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In this paper, we propose a new formulation of Nash games for solving a general multi-
objectives optimization problems. The objective of this approach is to split the optimiza-
tion variables, allowing us to determine numerically the strategies between two players.
The first player minimizes his function cost using the variables of the first table P and the
second player, using the second table Q. The original contribution of this work concerns
the construction of the two tables of allocations that lead to a Nash equilibrium on the
Pareto front. The second proposition of this paper is to find a Nash Equilibrium solution,
which coincides with the Kalai-Smorodinsky solution. Two algorithms that calculate P, Q
and their associated Nash equilibrium, by using some extension of the normal boundary
intersection approach, are tried out successfully. Then, we propose a search engine to look
for similar images of a given image based on multiple image representations using Color,
Texture and Shape Features.

Keywords: Nash Equilibrium, Kalai-Smorodinsky solution, fuzzy K-means, concurrent
optimization, color, Gist and SIFT descriptors.
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1. Introduction

There exists several approaches to solve problems of multi-objective optimization [1-3]. All these
methods, until now, deal with the multidisciplinary problem by considering a kind of implicit weighting
of all the disciplinary criteria. Another idea consists in assigning to each discipline its own criterion.
This multi-criterion problem can be solved by allowing to each criterion a weight [4] (a coefficient of
substitution); we get back to a mono criterion problem. This approach has a serious disadvantage. The
choice of the criteria weights is arbitrary and influences on the optimum reached. Another alternative
which can be used to solve the multicriterion problems consists to identify the Pareto front [5,6] which
represent the set of not-dominated strategies. This approach is generally expensive since it needs a
great number of evaluations of several criterions. The second difficulty is related to the choice of the
best point on the Pareto front. The game theory defines another framework to solve the problems
of multicriterion optimization. This theory was studied by J. Périaux [7,8| and by J. A. Désidéri [9]
as a powerful way to solve multidisciplinary optimization problems. B. Abou El Majd considered
in [10,11] an aerodynamic and structural optimization problem of a business-jet wingshape solved by
a Nash game and an adapted split of variables. In [12], A. Habbal et al. solved a multidisciplinary
optimization problem using a non-cooperative game (Nash game), where the strategy of the players is
naturally defined. Several multidisciplinary optimization problems arise in the form:

min fi(y),
) e 1(y) 0

min ,
nin f2(y)
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f1 and fy two convex function.

To solve the problem (M), there is a lot of methods, weighted method, NBI, . ...

In this paper, we propose to solve this problem by using the Nash equalibrium, since it is simple
to calculate numerically the solution of problem (M). The split of the variable y amounts to construct
two allocation tables P and Q in {0,1}", where P, + Q; =1, 1 <i < n. Let I15 ={1,...,n} be a set
of indices of cardinality n, I; is a subset of 15 of cardinal n — p, and I is its complement of cardinal
p, that is to say I1o = [; U I5.

Suppose that:

U= (yi), foriel,
{ V= (yl), for i € I. (2)

Define in this case the integer allocation table P of size n:
P=1Yiel,, =0, Vi € Iy,

so that
y=P-y+(Z—-P)-y=(U,V), where Z=(1,...,1), (3)

where “.” denote the Hadamard product (i.e. (P-y); = Py;, P-y € R"), and (U, V) is defined in (2).
(U*,V*) € R"P x RP is a Nash equilibrium if and only if:

[ilU, V) = m[}nfl(Uv V),
fo(U*, V) :m‘;nfg(U*,V). (4)

Let’s consider two positive convex functions f; and fs, and the Nash game (5) which is written in the
following form:
Find ygn solution of:
min fi(P -y +(Z = P)-ypN), (5)
min f2((Z — P) -y + P -yen),

where ypy = (U*, V*).
Consider the following fixed point problem (6):

Find ygn solution of:
m;nfl(P Y+ (Z—=P)-yen) + f2(Z—=P)-y+ P yen) = filyen) + fo(yen). (6)

The allocation table P is fixed, and then strategies of each player are the variables corresponding to
Pand Z— P,ie RP and R"P. If ygy is a solution of (6), then ygy is a Nash Equilibrium of (5), and
conversely. For the proof, it suffices, write the optimality condition of problem (5) and (6).

For each choice of P, we find a Nash equilibrium, in this case, we have at most 2" (where n is the
size of y) Nash equilibria. The natural question is, how to choose among all these equilibriums the
best Nash equilibrium. That means how to choose the best splitting of territories between the two
players that gives an equilibrium belonging to the Pareto front if it exists, which is not always the
case. Mixed allocations (the elements of P belonging to [0, 1]) are obtained by convexification of the
set of pure ones. We also drop the mutual exclusivity constraint, to allow both players to share the
same variable. In [13], Aboulaich et al. proposes two heuristic algorithms in order to split the territory.
These algorithms allow to compute successfully the Nash equilibrium, but the obtained equilibriums
are not on the Pareto front.

In this work we will test in the first part a splitting using P and Q = Z — P. In the second part
we propose two algorithms NS1 and NS2. The first algorithm calculates the two tables P, ¢ and
the Nash equilibrium associated. In such case, this equilibrium belongs to Pareto front, we use the
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strategy of Nash games coupled with an extension of the approach “Normal Boundary Intersection”
NBI (NBI-Nash).

In the second one, we present a new technique to split the optimization variable y, of such kind the
Nash equilibrium associated with this splitting is a solution of Kalai-Smorodinsky [14]. To calculate
the Kalai-Smorodinsky solution, it is enough to find the intersection between, the line joining the ideal
solution and the disagreement point D, and the Pareto front.

In the following we recall briefly the NBI approch [15] and the splitting algorithm proposed in [10,
13,16,17].

2. Preliminary result

Let F* denotes the shadow minimum, i.e., the vector with components f = fi(z}), and let ® denotes
the shifted pay-off matrix, where i'h column is F(z}) — F*. The Convex Hull of Individual Minima
or CHIM is defined as the set of points that are convex combinations of the columns of ®, i.e.,
{®8: 5 > 0,5, 8 = 1}.

The central idea of the NBI method is that the point of intersection between the Pareto Front and
the normal n, emanating from any point in the CHIM and pointing to the origin is a point located on the
part of the Front containing the efficient points. Let n be the normal vector to CHIM pointing towards
the origin, ®8 4 nt represents the set of points belonging to this normal. The point of intersection of
the normal with the Pareto Front is the global maximum of the following N BIg subproblem:

Maximize t,
Subject to: = € A, (7)
O[3 +tn = F(z) — F*,

where A is the set of feasible solutions.

We solve NBIg (7) for different /3, various points on the efficient frontier can be generated. The
advantage of the g parameter is that an even spread of § parameters corresponds to an even sped of
points on the CHIM.

Aboulaich et al. [16] demonstrates the equivalence between the research of the Nash equilibrium of
the problem (5) and fixed point of the problem (6), for values of P binary. This equivalence is true
only if P is binary. In the following we propose an extension of the algorithm introduced in [17] to the
non binary case. We search for the Nash equilibrium associated to two given tables of allocation P
and (Z — P) which are not necessarily binary, the elements of P belong to the interval [0, 1]. In this
case we solve the following problem:

Find ygy solution of:
min f1(P-y + (Z = P) -y ), = Yo
min f5((Z = P) -y + P yin), = Yopros
with the update: = y]k?N =P ylgpﬂ +(Z-P)- y’jpt2.
Algorithm (NSO0):
1. Initialization: ygptl, ygptz and y%\ = P- ySPtl +(IZ—-P)- ygpt2-
2. for k > 1:
(a) solve the problem: myin filP-y+(Z—-P)- y%jvl) = y'jptl,
(b) solve the problem: min fo((Z — P) -y + P - y%?vl) = ylgptz,
(c) the update ’
YEn = P Yhs + (T = P) - yhya, the update of ypy,
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Yy =tyby + (1 — t)y%;vl, where ¢ €]0, 1], the relaxation of ygy,

3. while Hyg])\, - yggj;l)H > test, set k = k + 1, and repeat 2.

We present in the following, the results obtained by the algorithm (/NV.S0) for some tests, by considering
two functions f; and f5 defined by:

1 1
fily) = 5llAy - bl[* et faly) = Slicy — d|f?, yeR™, (9)
where A and C' are two n X n matrices, b and d n x 1 matrices, and || - || is the Euclidean norm.

b=1[1;-2;0;-1;2]; d =[1;-3;—1;3;5]; A =C = tridiag[1; —2;1].

30

T T T T
D Pareto Front . Pareto front

25 7 25

30

20 - b 20

Nash equilibrum

10 10

./ Nash Equilibrium

I I I T I I I I T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

fi f1
P =10.1174;0.2967; 0.3188; 0.4242; 0.5079] P = [0.0005; 1;0.9995; 0.0001; 0.9985]

Fig.1. Test 1 and 2: The Nash overall loop converged in 21 iterations (left) and in 29 iterations (right).

b =rand(50,1); d = rand(50, 1).
A = C = tridiag[1; —2; 1]
¥ 9 T T T T T

A=C=1d

8 front

g g

3r Nash Equilibrium ar Nash Equilibrium
3l

oL
s

1k
1k

0% o4 ‘

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9
N f1
0.1 < P =rand(50,1) < 0.99 0.1 < P =rand(50,1) < 0.99

Fig. 2. Test 3 and 4: The Nash overall loop converged in 51 iterations (left) and in 103 iterations (right).

According to the results obtained in the tests, we note that, in the tests 1, 3 and 4 we have A = C
and the elements of P are not all close to 0 and 1 then the Nash equilibrium coincides with the Kalai—
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b=[1;,-2;0;—1;2]; d = [1; —3; —1;3; 5]; A = tridiag[l; —2; 1]; C' = diagsup[l; —1].

50 T T 50

a5 Pareto front{ a5 | — Pareto front J
a0} ] 40 1
35 b 35 N
30 q 30 b
« Nash Equilibrium
“~25 b

20 F Nash Equilibrium
15

10r

0 0 1‘0 2‘0 3‘0 40 5‘0 ° 60 0 0 1‘0 2‘0 3‘0 40 5‘0 i 60
f1 f
P =10.2760;0.6797; 0.6551; 0.1626; 0.1190] P =1]0.0005; 1;0.9995; 0.0001; 0.9985]

Fig. 3. Test 5 and 6: The Nash overall loop converged in 205 iterations (left) and in 252 iterations (right).

14000

b =2rand(50,1); d = 5rand(50,1); A = tridiag[l; —2;1]; C' = diagsup[1; —1].
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2 5000 =
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0 < P=rand(50,1) <1 0= P =rand(50,1) =1

Fig.4. Test 7 and 8: The Nash overall loop converged in 520 iterations (left) and in 463 iterations (right).

Smorodinsky solution. In test 2, we have A = C and elements of P are not far from 0 and 1, then the
Nash equilibrium is not any more a Kalai-Smorodinsky solution and it is not in the Pareto front but
it’s close to the minimum of f;. In tests 5 and 7, we have A # C and the elements of P are not all
close to 0 and 1, then the Nash equilibrium is on the line passing through the point of disagreement
and the utopia point. And in test 6 and 8, we have A # C' and elements of P are not far from 0 and
1, then the Nash equilibrium is not in the Pareto front.

In the next part we present two new algorithms in order to construct the allocation tables P and Q.

3. Algorithm 1 (NS1): Nash equilibrium and NBI approach

The goal of this algorithm is to search among the Nash equilibria that are on the Pareto front, using
an extension of the NBI approach [15]. NBI is a technique that seeks Part space which contains the
Pareto optimal points. The idea behind NBI is to pick an even spread of points on the Convex Hull of
Individual Minima (CHIM), and to find the intersection point between the efficient front and a set of
parallel normals emanating from the chosen set of points on the CHIM. This point belongs to the set
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of the effective points which are on Pareto front. The pure allocation tables are any elements P and @
from {0, 1}" that satisfy P;+Q; = 1 for 1 < ¢ < n. Mixed allocations are obtained by convexification of
the set of pure ones. We also drop the mutual exclusivity constraint, to allow both players to share the
same variable. To split the optimization variable, we construct two sequences of tables for allocation
P and QU™ in [0,1]", using the approach proposed in [13] as the initialization step. We build P(©)
and Q©) using the iterations results giving by the iterative minimization of f; and fo, the iteration
consists in solving successively two optimization problems (M1) and (M2) by combining NBI and Nash
games.

In the first step, we use a heuristic approach to construct the allocations tables. It is based on
the observation of preferred directions of descent algorithm to optimize each functional separately.
For example, the component P; is the ratio of the number of times (relative to the total number of
optimization iterations) where the direction j was used to reduce the test fi.

Step1: Let m = 0, from an initial point (@ et y(© e R", PO and Q© are calculated by:

: (k+1) _ (k) k) 0 _ Sple o]
fg}%fl(x)v x =z —pVi(@@W), k=0, P :Wa

(10)
. _ o X |y —y R
min fo(y), ¥ =y® —pVHREY), k200 Q) = Spem—iey
set,
vy = PO 2"+ Q0 -yt F(a) = (@), fala) and F* = (Ai(a"), o))", (11)
where,
x* = Argmin f(x)
R (12)
y* = Arg min fa(y).
Step2: For m > 0, solve,
max t,
(M1){ whiF - (13)
s.c. F(P-:E—I—Q(m_l) -yETrJLV_ ) =F*4+tn+ ®p,
and,
max t,
(M2) ] ¥i5Q - (14)
s.c. F(Q-y—I—P(m_l) -yETrJLV_ ) =F*4+1tn+ ®p.
where a:g?t) (resp P(™) is a solution of the problem (M1) with respect to z (resp P), and yg;? (resp

Q™) is a solution of the problem (M2) with respect to y (resp Q).
While ||yg?\; — yg?v_l)ﬂ > test, pose m = m + 1, and repeat Step2.
In the following we present the results obtained by the algorithm (NS1) for some tests.
Several other tests have been made (n = 20, n = 50...), the results show that the algorithm (NS1)

numerically converges to a Nash equilibrium on the Pareto Front for functions defined by (9).

4. Algorithm 2 (NS2)

In this section, we present a new technique to split the optimization variable y using the two tables P
and (Z — P) and the algorithm of Kalai-Smorodinsky [14]. This technique is based on the calculation
of the utopian point, the disagreement point and the Nash equilibrium associated to P.
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b=[1;-2;2;0,—1]; d = [5;1; =3; —1; 3] b= [10;-2;2; 5; 1], d = [6;1;9; —1; 3]
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Fig.5. Test 1 and 2: The Nash overall loop converged in 25 iterations (left) and in 7 iterations (right).

b = 8rand(10,1); d = 5rand(10,1) b =eye(10,1), d = rand(10, 1)

1400 4
‘ Pareto front ‘
1200 - i 3.5
[
3
1000 ®
25 °
800 %
N (o]
- =2 .0.. Nash Equilibrium
600
151
400
1l
| Nash Equilibrium
200 05
o0 ®
0 | ; . . . 0 |
0 100 200 300 400 500 600 700 0 0.5 .
f1 f1
A = tridiag[1; —2; 1], C' = triangsup[—1; 1] A=C=1d

Fig. 6. Test 3 and 4: The Nash overall loop converged in 17 iterations (left) and in 32 iterations (right).

We are looking at each iteration for the Nash equilibrium associated to the allocation table cal-
culated, while approaching the intersection between the Pareto front and the line joining the utopian
point Ut and the disagreement point D.

Note,
o fi(=zY) [ fily") . . Ut—D
ve= ( f2(y") > - P= ( fa(z™) > d Ut — D’

where

{ " = Argmin fy (), (15)

y* = Arg myin fa(y).

We look for the splitting of the optimization variable y (we search table P) in order that the Nash
equilibrium coincides with the Kalai-Smorodinsky solution, via the following algorithm:

1. Initialization, m = 0: Step1 of (NSI).
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2. For m > 0, solve the problem

maxt,
(KS1)q wbP (m—1) (16)
sc. F(P-y+(Z—-P) -ygpy )=D+tr,

ygb\z — plm), Kéz) +(Z - p(m)) . yg'}v_l)7

where K™ (resp P(™) is a solution of the problem (KS1) over y (resp P) and F is defined in 11.

opt
3. While
Hyg}\; - y%"}v_l)u > test,

pose m = m + 1, and repeat 2.

In the following we present the results obtained by the algorithm (NS1) for some tests.

b=[1;-2;2;0;,—1]; d = [5;1; —3; —1; 3]

70

b=[1;-2;2;0;—1]; d = [5;1; =3; —1; 3];

60

0 10 20 30 0 50 60 70 0 50 100 150
f1 f1
A=C=1d A = C = tridiag[1; —2; 1]
Fig.7. Test 1 and 2: The Kalai-Smorodinsky solution overall loop converged in 9 iterations (left) and in 4
iterations (right).

According to the obtained results, we note that the Kalai-Smorodinsky solution (KS) is determined
as a Nash equilibrium.

The proposed algorithm allows to construct two allocation tables P and @, and a Nash equilibrium
that is a Kalai-Smorodinsky solution.

5. Split of image in concurrent optimization

This paper aims at highlighting the practical function of a new method/procedure when the similar
image solution, coupling color, Segmentation-based Fractal Texture analysis (SF'TA) and Shape Fea-
tures (Zernike) named from now on as strategies within the scope of Content-Based Image Retrieval
(CBIR).

Each image Iy = (loc, los, loz) of the database will be extracted according to three classes Color
(denoted by C), Segmentation-based Fractal Texture analysis (SFTA) (denoted by S) class and Shape
Features (Zernike) (denoted by Z) class [18].

We propose to determine the similar images as a Nash Equilibrium, which coincide with the Kalai—
Smorodinsky solution. To determine the optimal images we will use in both cases three criteria j¢,
js and jz associated with the three players respectively. The three players play a static game with
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b =rand(10,1); d = rand(10,1) b =rand(10,1); d = rand(10,1)
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Fig. 8. Test 3 and 4: The Kalai-Smorodinsky solution overall loop converged in 6 iterations (left) and in 11
iterations (right).

complete information, the first player is the Color descriptor that is used to control color classes in
an image, C. The second player is the Segmentation-based Fractal Texture analysis (SFTA) classes,
denoted by S. Then, the third is the Shape Features (Zernike) descriptors which controls the Zernike
classes, denoted by Z.

Let us denote by I(I¢,Is,Iz) an similar image, and let Iy be image of database defined by three
vectors (Colors(C'), SEFTA(S), Zernike(Z)). Retrieve the similar images I from 70, by simply minimiz-
ing the quadratic misfit. Solving the Nash equilibrium requires solving the following three problems,
namely

jce,Is,Iz), js(Ic,Is,Iz) and  jz(Ic,Ig,1z)
defined by:

. 1 €
joe,Is, Iz) = gHIC — Ioc|? + §HV(IC +Is+I7)|?, Ic € Hy(),

. 1 15
Jse,Is, Iz) = §HIS — Ios|* + §HV(IC +Is+1z)|° Is € Hy(Q),

. 1 €
jzleyIs 1z) = Sz = Toz|I” + lIVe +Is + I Iz € Hy(),
where ¢ is some parameter to be adjusted |3, 16].
We say that the couple (1%, I§, %) is a point of Nash equilibrium [18|, if and only if
Find (I, 1%,1%) € H () such that:
HllinjC(IC7I§7I§) = JC(IEHI?S(')I}))
C
Js (I, 15, I3), (17)
JZU&%J&)

Irllian(Ié,Is,Ig) =
S
mian(I(*;,[g,[Z) =
Iz

5.1. Simulation results

The collection consists of 20000 images from a private photographic image collection [18]. Our main
objective was to develop a system for big data base so the execution time was our main priority.
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Unlike classic system based on the calculation of the distance of the requested Image and all database
Image, our system reduces the number of Image to be checked in to small number (less than 30).
To minimize the number of images to check we work with a number of clusters £ = 35 for color,
k = 20 for Segmentation-based Fractal Texture analysis (SFTA), and k = 30 for Zernike. To verify the
effectiveness of our approach, we have performed a comparative study between [18] with the presented
descriptors and our algorithm.

The extraction of three components and the Table 1. Comparative study between
integration of Kalay Smorodinsky need a consider- the proposed method and classic method.
able time. We evaluate automatically the outputs Times 20000p
of every system, if the number of Image considered proposed method 458 95%
similar is more than five the result is considered Moussaid et al [18] 555 92%
correct. KNN(K=30)+Zernike | 100S 50%

The following figure present examples of re- KNN(K=20) + SFTA 905 60%

KNN(K=35)+color 1205 78%

quest results.

5.1.1. Search Images similar using color

k.
E
E,
o
=
il
%

|
i
ﬂ
i
i
i
i

5.1.2. Search Images similar using Zernike

5.1.3. Search Images similar using SFTA

o W = smmE B
oy =
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5.1

.4. Search Images similar using Method proposed

B aE =amg D
o ‘

6.

Experimental results show that our method achieves favorable performance against other methods.

Conclusion

In this paper a new approach is proposed to solve a multi-criteria optimization problem using a game
theory: a new approach for the splitting the territory in the case of concurrent optimization.
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Mowyk 306pa>keHb 3a gonomoroto pieHoBarn Hewa ta po3s’si3ky

Kanai—CmopogunHcbkoro

Emvomen C.', Mycain H.2, A6ynaiia P.3

LLIMSAD, FSAC, ¥Ywisepcumem Kacabaanxu Xacana I, Kacabaarrka, Mapoxko
2LMA, FSTM, Ynisepcumem Kacabaarxu Xacana II, Myzammedia, Mapoxxo
3 LERMA, EMI, Ynisepcumem Moxammeda V Pabam, Mapoxxo

Y craTTi 3amponionoBano HoBe dopMmysoBaHHs irop Hera mjis po3s’sa3aHHs 3arajbHUAX
6araToIiJIboBUX 33/1a9 onTuMizarii. Mera 1boro miaxoay — po3aLIMTHA 3MiHHI ONTHUMi3a-
i1, IO JIO3BOJIUTH YHCEJIbHO BU3HAYATU CTpATeril MixK JiBoMa rpaBiisimu. [lepruit rpasenb
MiHIMI3ye BapTicTh CBOET DYHKIIIT, BUKOPUCTOBYOUHN 3MiHHI mepinol tabsumi P, a apyruii
rpaBers — 3 apyrol Tabaumni Q. OpuriHajabHIiCTb 1i€l poboTH mossrae, mo-mepiie, B CUC-
TeMi OOY/I0BU JTBOX TaOJIMITHL PO3IOJIIIY, siKi TPUBOJATE /10 piBHoBarn Hera #a ¢gponTi
ITIapero. Ilo-apyre, 3HaiineHo po3p’s30k piBHOBaru Herma, gkuii criBrmajiae 3 po3B’ai3KOM
Kaurai-Cmopogutcbkoro. Jljist 1boro 3amporoHOBaHO Ta, YCIIIIHO BUIIPOOYBAHO JIBA AJIFO-
purmu, siki obuncioTs P, Q Ta mo’s3any 3 Humu piBaoBary Hemra, BukopucToByrodn
JesiKe PO3IIUPEHHS IMiIX0ly HOPMAJIbHOIO MEPeTHHY I'PaHullb. [licjist mporo 3ampomnoHoBa-
HO, 00 TONIYKOBa CHCTEMA IMyKaJja Moi0HI 300paskeHHs 0 3aaHOr0 300parkKeHHs Ha
OCHOBI JIEKIJTbKOX IIPEJICTaBJIEHb 300parkeHb 3 BUKOPUCTAHHAM (PYHKIINA KOJIbOPY, TEKCTY-
pu Ta dpopmu.

Knwouosi cnosa: pishosaza Hewa, pose’asox Kanai—Cmopoduncokozo, newimka Kaac-
MEPUSAYLA, NAPAAEALHA ONMUMIZAYLA, deckpunmopu koavopy, Gist ma SIFT deckpunmo-

DU.
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