖Λ‖T = (λ1, λ2, . . . , λn−2, λn−1). (8)

3.2. Solution of 4 × 4 Dimension Problem

Let us consider an example of the transport network of 4 × 4 dimension. The matrix of information
flows is the next:

I4,4 =




i1,1 i1,2 . . . i1,n
i2,1 i2,2 . . . i2,n
. . . . . . . . . . . .
in,1 in,2 . . . in,n


 . (9)

The matrix of an equivalent system of the linear algebraic equations with an added column of flow
values in each node is:

‖A|b‖ =




1111 0000 0000 0000 s1
0000 1111 0000 0000 s2
0000 0000 1111 0000 s3
0000 0000 0000 1111 s4
1000 1000 1000 1000 d1
0100 0100 0100 0100 d2
0010 0010 0010 0010 d3
0001 0001 0001 0001 d4




(10)

Firstly the second, third and fourth rows are added to the first row, then subtracted the other four
rows of the matrix, then change the order of the rows in the matrix, as shown in (11), it does not
change the set of the system solutions:
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‖A|b‖ →




1000 1000 1000 1000 d1
0100 0100 0100 0100 d2
0010 0010 0010 0010 d3
0001 0001 0001 0001 d4
0000 1111 0000 0000 s2
0000 0000 1111 0000 s3
0000 0000 0000 1111 s4
0000 0000 0000 0000 s1 + s2 + s3 + s4 − d1 − d2 − d3 − d4 = 0




(11)

There are only zeros in the last row and matrix has a block in the form of a unit 4× 4 matrix. Next,
subtract the fifth line from the first line of the new matrix, and thus form a block in the form of a
single matrix 5× 5:

‖A|b‖ →




10000 −1− 1− 1 1000 1000 d1 − s2
01000 1 0 0 0100 0100 d2
00100 0 1 0 0010 0010 d3
00010 0 0 1 0001 0001 d4
00001 1 1 1 0000 0000 s2
00000 0 0 0 1111 0000 s3
00000 0 0 0 0000 1111 s4
00000 0 0 0 0000 0000 0




(12)

In order to continue the formation of a unit matrix up to dimension 2n− 1 = 7, you need to swap the
sixth and ninth columns of the system and subtract from the first row the sixth one. Next you need to
swap the seventh and thirteenth columns, and subtract the seventh row from the first row. The result
is a simplified matrix ‖Ã‖:

‖Ã|b̃‖ →




1000000 −1− 1− 1− 1− 1− 1− 1− 1− 1 d1 − s2 − s3 − s4
0100000 0 1 1 0 0 0 1 0 0 d2
0010000 0 0 0 1 0 1 0 1 0 d3
0001000 1 0 0 0 1 0 0 0 1 d4
0000100 1 1 0 0 0 1 0 0 0 s2
0000010 0 0 1 1 1 0 0 0 0 s3
0000001 0 0 0 0 0 0 1 1 1 s4
0000000 0 0 0 0 0 0 0 0 0 0




(13)

Permutation of columns changes the order of system variables: x6 ↔ x9 and x7 ↔ x13, this must be
taken into account when constructing matrices of information flows, the final result of the algorithm.
Now we can write the elements of equation (7):

(
b̃

Õ

)
=




d1 − s2 − s3 − s4
d2
d3
d4
s2
s3
s4
0
0
0
0
0
0
0
0
0




;

(
−R
E9×9

)
=




1 1 1 1 1 1 1 1 1
0 −1 −1 0 0 0 −1 0 0
0 0 0 −1 0 −1 0 −1 0
−1 0 0 0 −1 0 0 0 −1
−1 −1 0 0 0 −1 0 0 0
0 0 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 −1 −1 −1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 821–829 (2021)



Research of distribution of information flows in a network 825

Thus the column of independent variables has 9 elements:

‖Λ‖ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9)
T . (14)

For further analysis, we express the general solution as a system of equations (14), taking into account
the reordering of variables mentioned above:




x1 = d1 − s2 − s3 − s4 + λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9,
x2 = d2 − (λ2 + λ3 + λ7),
x3 = d3 − (λ4 + λ6 + λ8),
x4 = d4 − (λ1 + λ5 + λ9),
x5 = s2 − (λ1 + λ2 + λ6),
x6 = λ2,
x7 = λ6,
x8 = λ1,
x9 = s3 − (λ3 + λ4 + λ5),
x10 = λ3,
x11 = λ4,
x12 = λ5,
x13 = s4 − (λ7 + λ8 + λ9),
x14 = λ7,
x15 = λ8,
x16 = λ9.

(15)

Based on the content and statement of the problem, we look for the values of in-formation flows, which
are non-negative integers. Therefore, the values of the column of independent system variables have
limitations that can be written via the system (15) in the form of a system of inequalities:





λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 > s2 + s3 + s4 − d1,
λ2 + λ3 + λ7 6 d2,
λ4 + λ6 + λ8 6 d3,
λ1 + λ5 + λ9 6 d4,
λ1 + λ2 + λ6 6 s2,
λ3 + λ4 + λ5 6 s3,
λ7 + λ8 + λ9 6 s4,
λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9 > 0.

(16)

As can be seen from the system of inequalities (16), the problem of determining flows in a telecom-
munications network formed of n nodes is reduced to a set of problems of dimension n − 1 with an
additional condition imposed on the sum of all flows in the system. Equality of total input and output
flows in a problem with reduced dimension also applies, otherwise the set of solutions will be empty.
Therefore, after recursion, the formal record of the problem looks like (17):




λ1 + λ2 + λ6 = is2 , where is2 ∈ [0, s2],
λ3 + λ4 + λ5 = is3 , where is3 ∈ [0, s3],
λ7 + λ8 + λ9 = is4 , where is4 ∈ [0, s4],
λ2 + λ3 + λ7 = id2 , where id2 ∈ [0, d2],
λ4 + λ6 + λ8 = id3 , where id3 ∈ [0, d3],
λ1 + λ5 + λ9 = id4 , where id4 ∈ [0, d4],
is2 + is3 + is4 = id2 + id3 + id4 ,∑9

i=1 λi > s2 + s3 + s4 − d1.

(17)

3.3. Algorithm development and software implementation

Thus, the found regularities make it possible to determine the set of solutions of the problem by
reducing it to a problem of smaller dimension, i.e. by applying the recursion method. The problem
is reduced to solving a set of problems smaller by one dimension with the values of input and output
flow in each node, which are given by integers from the intervals. The lower limits of these intervals
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are the smallest possible flows values, i.e. zero, and the largest value coincides with one of the values
of the initial problem, as can be seen from (16).

Software implementation of the algorithm is to develop modules that define the set of solutions
of the problem for some fixed dimension. Each such module has a recursive call to another module,
with reduced by one dimension, which occurs in the loop for the flow limit values specified by integers
from the range of values. Thus, the 2-dimension problem is the basic problem for matrices of other
dimensions. Therefore, we write the equation for its solution.

The initial system of equations of the basic problem of dimension 2× 2 is:



x1 + x2 = s1,
x3 + x4 = s2,
x1 + x3 = d1,
x2 + x4 = d2.

(18)

The general solution of the system (17) is as (18):

‖X‖ =




d1 − s2
d2
s2
0


+ λ




1
−1
−1
1


 . (19)

This solution must be nonnegative and therefore a system of inequalities holds:



d1 − s2 + λ > 0,
d2 − λ > 0,
s2 − λ > 0,
λ > 0.

(20)

Therefore, we can determine the set of values of the number λ, which is an interval with minimum and
maximum values defined as follows: 



λ ∈ [Lmin, Lmax],
Lmin = max(0, s2 − d1),
Lmax = min(d2, s2).

(21)

The algorithm is tested in the Skylab environment. The following is the code of the program for the
problem of dimension 3, in which the recursive call of the program for the problem of dimension 2 is
used (which is denoted as slv2(sc, dc)).

Algorithm 1 The solving of the problem of dimension 2

Require: s, d;
Ensure: rez = slv3(s, d);
1: initialization of the output: rez = zeros(1, 9);
2: if (s(1) + s(2) + s(3) == d(1) + d(2) + d(3)) then
3: for i1 = 0, . . . , s(2)
4: for i2 = 0, . . . , s(3)
5: for i3 = 0, . . . , d(2)
6: calculation of the condition for the problem with dimension 2× 2: i4 = i1 + i2 − i3;
7: if (i4 > −1) + (i4 < min(d(3), s(3)) + 1) then
8: initialization of the input for recursive calling and call of module for solving reduced problem: sc =

[i1, i2]; dc = [i3; i4];L = slv2(sc, dc; t = size(L, 1);
9: for i = 1, . . . , t

10: solutions of the reduced problem: l1 = L(i, 2); l2 = L(i, 1); l3 = L(i, 3); l4 = L(i, 4);
11: if d(1)− (s(2) + s(3)) + l1 + l2 + l3 + l4 > −1 then
12: solution of the initial problem for a given solution of reduced problem (counted by variable nc):

x1 = d(1) − (s(2) + s(3)) + l1 + l2 + l3 + l4; x2 = d(2) − l2 − l3; x3 = d(3) − l1 − l4; x4 =
s(2) − l1 − l2;x5 = l2;x6 = l1; x7 = s(3) − l3 − l4;x8 = l3;x9 = lx; rez(nc, 1) = x1; rez(nc, 2) =
x2; rez(nc, 3) = x3; rez(nc, 4) = x4; rez(nc, 5) = x5; rez(nc, 6) = x6; rez(nc, 7) = x8; rez(nc, 8) =
x8; rez(nc, 9) = x9;nc = nc+ 1;

13: else
14: rezc(1, 1) = −1;
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4. Extrapolation of results on a network with large dimensions and conclusions

The developed algorithm is used to determine the total number of solutions depending on the total
value of information flows for network with dimension n:

S =

n∑

i=1

si =

n∑

i=1

di.

For two nodes the problem is not very complicated and we determine the total number of solutions
for the total flow in 0.5hour. For two nodes, this is almost a second-order polynomial function. An
analytical approximation of dependence of the total number of integer solutions N on the overall flow
in network is as follows:

N2(S) = 10915S2 + 161010S + 413385. (22)
Due to the huge computational complexity of this problem, the value of S is limited for other two node
numbers. So, calculation time is restricted by two hours, and for three nodes date are obtained for the
total flow up to 20, for four nodes the total flow value is 10.

Results of calculations are shown Table 1 and Table 2 for networks with 3 and 4 nodes respectively.

Table 1. Results of calculations for 3 nodes.

The value of total traffic S The total number of solutions
0 1
1 9
2 43
3 150
4 432
5 1088
6 2478
7 5213
8 10280
9 19207
10 34279
11 58811
12 97491
13 156800
14 245524
15 375366
16 561675
17 824301
18 1188595
19 1686564
20 2358202

Table 2. Results of calculations for 4 nodes.

The value of total traffic S The total number of solutions
0 1
1 16
2 126
3 697
4 3095
5 11761
6 39629
7 121096
8 340900
9 894601
10 2208787
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Data shown in Table 1 and Table 2 allow to obtain extrapolation expression for estimation the total
number of solutions for bigger flows in network. Extrapolation formulas for total number of solutions
are in the following form:

N3(S) = 9.8894 e0.6553S , (23)

N4(S) = 1.3022 e0.394S . (24)

Based on results of recursive model one can conclude that there is almost exponential dependence on
the overall flow in network both for three and four nodes.

5. Conclusions

Reducing the problem definition of a problem solution for a network with more than 2 nodes to smaller
problems is a successful solution to the problem in terms of reducing the analytical complexity of the
problem. Finally, you only need to find the whole set of solutions for a two-node network. However,
the use of recursion leads to a significant increase in the time to solve a problem that uses recursion,
even for a network consisting of only three nodes. Despite the small values of the flows, the obtained
results enable to cluster the paths in the network according to the possible values of the flows, and the
larger the limit value of the total flow, the finer this clustering is. The value of the number of nodes is
also small, but still allows you to analyze the processes of traffic in the nodes closest to the specified
node.
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Дослiдження iнформацiйних потокiв у мережi

Полiтанський Р. Л.1, Зарицька О. Л.2, Вiстак М. В.3, Власенко В. В.1

1Чернiвецький нацiональний унiверситет iменi Юрiя Федьковича,
вул. Коцюбинського 2, 58012, Четнiвцi, Україна

2Нацiональний унiверситет Львiвська полiтехнiка,
вул. Бандери 12, 79013, Львiв, Україна

3Львiвський нацiональний медичний унiверситет iменi Данила Галицького,
вул. Пекарська 69, 79010, Львiв, Україна

Розроблено та дослiджено алгоритм визначення iнформацiйних потокiв у мережi за
обмежень на значення вхiдних та вихiдних потокiв у кожному вузлi системи. Алго-
ритм ґрунтується на гауссiвському методi розв’язування систем лiнiйних рiвнянь з
рангом еквiвалентної матрицi системи, що нижче за кiлькiсть невiдомих змiнних у
системi. На основi цього алгоритму розраховуються ємностi наборiв цiлочисельних рi-
шень для мереж з 2 вузлами (iнтенсивнiсть потоку до 200), 3 вузлами (iнтенсивнiсть
потоку до 20) та 4 вузлами (iнтенсивнiсть потоку до 10).

Ключовi слова: метод Гаусса, множина розв’язкiв системи лiнiйних рiвнянь,
транспортна мережа.
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