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In this article, we investigate the problem of finite-time passivity for the complex-valued
neural networks (CVNNs) with multiple time-varying delays. To begin, many definitions
relevant to the finite-time passivity of CVNNs are provided; then the suitable control
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1. Introduction

Many researchers have been interested in studying the dynamic behavior of nonlinear systems in recent
decades. The study of neural networks (NNs) has gotten a lot of attention recently because of their
wide range of possible applications in optimization [1], pattern recognition [2], image processing [3],
and other fields. Many publications, such as dissipativity [4], stability [5–7], multi stability [8], state
estimation [9], and so on, provide the study results. Complex valued neural networks (CVNNs) are an
extension of RVNNs that can be used for solving such problems. CVNNs are more challenging because
they have complex-valued states, complex-valued connection weights, and complex-valued activation
functions. CVNNs can be used to solve a wide range of physical problems, including electromagnetic
waves, ultrasonic waves, quantum waves, light, and so on, according to their complex number property.
Furthermore, CVNNs provide for the solution of problems that simple RVNNs cannot. Thus the
stability analysis of CVNNs has become an energetic field of research. In this field, some exciting
results have recently been proposed [10–13]. The activation function is very important in the complex
domain. In real-valued neural networks, the activation functions are usually smooth and bounded.
According to Liouville’s theorem [14], every bounded entire function in the complex plane must be a
constant function. This is clearly inappropriate. In other words, CVNN activation functions cannot be
both bounded and analytic. As a result, activation functions are the main challenge for complex-valued
neural networks. Due to the finite switching speed of amplifiers, time-delay plays an important role
in the electronic circuit implementation of neural networks. Time-delay is very often a main source of
oscillatory, resulting in system instability and lack of performance. As a result, research into systems
with time-varying delays has gotten a lot of attention. Many neural network applications rely on the
network’s stability properties [15, 16]. Thus, many academics have developed an interest in studying
the dynamical characteristics of time-delayed CVNNs [17–20]. The passivity theory, which is derived
from circuit theory, is useful in analysing the stability of dynamical systems [21–23]. The main idea of
passivity theory is that the passive properties of the system can keep the system internally stable. The
passive control problem is another name for the passification problem. The goal of the passive control
problem is to create a controller that results in a passive closed-loop system. Passivity and passification
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problems have been a hot topic of research in recent decades due to this fact. Many researches focused
on the passivity problem of delayed neural networks due to the existence of time-delay.

Based on the functionality of Lyapunov–Krasovskii there were a number of results for passivity
analysis of neural networks in the integer order (see the [24–28] and their references). Based on the
master-slave idea, differential inclusions theory, and Lyapunov–Krasovskii stability theory, the topic
of mixed H and passivity based synchronization requirements for memristor-based recurrent neural
networks with time-varying delays was recently studied in [29]. It is worth noting that all of the above
results were developed in the context of Lyapunov stability. In some practical processes, however, the
major focus may be on the behavior of dynamical systems over a finite time interval. The passivity
and passification of stochastic Takagi–Sugeno fuzzy systems with heterogeneous time-varying delays
were investigated in [30]. In [31], the authors investigate the passivity and passification of time-
delay systems. The authors of [32] used the Lyapunov–Krasovskii functional approach and weighting
matrices to study passivity analysis of stochastic time-delay neural networks. In addition, the subject
of passivity analysis for various neural networks has received a lot of attention [33–42]. To the best
of authors knowledge, so far, no result on the finite-time passivity for complex valued neural network
systems with time varying delay has been reported. This is the motivating factor behind our current
investigation. Motivated by the earlier discussions, the contribution of this study is to investigate
the passivity of complex-valued neural networks with time-varying delays. Using Schur complement
lemma, some new passivity conditions are derived in the form LMIs by employing Lyapunov–Krasovkii
functional method. The suitable controller has been designed, which ensures the given system to be
passive. Finally numerical examples are given to illustrate the effectiveness of our proposed results. The
rest of this paper is organized as follows: Problem description and preliminaries are given in section 2.
The definition can be regarded as an extension of definition for integer order neural network system to
complex system. In section 3, some new passivity conditions are derived. Numerical examples is given
in section 4. Finally conclusion is presented in section 5.

2. Problem description and preliminaries

In this paper, we consider the n-dimensional CVNNs with multiple time-varying delays which can be
described by

ż(t) = −Cz(t) +Af(z(t)) +Bf(z(t− d(t))) + Eg(z(t − τ(t))) + w(t) + u(t), (1)

where z(t) = (z1(t), z2(t), . . . , zn(t))
T is the state vector; C = diag {c1, c2, . . . , cn} is the

positive diagonal matrix; A = [apq]n×n, B = [bpq]n×n and E = [epq]n×n are respec-
tively the feedback connection weight matrix and the delayed feedback connection weight ma-
trices; f(z(t)) = (f1 (z1(t)) , f2 (z2(t)) , . . . , fn (zn(t)))

T is the activation function without delay,
f(z(t − d(t))) = (f1 (z1(t− d(t))) , f2 (z2(t− d(t))) , . . . , fn (zn(t− d(t))))T and g(z(t − τ(t))) =
(g1 (z1(t− τ(t))) , g2 (z2(t− τ(t))) , . . . , gn (zn(t− τ(t))))T are the activation functions with delays;
the rest of the paper f(z(t − d(t))) and g(z(t − τ(t))) can be represented by f(zd) and g(zτ );
w(t) = [w1(t), w2(t), . . . , wn(t)]

T is the external input vector; u(t) = [u1(t), u2(t), . . . , un(t)]
T ∈ C

n

is represents the control input to be defined later; z(φ) = (ψ1(φ), ψ2(φ), . . . , ψn(φ))
T , φ ∈ [−τ, 0], ψ ∈

C([−τ, 0],C) is the initial state vector of (1).
Throughout this paper, the output vector s(t) = (s1(t), s2(t), . . . , sn(t))

T ∈ C
n of the network (1)

is given as follows:

s(t) = Lz(t) +Hw(t), (2)

where L,H ∈ C
n×n are complex-valued constant matrices.
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Assumption 1. For any two constants τ and d, then the continuous time-varying delays τ(t) and
d(t) are satisfies

0 6 τ(t) 6 τ, 0 6 d(t) 6 d.

Assumption 2. For p = 1, 2, . . . , n and z(t) = x(t)+ iy(t), the activation functions fp(zp(t)), fp(zd)
and gp(zτ ) can be separated into its real and imaginary parts as

fp(zp(t)) = fRp (x, y)+if
I
p (x, y), fp(zd) = fRp (xd, yd)+if

I
p (xd, yd), gp(zτ ) = gRp (xτ , yτ )+ig

I
p(uτ , vτ ),

where fRp (x, y), f
I
p (x, y), f

R
p (xd, yd), f

I
p (xd, yd), g

R
p (xτ , yτ ), g

I
p(xτ , yτ ): R

2 → R.

By using Assumptions 2, the CVNNs (1) can be separated into its real and imaginary parts as
follows:




ẋ(t) = −Cx(t) +ARfR(x, y) −AIf I(x, y) +BRfR(xd, yd)−BIf I(xd, yd) + ERgR(xτ , yτ )
−EIgI(xτ , yτ ) + wR(t) + uR(t),

ẏ(t) = −Cy(t) +ARf I(x, y) +AIfR(x, y) +BRf I(xd, yd) +BIfR(xd, yd) + ERgI(xτ , yτ )
+EIgR(xτ , yτ ) + wI(t) + uI(t),

(3)

and the output vector (2) can be written in the following manner:

{
sR(t) = LRx(t) +HRwR(t)− LIy(t)−HIwI(t),
sI(t) = LRy(t) +HRwI(t) + LIx(t) +HIwR(t),

(4)

where AR, AI , BR, BI , ER, EI , LR, LI , HR, HI are the real and imaginary parts of the constant
coefficient matrices A, B, E, L, H respectively; wR(t), wI(t), uR(t), uI(t) are real and imaginary parts
of w(t) and u(t).

Assumption 3. The activation function fq(z(t)) can be represented as follows by dividing it into its
real and imaginary parts: fq(z(t)) = fRq (x, y) + if Iq (x, y), where fRq (x, y), f

I
q (x, y): R

2 → R.

1. The partial derivatives of activation function fq(·, ·) with respect to x, y: ∂fRq /∂x, ∂f
R
q /∂y, ∂f

I
q /∂x,

∂f Iq /∂y exist and are continuous.
2. The partial derivatives ∂fRq /∂x, ∂f

R
q /∂y, ∂f

I
q /∂x, ∂

I
q /∂y are bounded, i.e, there exist positive

constants λRRq , λRIq , λIRq , λIIq such that

|∂fRq /∂x| 6 λRRq , |∂fRq /∂y| 6 λRIq , |∂f Iq /∂x| 6 λIRq , |∂f Iq /∂y| 6 λIIq .

Then, we can write

|fRq (x, y)| 6 λRRq |x|+ λRIq |y|, |f Iq (x, y)| 6 λIRq |x|+ λIIq |y|.

Similarly, one can obtain

|fRq (xd, yd)| 6 µRRq |xd|+ µRIq |yd|, |f Iq (xd, yd)| 6 µIRq |xd|+ µIIq |yd|,

where µRRq , µRIq , µIRq , µIIq are positive constants.

Lemma 1 (Ref. [43] (Schur Complement)). For any given matrix,

Θ̂ =

(
Θ11 Θ12

Θ21 Θ22

)
> 0,
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where Θ11 = ΘT
11, Θ22 = ΘT

22 is equivalent to any of the conditions listed bellow:

(i) Θ22 > 0, Θ11 −ΘT
12Θ

−1
22 Θ12 > 0,

(ii) Θ11 > 0, Θ22 −Θ12Θ
−1
11 Θ

T
12 > 0.

Lemma 2 (Ref. [44]). If ̺1, ̺2, . . . , ̺n > 0, 0 < α2 < α1 are real numbers, then

( n∑

p=1

̺α1
p

) 1
α1

6

( n∑

p=1

̺α2
1

) 1
α2

.

Lemma 3 (Ref. [45]). For all χ1, χ2 ∈ R
n, there exist a real number δ > 0 and a symmetric matrix

H ∈ R
n×n such that 2χT1 χ2 6 δχT1Hχ1 + δ−1χT2Hχ2.

Definition 1 (Ref. [46]). With respect to CVNNs (1), it is said that CVNNs (1) is finite-time
passivity if there exists a positive definite function V (t) such that

wT (t)s(t) > V̇ (t) + ξ(V (t))ρ

for the external input vector w(t) and output vector s(t), where ρ ∈ (0, 1) and ξ > 0.

Definition 2 (Ref. [46]). With respect to CVNNs (1), it is said that CVNNs (1) is finite-time
output strict passivity if there exists a positive definite function V (t) such that

wT (t)s(t)− η1sT (t)s(t) > V̇ (t) + ξ(V (t))ρ

for external input vector w(t) and output vector s(t), where ρ ∈ (0, 1), η1 > 0 and ξ > 0.

Definition 3 (Ref. [46]). With respect to CVNNs (1), it is said that CVNNs (1) is finite-time input
strict passivity if there exists a positive definite function V (t) such that

wT (t)s(t)− ζwT (t)w(t) > V̇ (t) + ξ(V (t))ρ

for the external input vector w(t) and output vector s(t), where ρ ∈ (0, 1), ζ > 0 and ξ > 0.

3. Main results

In this section, we are going to design the necessary control mechanism that will ensure the CVNN’s
passive condition in finite-time. The designed controller is written as follows:

uR(t) =−KRx(t)−BRµRRsgn(x(t))|xd| −BRµRIsgn(x(t))|yd|+BIµIRsgn(x(t))|xd|
+BIµIIsgn(x(t))|yd| − ERρRRsgn(x(t))|xτ | − ERρRIsgn(x(t))|yτ |+ EIρIRsgn(x(t))|xτ |
+ EIρIIsgn(x(t))|yτ | − k1|x(t)|αsgn(x(t)), (5)

uI(t) =−KIy(t)−BRµIRsgn(y(t))|xd| −BRµIIsgn(y(t))|yd| −BIµRRsgn(y(t))|xd|
−BIµRIsgn(y(t))|yd| − ERρIRsgn(y(t))|xτ | − ERρIIsgn(y(t))|yτ | − EIρRRsgn(y(t))|xτ |
− EIρRIsgn(y(t))|yτ | − k2|y(t)|αsgn(y(t)), (6)

where KR, KI are control gain matrices, k1, k2 > 0 are positive constants and 0 < α < 1.

Theorem 1. Suppose that the Assumptions 2–3 hold. CVNNs (1) is finite-time passive under the
designed controller (5) and (6), if there exist positive symmetry matrices P , P1, Q1, Q2, Q3, Q4 and
nonzero constants k1, k2, λ1, λ2, λ3, λ4 such that the following LMI holds:

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 842–854 (2021)



846 Jayanthi N., Santhakumari R.

Λ =




Ξ1 Ξ3 2P 0
⋆ Ξ2 0 2P1

⋆ ⋆ −HR HI

⋆ ⋆ ⋆ −HR


 < 0, (7)

where

Ξ1 = (−PC − CTP − 2KRP ) + λ1PA
RQ1A

RT
P + λ−1

1 µRR
T
Q−1

1 µRR − λ2PAIQ2A
ITP

+ λ−1
2 µIR

T
Q−1

2 µIR + λ−1
4 µRR

T
Q−1

4 µRR,

Ξ2 = (−P1C −CTP1 − 2KIP1) + λ3P1A
RQ3A

RT
P1 + λ−1

1 µRI
T
Q−1

1 µRI + λ−1
2 µII

T
Q−1

2 µII

+ λ−1
3 µII

T
Q−1

3 µII + λ4P1A
IQ4A

ITP1 + λ−1
4 µRI

T
Q−1

4 µRI ,

Ξ3 = λ−1
1 µRR

T
Q−1

1 µRI + λ−1
2 µIR

T
Q−1

2 µII + λ−1
3 µIR

T
Q−1

3 µII + λ−1
4 µRR

T
Q−1

4 µRI .

Proof. Let us consider the following Lyapunov functional

V (t) = xT (t)Px(t) + yT (t)P1y(t). (8)

Calculating the time derivative of (8) about the solutions of (3), we get

V̇ (t) = 2xT (t)Pẋ(t) + 2yT (t)P1ẏ(t)

= 2xT (t)P
[
−Cx(t) +ARfR(x, y)−AIf I(x, y) +BRfR(xd, yd)−BIf I(xd, yd) + ERgR(xτ , yτ )

−EIgI(xτ , yτ ) + wR(t) + uR(t)
]
+ 2yT (t)P1

[
−Cy(t) +ARf I(x, y) +AIfR(x, y)

+BRf I(xd, yd) +BIfR(xd, yd) + ERgI(xτ , yτ ) + EIgR(xτ , yτ ) + wI(t) + uI(t)
]
,

= xT (t)
(
−PC − CTP

)
x(t) + 2xT (t)PARfR(x, y) − 2xT (t)PAIf I(x, y) + 2xT (t)

(
PBRfR(xd, yd)

−BIf I(xd, yd) + ERgR(xτ , yτ )− EIgI(xτ , yτ )
)
+ 2xT (t)PwR(t) + 2xT (t)PuR(t)

+ yT (t)
(
−P1C − CTP1

)
y(t) + 2yT (t)P1A

Rf I(x, y) + 2yT (t)P1A
IfR(x, y)

+ 2yT (t)P1

(
BRf I(xd, yd) +BIfR(xd, yd) + ERgI(xτ , yτ ) + EIgR(xτ , yτ )

)

+ 2yT (t)P1w
I(t) + 2yT (t)P1u

I(t). (9)

According to Lemma1–3 and Assumption 3, it can be deduced that

V̇ (t) 6 xT (t)
(
−PC − CTP

)
x(t) + λ1x

T (t)PARQ1A
RT
Px(t) + λ−1

1 fR
T
(x, y)Q−1

1 fR(x, y)

− λ2xT (t)PAIQ2A
ITPx(t) + λ−1

2 f I
T
(x, y)Q−1

2 f I(x, y) + 2PBR|xT (t)|[µRR|xd|+ µRI |yd|]
− 2PBI |xT (t)|

[
µIR|xd|+ µII |yd|

]
+ 2PER|xT (t)|

[
ρRR|xτ |+ µRI |yτ |

]

− 2PEI |xT (t)|
[
ρIR|xτ |+ µII |yτ |

]
+ 2xT (t)PwR(t) + 2xT (t)PuR(t)

+ yT (t)
(
−P1C − CTP1

)
y(t) + λ3y

T (t)P1A
RQ3A

RT
P1y(t) + λ−1

3 f I
T
(x, y)Q−1

3 f I(x, y)

− λ4yT (t)P1A
IQ4A

ITP1y(t) + λ−1
4 fR

T
(x, y)Q−1

4 fR(x, y) + 2P1B
R|yT (t)|

[
µIR|xd|+ µII |yd|

]

+ 2P1B
I |yT (t)|

[
µRR|xd|+ µRI |yd|

]
+ 2P1E

R|yT (t)|
[
ρIR|xτ |+ µII |yτ |

]

+ 2P1E
I |yT (t)|

[
ρRR|xτ |+ ρRI |yτ |

]
+ 2yT (t)P1w

I(t) + 2yT (t)P1u
I(t). (10)

Then according to (5) and (6), it is obvious that

V̇ (t) 6 xT (t)
[(
−PC − CTP − 2KRP

)
+ λ1PA

RQ1A
RT
P + λ−1

1 µRR
T
Q−1

1 µRR − λ2PAIQ2A
ITP

+λ−1
2 µIR

T
Q−1

2 µIR + λ−1
3 µIR

T
Q−1

3 µIR + λ−1
4 µRR

T
Q−1

4 µRR
]
x(t)

+ yT (t)
[(
−P1C − CTP1 − 2KIP1

)
+ λ3P1A

RQ3A
RT
P1 + λ−1

1 µRI
T
Q−1

1 µRI
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+λ−1
2 µII

T
Q−1

2 µII + λ−1
3 µII

T
Q−1

3 µII + λ4P1A
IQ4A

ITP1 + λ−1
4 µRI

T
Q−1

4 µRI
]
y(t)

+ xT (t)
[
λ−1
1 µRR

T
Q−1

1 µRI + λ−1
2 µIR

T
Q−1

2 µII + λ−1
3 µIR

T
Q−1

3 µII + λ−1
4 µRR

T
Q−1

4 µRI
]
y(t)

+ yT (t)
[
λ−1
1 µRI

T
Q−1

1 µRR + λ−1
2 µII

T
Q−1

2 µIR + λ−1
3 µII

T
Q−1

3 µIR + λ−1
4 µRI

T
Q−1

4 µRR
]
x(t)

+ xT (t)[2P ]wR(t) + yT (t)[2P1]w
I(t)− 2k1x

T (t)P sgn(x(t))|x(t)|α

− 2k2y
T (t)P1sgn(y(t))|y(t)|α. (11)

Moreover, it has

−xT (t)P sgn(x(t))|x(t)|α 6 −λmin(P )

[( n∑

p=1

|xp(t)|
)α+1

]
,

−yT (t)P1sgn(y(t))|y(t)|α 6 −λmin(P1)

[( n∑

p=1

|yp(t)|
)α+1

]
.

From Lemma2, we can get:

−
( n∑

p=1

|xp(t)|
)α+1

6 −
[( n∑

p=1

|xp(t)|2
)]α+1

2

, −
( n∑

p=1

|yp(t)|
)α+1

6 −
[( n∑

p=1

|yp(t)|2
)]α+1

2

. (12)

Therefore,
V̇ (t)− w̄T (t)S̄(t) 6 V̇ (t)− w̄T (t)L̄Z̄(t)− w̄T (t)H̄w̄(t), (13)

where

w̄(t) =

[
wR(t)
wI(t)

]
, S̄(t) =

[
sR(t)
sI(t)

]
, Z̄(t) =

[
x(t)
y(t)

]
, L̄ =

[
LR −LI
LI LR

]
, H̄ =

[
HR −HI

HI HR

]
.

From (13), which implies that

V̇ (t)− w̄T (t)S̄(t) 6 xT (t)Ξ1x(t) + yT (t)Ξ2y(t) + xT (t)Ξ3y(t) + yT (t)ΞT3 x(t) + xT (t)[2P ]wR(t)

+ yT (t)[2P1]w
I(t) + wR

T
(t)LRx(t)− wRT

(t)LIy(t) + wI
T
(t)LIx(t)

+ wI
T
(t)LRy(t) + wR

T
(t)HRwR(t) + wI

T
(t)HIwR(t)− wRT

(t)HIwI

+ wI
T
(t)HRwI − 2k1λmin(P )

[( n∑

i=1

|xi(t)|2
)]α+1

2

− 2k2λmin(P1)

[( n∑

i=1

|yi(t)|2
)]α+1

2

6 ηTΛη − 2k1λmin(P )

[( n∑

i=1

|xi(t)|2
)]α+1

2

− 2k2λmin(P1)

[( n∑

i=1

|yi(t)|2
)]α+1

2

6 −2k1λmin(P )
[
λ−1
max(P )V

R(t)
]α+1

2 − 2k2λmin(P1)
[
λ−1
max(P1)V

I(t)
]α+1

2 , (14)

then it yields

w̄T (t)S̄(t) > V̇ (t) + max

[
2k1λmin(P )λ

−α+1
2

max (P ), 2k2λmin(P1)λ
−α+1

2
max (P1)

] (
V R(t)

)−α+1
2 +

(
V I(t)

)−α+1
2

> V̇ (t) + max

[
2k1λmin(P )λ

−α+1
2

max (P ), 2k2λmin(P1)λ
−α+1

2
max (P1)

]
(V (t))

−α+1
2 , (15)

where η =
(
x(t) y(t) wR(t) wI(t)

)T
.

Therefore, from Definition 1, the CVNNs (1) is finite-time passive under the control inputs (5) and
(6). The proof is completed here. �
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Theorem 2. Suppose that the Assumptions 1–3 hold. CVNNs (1) is finite-time output strictly pas-
sive under the designed controller (5)–(6), if there exist positive symmetry matrices P , P1, Q1, Q2,
Q3, Q4 and nonzero constants k1, k2, λ1, λ2, λ3, λ4, ζ1 such that the following LMI holds:

Λ =




Ξ11 Ξ12 Ξ13 Ξ14

Ξ21 Ξ22 Ξ23 Ξ24

Ξ31 Ξ32 Ξ33 Ξ34

Ξ41 Ξ42 Ξ43 Ξ44


 < 0, (16)

where

Ξ11 =
(
−PC −CTP

)
+ λ1PA

RQ1A
RT
P + λ−1

1 µRR
T
Q−1

1 µRR − λ2PAIQ2A
ITP + λ−1

2 µIR
T
Q−1

2 µIR

+ λ−1
4 µRR

T
Q−1

4 µRR + ζ1(L
RT
LR + LI

T
LI),

Ξ22 =
(
−P1C − CTP1

)
+ λ3P1A

RQ3A
RT
P1 + λ−1

1 µRI
T
Q−1

1 µRI + λ−1
2 µII

T
Q−1

2 µII

+ λ−1
3 µII

T
Q−1

3 µII + λ4P1A
IQ4A

ITP1 + λ−1
4 µRI

T
Q−1

4 µRI + ζ1(L
RT
LR + LI

T
LI),

Ξ12 = λ−1
1 µRR

T
Q−1

1 µRI + λ−1
2 µIR

T
Q−1

2 µII + λ−1
3 µIR

T
Q−1

3 µII + λ−1
4 µRR

T
Q−1

4 µRI

− ζ1
(
LR

T
LI + LI

T
LR
)
,

Ξ21 = λ−1
1 µRI

T
Q−1

1 µRR + λ−1
2 µII

T
Q−1

2 µIR + λ−1
3 µII

T
Q−1

3 µIR + λ−1
4 µRI

T
Q−1

4 µRR

− ζ1
(
LI

T
LR + LR

T
LI
)
,

Ξ13 = 2P + ζ1(L
RT
HR + LI

T
HI), Ξ14 = ζ1(−LR

T
wI + LI

T
wI), Ξ23 = ζ1(−LI

T
HR + LR

T
HI),

Ξ24 = 2P1 + ζ1(L
ITHI + LR

T
HR), Ξ31 = ζ1(−LR +HRT

LR +HITLI),

Ξ32 = ζ1(L
I −HRT

LI +HITLR), Ξ33 = ζ1(H
R +HRT

HR +HITHI),

Ξ34 = ζ1(H
I −HRT

HI +HITHR), Ξ41 = ζ1(−LI −HITLR +HRT
LI),

Ξ42 = ζ1(−LR +HITLI +HRT
LR), Ξ43 = ζ1(−HI −HITHR +HRT

HI),

Ξ44 = ζ1(−HR +HITHI +HRT
HR).

Proof. In this proof, we can consider the same Lyapunov function as in Theorem4. Then, one has

V̇ (t)− w̄T (t)S̄(t) + ζ1S̄
T (t)S̄(t) 6 V̇ (t)− w̄T (t)L̄Z̄(t)− w̄T (t)H̄w̄(t) + +ζ1S̄

T (t)S̄(t).

That is to say,

V̇ (t)− w̄T (t)S̄(t) + ζ1S̄
T (t)S̄(t) 6 V̇ (t)− w̄T (t)L̄Z̄(t)− w̄T (t)H̄w̄(t) + η1S̄

T (t)S̄(t),

6 xT (t)Ξ11x(t) + yT (t)Ξ222y(t) + xT (t)Ξ12y(t) + yT (t)Ξ21x(t) + xT (t)Ξ13w
R(t)

+ yT (t)Ξ24w
I(t) + xT (t)Ξ14w

I(t) + wR
T
(t)Ξ31x(t) + wR

T
(t)Ξ33w

R(t)

+ wR
T
(t)Ξ32y(t) + wR

T
(t)Ξ34w

I(t) + yT (t)Ξ23w
R(t) + wI

T
(t)Ξ41x(t)

+ wI
T
(t)Ξ43w

R(t) + wI
T
(t)Ξ42y(t) + wI

T
(t)Ξ44w

I(t)

− 2k1λmin(P )

[( n∑

i=1

|xi(t)|2
)]α+1

2

− 2k2λmin(P1)

[( n∑

i=1

|yi(t)|2
)]α+1

2

6 ηTΛη − 2k1λmin(P )

[( n∑

i=1

|xi(t)|2
)]α+1

2

− 2k2λmin(P1)

[( n∑

i=1

|yi(t)|2
)]α+1

2

6 −2k1λmin(P )
[
λ−1
max(P )V

R(t)
]α+1

2 − 2k2λmin(P1)
[
λ−1
max(P1)V

I(t)
]α+1

2 , (17)

then it yields

w̄T (t)S̄(t)− ζ1S̄T (t)S̄(t) > V̇ (t) + max
[
2k1λmin(P )λ

−α+1
2

max (P ), 2k2λmin(P1)λ
−α+1

2
max (P1)

](
V R(t)

)−α+1
2

+
(
V I(t)

)α+1
2 > V̇ (t) + max

[
2k1λmin(P )λ

−α+1
2

max (P ), 2k2λmin(P1)λ
−α+1

2
max (P1)

]
(V (t))

α+1
2 . (18)
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Therefore, from Definition 2 the CVNNs (1) is finite-time output strictly passive under the control
inputs (5)) and (6). The proof is completed here. �

Corollary 1. Suppose that the Assumptions 1–3 hold. CVNNs (1) is finite-time input strictly passive
under the designed controller (5))–(6), if there exist positive symmetry matrices P , P1, Q1, Q2, Q3,
Q4 and nonzero constants k1, k2, λ1, λ2, λ3, λ4, ζ such that the following LMI holds:

Λ1 =




Ξ1 Ξ2 2P 0
Ξ4 Ξ2 0 2P1

−LR LI −HR + ζ HI

−LI −LR −HI −HR + ζ


 < 0. (19)

Proof. Let us construct the same Lyapunov function as Theorem4 and 5. Then,

V̇ (t)− w̄T (t)S̄(t) + ζw̄(t)w(t)

6 xT (t)Ξ1x(t) + yT (t)Ξ22y(t) + xT (t)Ξ3y(t) + yT (t)Ξ4x(t) + xT (t)[2P ]wR(t)

+ yT (t)[2P1]w
I(t)− wRT

(t)LRx(t)− wRT
(t)LIy(t) +wI

T
(t)LIx(t) +wI

T
(t)LRy(t)

+ wR
T
(t)(−HR + ζ)wR(t) + wI

T
(t)(−HI)wR(t) + wR

T
(t)HIwI + wI

T
(t)(−HR + ζ)wI

− 2k1λmin(P )

[( n∑

i=1

|xi(t)|2
)]α+1

2

− 2k2λmin(P1)

[( n∑

i=1

|yi(t)|2
)]α+1

2

,

6 ηTΛ1η − 2k1λmin(P )

[( n∑

i=1

|xi(t)|2
)]α+1

2

− 2k2λmin(P1)

[( n∑

i=1

|yi(t)|2
)]α+1

2

,

6 −2k1λmin(P )
[
λ−1
max(P )V

R(t)
]α+1

2 − 2k2λmin(P1)
[
λ−1
max(P1)V

I(t)
]α+1

2 . (20)

Then it can be conclude that

w̄T (t)S̄(t)− ζw̄(t)w(t) > V̇ (t)− 2k1λmin(P )
[
λ−1
max(P )V

R(t)
]α+1

2 − 2k2λmin(P1)
[
λ−1
max(P1)V

I(t)
]α+1

2 .

Therefore, from Definition 3 the CVNNs (1) is finite-time input strictly passive under the control
inputs (5) and (6). The proof is completed here. �

Remark 1. In [47], Zeng and Xiao have investigated the finite-time passivity of neural networks
with multiple time-varying delays. By employing inequalities technique and Lyapunov stability theory
to guarantee the finite-time passivity under the delayed control scheme. In [48], have considered the
passivity and stability analysis of complex valued neural networks with time varying delays, in which
the uncertainty of norm bounded parameters to achieve more realistic system behaviors. In this paper,
the delayed control scheme have been established, this can be used to ensure finite time passivity of
complex valued neural networks with multiple time varying delays, in this case, the activation functions
are not necessary to be restricted in order to be bounded.

Remark 2. It is worth noting that, if the CVNN (1) is finite-time passivity (strictly finite-time input
and output passive) with the control inputs (5) and (6), then according to [47] the CVNN (1) can be
realized stabilization in finite-time while the relevant requirements of Theorems 4, 5 or Corollary 1 are
satisfied.

Remark 3. If we choose w(t) = 0 the CVNN (1) can be written as

ż(t) = −Cz(t) +Af(z(t)) +Bf(z(t− d(t))) + Eg(z(t − τ(t))) + u(t), (21)

then according to Remark 3.5 and controllers (5) and (6), we can easily obtain that CVNN (21) is
finite-time stable.
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4. Numerical example

In this section, we present two simulation examples to demonstrate the utility of the theoretical con-
clusions.

Example 1. Consider the CVNN with multiple time-varying delays as follows:

ż(t) = −Cz(t) +Af(z(t)) +Bf(z(t− d(t))) + Eg(z(t − τ(t))) + w(t) + u(t), (22)

where

z(t) = (z1(t), z2(t))
T , C = diag {1, 1} ,

A =

(
1.2 + i 0.7 2.6 + i 1.5
6.2 − i 1.3 −1.3 + i 0.5

)
, B =

(
1.3 + i 0.4 −1.5 + i 0.8
0.3 + i 2.5 3.2 + i 1.7

)
,

E =

(
0.3 + i 0.4 0.5 + i 0.8
0.3 + i 0.5 0.2 + i 0.7

)
, w(t) =

(
5 sin(t) + i 2 sin(t)
2 cos(t) + i 3 cos(t)

)
.

The activation function is chosen as f(z(t)) = tanh(z(t)), f(zd) = tanh(z(t− d(t))), g(zτ ) = 0.5(|z(t−
τ(t))+1|−|z(t−τ(t))−1|). Moreover, the time-varying delays are taken as d(t) = 1−sin(t), τ(t) = et

et+1 ,
such that the Lipchitz conditions in Assumption 3 are satisfied with λRR = λRI = λIR = λII = 1,
µRR = µRI = µIR = µII = 1. In addition, choose the complex-valued output as

s(t) = Lx(t) +Hw(t), (23)

where

s(t) = (s1(t), s2(t))
T , L =

(
0.4 + 0.9i 0

0 0.3 − 0.3i

)
, H =

(
3.4 + 1.6i 0

0 −0.5− 3.8i

)
.

Then the real and imaginary parts of the control protocol is chosen as in (5) and (6). By using schur
complement Lemma1 and Matlab LMI control toolbox, it can be found that the LMI condition (7) is
satisfied with the following feasible solutions:

Q1 = 103
(

1.016 0
0 1.025

)
, Q2 =

(
507.46 0

0 508.46

)
, Q3 = 103

(
0.0169 0

0 1.0169

)
,

Q4 = 103
(

1.0269 0
0 1.169

)
, R1 =

(
−0.001 0

0 −0.201

)
, R2 =

(
0.002 0
0 0.03

)
,

R3 =

(
0.007 0
0 0.05

)
, R4 =

(
0.03 0
0 0.121

)
, P =

(
0.6 0
0 0.7102

)
,

P1 =

(
0.0644 −0.0058
−0.0032 0.0181

)
.

Therefore, the condition (7) is satisfied with the control inputs (5) and (6) which is shown in Fig. 8,
such that the CVNNs (1) is finite-time passive under the control gain matrices

KR =

(
2.91 0
0 23.78

)
, KI =

(
2.71 0
0 22.78

)
.

Meanwhile, it can be observe that the state trajectories of the CVNNs (1) and their outputs (2) are
depicted in Figs. 1–5, which shows that CVNNs (1) may be finite-time passive. Suppose that choose
WR(t) =W I(t) = 0, then it can be observe that the state trajectories of CVNNs (1) and its output (2)
is shown in Figs. 6–7, it can be conclude that the CVNNs (1) is finite-time stable under the control
inputs (5) and (6) which is shown in Figs. 8–9.
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Fig. 1. The state trajectories of the real part of z(t)
in (22).

Fig. 2. The state trajectories of the imaginary part of
z(t) in (22).
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Fig. 3. Phase plot of the real and imaginary part of
z2(t) in (22).

Fig. 4. Phase plot of the real and imaginary part of
z1(t) in (22).
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Fig. 5. Dynamics of the output vectors sR(t) and sI(t)
in (23).

Fig. 6. The state trajectories of the real and imaginary
parts of z(t) in (22) when w(t) = 0.
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Fig. 7. Dynamics of the output vectors sR(t) and sI(t)
of (23) when w(t) = 0.

Fig. 8. Dynamics of the control inpts uR(t) and uI(t)
in (5) and (6).
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Fig. 9. Dynamics of the control inputs uR(t) and uI(t) in (5) and (6) when w(t) = 0.

5. Conclusion

This research paper is focused on the finite-time passivity of CVNNs with multiple time-varying delays.
Moreover, different kinds of passivity concepts are proposed. In addition, we have designed the delayed
feedback control law to guarantee the finite-time passivity and also we can achieve the finite-time
stability for CVNNs without external disturbance. Meanwhile, the required conditions are provided
using the Lyapunov stability theory and the inequality approaches, which may be solved by using
Matlab Yalmip LMI toolbox. As a result, it is easy to select appropriate values for the established
control laws. Finally, a simulation example is provided to show the effectiveness and feasibility of the
derived results.
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Аналiз пасивностi нестацiонарних комплексно-змiнних нейронних
мереж з обмеженою часовою затримкою

Джаянтi Н.1, Сантакумарi Р.1,2

1Державний коледж мистецтв, Коїмбатур, Iндiя
2Коледж мистецтв та науки iменi Шрi Рамакрiшни, Коїмбатур, Iндiя

У статтi дослiджується проблема скiнченно-часової пасивностi для комплексно-
змiнних нейронних мереж (КЗНМ) з декiлькома нестацiонарними затримками. Спо-
чатку подано визначення, якi стосуються скiнченно-часових пасивностей КЗНМ; тодi
вiдповiднi керуючi входи реалiзованi з метою гарантiї скiнченно-часової пасивностi
класу КНЗМ. Одночасно деякi достатнi умови лiнiйних матричних нерiвностей виве-
денi з використанням теорiї нерiвностей та теорiї стiйкостi Ляпунова. Нарештi, подано
чисельний приклад для iлюстрацiї корисностi отриманих теоретичних результатiв.

Ключовi слова: пасивнiсть, скiнченно-часова пасивнiсть, комплексно-змiннi ней-
роннi мережi, нестацiонарнi затримки, функцiонал Ляпунова, лiнiйна матрична
нерiвнiсть.
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