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In this note, the problems of solvability and construction of solutions for a nonlinear Fred-
holm one-order integro-differential equation with degenerate kernel and nonlinear maxima
are considered. Using the method of degenerate kernel combined with the method of reg-
ularization, we obtain an implicit the first-order functional-differential equation with the
nonlinear maxima. Initial boundary conditions are used to ensure the solution uniqueness.
In order to use the method of a successive approximations and prove the one value solvabil-
ity, the obtained implicit functional-differential equation is transformed to the nonlinear
Volterra type integro-differential equation with the nonlinear maxima.

Keywords: integro-differential equation, nonlinear functional-differential equation, de-
generate kernel, nonlinear mazima, regularization, one value solvability.
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1. Formulation of the problem

Integro-differential equations are the mathematical models to describe many physical phenomena and
the operation in technical systems. Analytical and iterative methods are important in application of
integro-differential equations [1-8].

In this paper, we study the initial value problem of one value solvability and construction of solutions
of a nonlinear the first-order Fredholm integro-differential equation with the degenerate kernel and the
nonlinear maxima. It is easy to replace the given equation by the implicit differential equation in case,
when a kernel of integral is degenerate one. This equation is convenient to transform into Volterra
integro-differential equation for solving by the method of successive approximations. The integral
and integro-differential equations with degenerate kernels were considered by many authors (see, for
example [9-20]). So, using the method of degenerate kernel combined with the regularization method,
we obtain an implicit functional-differential equation with the nonlinear maxima. It is known fact
that Fredholm functional integro-differential equation of the first kind is ill-posed. So, we use the
initial boundary conditions to ensure the uniqueness of the solution. In order to use the successive
approximations method, we transform the implicit functional-differential equation to the nonlinear
Volterra type functional integro-differential equation, which is ill-posed, too. The one value solvability
of this problem we have proved by given initial boundary conditions.

This work was supported by grant University Malaysia Terengganu (UMT) under RMC Research Grant Scheme (UMT,
2020). Project code is UMT/CRIM/2-2/2/14 Jld. 4(44).
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On the segment [0; 7] the following nonlinear Fredholm integro-differential equation of first kind
and first-order is considered

T
A/0 K(t,s) F(s,u(s), max{u(r)| 7 € [h1(s,u(s)); ha(s, u(s))]}, u(s)) ds = f(t) (1)
under the following conditions
u(0) = o1 = const,
1(0) = pp2 = const, ©)
u(t) = ¢1(t), t € [—ho1;0],
u(t) = (,02(75), t e [T7T + hog],

where 0 < T is given real number, A is nonzero parameter of marching, F'(t,u,v,9) € C([0;T] x X X
X x X), hi(t,u) € C([0;T] x X), —ho1 < hi(t,u) < ha(t,u) < T + hg2, 0 < hg; = const, i = 1,2,
©1(t) € Cl—ho1;0], wa(t) € C[T;T + hoa), K(t,s) = S8 ai(t)bi(s), 0 # ai(t),bi(s) € C[0;T], X is
closed set on real number set. Here it is assumed that each system of functions a;(t), i = 1,k, and
bi(s), i = 1,k, is linearly independent, ¢1(0) = ¢o1, p2(T) = u(T).

2. Method of degenerate kernel
Taking into account the degeneracy of the kernel, equation (1) is written in the following form
MDD ait)bils) F (s, uls), max{u(r)|7 € [h(s,u(s)); ha(s, uls))]},ils)) ds = f().  (3)
0 =1
Using the notation
O(t) = F(t, u(t), max{u(r)|r € [ (t, u(t)); ha(t, u(t))]}, u(t)) (4)

and introducing new unknown function 9J.(¢), we obtain from (3) approximation Fredholm second kind
integral equation with the small parameter

T k
e9(t) = f(t) — A / > ai(t) bi(s) Ve (s) ds, (5)
0 =1
where 0 < ¢ is the small parameter and
lim 0-(1) = (1), (6)
Using new notation
T
o = / bi(s) V. (s) ds, (7)
0

the integral equation (5) can be rewritten as follows

k
0.t = [f(t) A il az-] . ®
1=1

Substituting (8) into (7), we obtain the system of the linear equations (SLE)

k
Oéi—|-)\ZOéinj:Bi, i=1,k, (9)
j=1
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where
1 [T 1T
Ajj=— bi(s)aj(s)ds, B;=— bi(s) f(s)ds. (10)
€Jo €Jo
Consider the following determinants:
1+ MAq Aqo . A1
A()\): Aoy 1+ Ao ... Agk #0’ (11)
Azﬁbl Ao e 1T+ Mg
1+MAy ... Al(i—l) By Al(i—i—l) ... Aig
Ai(A) = Ao o Ay B2 Asiqyy oo Aw =T
A R Ak(i—l) By Ak(i—l—l) e 14+ AN

SLE (9) is uniquely soluble for any finite right-hand sides, if the nondegeneracy condition (11) of the
Fredholm determinant is satisfied. The determinant A(\) in (11) is a polynomial with respect to A
of degree not greater than k. The equation A(X) = 0 has at most k different real roots. We denote
them by u; (I = 1,p, 1 < p < k). Then X\ = g are called irregular values of the spectral parameter
A. Other values of the spectral parameter A # p; are called regular ones. The solutions of SLE (9) for
the regular values of parameter \ are written as

_ AN
%= 30 i=T1,F. (12)
Substituting (12) into (8),
k .
0.0 = 2 |70 - A D ait)) T | (13)
i=1

By virtue of formula (10), we suppose that

k A
) =2 ait) e, cz-—AA’(A) =
=1

—~
Nt

()

2

(14)

where ¢;, C; = const, i = 1, k.

The parameter A is marching parameter between free term function f(¢) and kernel of integral
equation (1). So, we choose one of the regular A\ values satisfying the first of condition (14). Then,
taking into account limit passing formula (6), from (13) we obtain

k
9(t) = A>_ Ciailt). (15)
i=1

Now the function ¥(¢) is known and defined by the formula (15). We rewrite the implicit equation (4)
as

G(t, u(t), max{u(7)|7 € [l (t, w(t)); ha(t, w(t))]}, u(t)) =0 (16)
with given conditions (2), where G = F — 9.
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3. Transform into nonlinear Volterra type integro-differential equation

Studying the solvability of implicit functional-differential equation (16) we use the method of successive
approximations combined with the method of compressing mapping. However, it is impossible to apply
the method of successive approximations to the equation (16) with the nonlinear maxima directly.
Therefore, the following method is proposed.

On the segment [0; 7] the arbitrary positive defined and continuous function Ko(t) is considered.
We introduce the notation

bt s) = / Ko(0)do, o(t,0) = (1), e [0:T)

It is obvious that (¢, s) = ¥(t) —1(s). By the solution of equation (1) we mean a continuous function
u(t) on the segment [0; 7] that satisfies equation (1) with the given conditions (2) and the Lipschitz
condition:

max {u(t) —u(s)|; [a(t) — a(s)|I} < Lolt — s, (17)
where 0 < Ly = const, [|u(t)|| = o lu(t)].

We write the implicit equation (16) as

Ty e
+ Gt u(t), max{u(r)|r € [ (t, ult)); ha(t, u(®)]}, a(t), ¢ € [0;T].

Hence, using resolvent of the kernel [—K(s)],

/ Ko(s)u(s)ds + G(t u(t), max{u(r)|T € [hl(t,u(t));hg(t,u(t))]},u(t))

/Ko ) exp {—(t, 5)} {—u /KO

— G (s,u(s), max {u(7)|7 € [h1(s,u(s)); ha(s,u(s))]},u(s)) }ds, te[0;T]. (18)

Appling Dirichlet’s formula to (18) (see [21]), we derive the following Volterra type nonlinear functional
integro-differential equation

u(t) = Imy (t;4) = /0 H(t,s)u(s)ds
+ [u(t) + G (t,u(t),max {u(T)]T € [h1(t,u(t)); ha(t, u(t))] },u(t)) } exp{—9(t)}
+ /0 Ko(s)exp {—u(t,s)} {u(t) —u(s)+G (t,u(t),max {u(T)|T € [hi(t,u(t)); ha(t, u(t))] },u(t))
-G (S,u(s),max {u(T)|T € [hi(s,u(s)); ha(s,u(s))] },u(s)) }ds, te[0;T], (19)

where

H{(t,s) = Ko(s) exp{—¢(t, )} — / Ko(0) exp {—v(t,0)} db. (20)

Integrating functional integro-differential equation (19) on the interval (0;¢) with the initial condition
u(0) = pp1, we obtain the following functional integro-differential equation
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u(t) = Ima(t;u) = o1 + / (t—s)H(t,s)u(s)ds
0
+ /0 [u(s) + G (s,u(s), max {u(7)|7 € [h1(s,u(s)); ha(s,u(s))] },u(s)) } exp{—1(s)}ds
+/0 (t—s)Ko(s)exp{—(t,s)} {u(t) —0(s)+ G (t,u(t), max {u(7)|7 € [hi(t, u(t)); ha(t,u(t))] },u(t))

— G (s,u(s), max {u(7)|7 € [hi(s,u(s)); ha(s,u(s))] },u(s)) }ds, te[0;T], (21)

Remark 1. The nonlinear functional integro-differential equations (19) and (21) are ill-posed [22],
so we will study them with given conditions (2). In addition, we consider the conditions (2) as
u(t —0) = u(t +0) at the points t =0 and t =T

Let the conditions (11) and (14) are satisfied. Then, instead of Fredholm functional integro-
differential equation of the first kind (1) we will study Volterra type functional integro-differential
equations (19) and (21) with conditions (2).

Theorem 1. Let the conditions (17) are satisfied and
1. |G (t, u(t),v(t),d(t))]| < Mo, 0 < My = const;
2. |G(t,ua (), v1(2), 01(2)) — G(t, ua(t), v2(t), U2(1))|

< La(t) (Jur(t) = ua(t)] + [v1(t) — va(B)] + [01(8) — D2()]);

3 [hi (8, ur(t)) = hi (8, ua(t))] < Lai(t) [ur (t) — ua(t)], 0 < Lai(t) € C10; T, i = 1,2;
4. p <1, where p = lomtaggf [P1(t) + Pa(t) + VA(t) + Va(t)], with

Vi(t) = Li(t) [2 4 Lo(La1(t) + La2(1))] Q(t), Va(t) = /Ot(t —8)Q(t,8)ds + (1+ L1 (1) Q(t),
P = Laf0) 2+ Lo(Lar () + L) Q). Patt) = [ CQ(t5) ds + (1 4+ L1 (£)Q(5,0),
Qlt.s) = (-0} +2 [ " Ko(8) exp{—u(t, 6)} db.

Then the nonlinear functional integro-differential equation (21) with conditions (2) has a unique solu-
tion on the segment [0;T].

Proof. We suppose that Picard iteration processes for the functional integro-differential equations (19)
and (21) are given by

Zlo(t) = 02, ’[Ln+1(7f) = Iml(t;’dn), neN, tec [O;T], (22)
UO(t) = Y1 (t)a te [_h17 0]7 Un+1(t) ¥1 (t) [_hlv 0]7
uo(t) = po1, t€0;7T], Upt1(t) = Imy(t; un) neN, te|0;T], (23)
UQ(t) = (pg(t), t e [T;T + hg], un+1( ) (,DQ(t) t e [T; T+ hg],
Firstly, we estimate the function H(t, s), given by formula (20):
t
[H(t,s)| < Ko(s) exp {—1(t, s)} + 2/ Ko(0) exp {—1(t,0)} df = Q(t, s). (24)
It is obvious that the following estimates are true
[0 ()] < 02| < o0, (25)
1 < : £); s =A . 26
oo < max {lgors_max [er(8ls, max [ea(0)]} = o < oc (26)
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By virtue of conditions of theorem and Picard processes (22) and (23), by using estimates (25) and
(26), for the first approximations we obtain the next estimates

@1 < [ 1HE ] liol)l s+ [Jaofo)]
G (. uo(t) mase (wo(r) 7 € [ (0, u0(6)): ot o8]} o ()] ] expf (e}
+ [ Kots)expf-ue. )} o) — ()]
426t w0 (1), max {ug ()] € [ (£ (1) ot uo(e))]} o0} ] i
< lowl [ Qt.9)ds + (lous] + M) xp{ (1)}
4 /Ot Kos) exp{—u(t, )} (Lot — s| + 2Mp) ds

t
< oo / Q(t, ) ds + AnQ(t, 0), (27)
0
where

A = max {[poz| + Mo; LoT + 2Mo} ;
< 8o+ [ =) il ds+ [ exp{=v(s)} o)l
+ HG(s,uo(S),max{uo(T)|T € [h1(s,u0(8)); ha(s,up(s))]}, wo(s)) H} ds
+ [t = mots) =it} io(®) — (o)
216 (0 (8), max {uo (7)€ [hn (£ uo(8))s ha(t uo (D]} o (£)) ||| ds
< Ap + |poz| /t(t —5)Q(t,s) ds + (|poz| + Mo) /t exp{—1(s)}ds
0 0
+ /0 (t — s)Ko(s)exp {—v(t, s)} (Lolt — s| + 2My) ds

t
< Ag -+ ymy/o (t — $)Q(t, 5)ds + An (D), (28)
where

Q) = /0 exp{—1(s)}ds + 2/0 (t — s)Ko(s)exp{—1(t,s)} ds.

By virtue of the first and the second conditions of theorem, analogously to estimates (27) and (28) for
the arbitrary difference of approximations

[tn 11 (8) = in ()] </0 HH ()| - [[tin(s) = tm—1(s)]

o exp{—w(t)}llin(t) = tun1 (O] + Li(8) Jun(t) = w1 ()]
+ || max {un (7)|7 € [h1(t, un(t)); ha(t,un(t))]}
= max {up—1(7) |7 € [ (& w1 (6)s oty w1 (D]} + () = 1 ()])]]

L2 /0 Ko(s) exp {—6(t,5)} [ 1in(s) — s (5)]| + L ()]t (5) — 01 (5)]

+ H max {u, (7)|7 € [h1(s,un(s)); ha(s,un(s))]}
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— max{un_1(7)|7 € [h1(s,un—1(s)); ha(s,un—1(s))]}||
+ [l (s) = - (s)] . (29)

To continue estimate the norm in (29) we use condition (17) and the third condition of the theorem.
Then

[[max {un (7)|7 € [h1(s, un(s)); ha(s, un(s))]} — max{un—1(7)|7 € [h1(s, un—1(s)); ha(s, un—1(s))1}|
< [fmax {un (7)|7 € [h1(s, un(s)); ha(s, un(s))]} — max{un—1(7)|7 € [h1(s, un(s)); ha(s, un(s))1}|
+ [Imax {un 1 (7)|7 € [h1(s, un(s)); ha(s, un(s))]}
—max {un1(7)|7 € [hn(s, un—1(s)); ha(s, un—1(s))1} |
< [fmax {|un (1) = un—1(7)[ + 7 € [h1(s, un(s)): ha(s, un(s))]}]

2
+ Lo Z [1i (5, un(s)) = hi (s, un—1(s)) || <1+ Lo(La1(s) 4+ Laa(s))] [[un(s) — un-1(s)] - (30)

Substituting (30) into (29),
|41 (t) = n (1)] < /Ot Q(t,5)|[in(s) = tn-1(s)| ds + exp{ =1 (t)}
X [L1(t)[2 + Lo(La1(t) + Laz(t)] lun(t) — un—1(&)[l + (1 + L1(t)) n (t) — 1 (t)]]]
+ 2/ Ko(s) exp {=t(t,s)} [L1(s)[2 + Lo(La1 (s) + Laa(s))] [[tn(s) — tn—1(s)]|

+ (L + Li(s)) llin(s) — dtn-1(s)| ] ds
t

< Pt [un(t) — tn 1 (B)]| + Pa(t) [in(t) — i1 ()] (31)
where
Pi(t) = Li(t) [2+ Lo(La1(t) + L22(t))] Q(¢,0),
- /0 Q(t,s)ds + (1 + Ly(£)Q(t,0),
Qt.5) = exp{—b(t)} +2 /0 Ko(s) exp{—(t, 5)} ds;
and

t t

|tn+1(t) — un(t)] </(t—S)Q(tS) [ () = tin—1(s)| d8+/0 exp{—¢(s)}

0
X [L1(s) [2 4 Lo(La1(s) 4 Laa(s))] [[un(s) — un—1(s)[| + (1 + L1(s)) [in(s) — tn-1(s)|| ] ds

2 /O (t — 8)Ko(s) exp{—(t, )}

X [L1(s) [2 + Lo(La1(s) + L22(s)] lun(s) = un—1(s)[| + (1 + L1(s)) [[tn(s) — ttn—1(s)]| | ds
S Vi) [lun(t) = un—1 (B[] + Va(t) [[in(t) = tn-1(2)]], (32)
where
Vi(t) = Ly () [2 + Lo(La1 (t) + Laa(1))] Q(1), (33)
V) = [ (1= )@ ds+ 1+ L) Q). (34
Qt) = /0 exp{—¢(s)}ds+ 2/0 (t — s) Ko(s) exp{—(t,s)} ds. (35)
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From the estimates (31) and (32) it follows that
[Un+1(t) = Un(@®)[| < p- |Un(t) = Una(B)][ , (36)

where
1Un+1(t) = Un(t)|| < max {lun+1(t) = un(@)[]; [dn+1(t) — @n ()]},
1

p= 7 gnax, [P1(t) + Pa(t) + Va(t) + Va(t)] .-

Choosing the function Ky(t), let take into account that
t
i, 5) :/ Ko(0)d0 > 1, te[0:T].

Hence, we obtain that exp{—¢(t)} < 1. So, the functions H(t,s) and Q(t,s) are small. Then
the functions Lq(t), Loi(t), i = 1,2 we can choose such that p < 1 and the last condition of the
theorem is satisfied. We consider the solution of the integro-differential equations (19) and (21) in
the space of the continuous functions C[0;77], satisfying condition (17). Since ||un+1(t) — un(t)|| <
|Un+1(t) — Un(t)|], it follows from the estimate (36) that the integral operator on the right-hand side
of (21) with conditions (2) is compressing mapping. So, from the estimates (25)—(28) and (36) implies
that the integro-differential equation (21) with conditions (2) has a unique solution on the segment
[0; T]. The theorem is proved. [
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Heniniine inTerpo-gudepenuiansHe pIBHFIHHFI dpenronbma nepLuoro

nopsaAaKy 3 BUpog>XeHmnm sAapom I HeNIHINHUMN MaKCMMyMaMun

HOnnames T. K.', Emxysaros 3. K.23, Hix Jlonr H. M. A4

L Vabeyvko-i3painvcoruti 06°eOnanuti Garysbmem 6UuCOKUL MeTHOA02IT Ma IHICEHEPHOT MAMEMAMUKY,

Hayionaavruti ynisepcumem Yabexucmany (HYY3), Tawxkenm, Ysbexucman
2 Paxysvmem mexnonoeii ma im@opmamury oxeany,
Manasiticoxut ynisepcumem Tepeneeany, Kyanra-Tepeneeany, Tepenezany

3 Hesaneorcnut docaionusk, daxysvmem npurxiadnoi Mamemamuky ma immeiekmyaioHuT MeTHoi02it,

Hauionaavrut ynisepcumem Yabexuemary (HYV3), Tawxenm, Ysbexucman
1 Kagedpa mamemamuru, Paxysvmem npupodnunuz nayx, Yrisepcumem ITympa Manatizia (YIIM),
Cepdane, Ceaanzop Manatizis

YV mift crarTi po3risHYTO HpoOJEeME PO3B’S3HOCTI Ta MOOYIOBH PO3B’SI3KIB HEJHIAHO-
ro inTerpo-audepenniaabHoro pisaanaa Ppenrosbma MEPIIOro HOPAIKY 3 BHPOIKEHUM
AJIPOM Ta HEJIHIMHUMH MaKCHUMyMaMu. BUKOPHCTOBYIOYM METOJ[ BHPOJZKEHOI'O sIpa Y
TMOETHAHHI 3 METO/IOM PeryJsapu3aliil, OTPUMAaHO HessBHe (YHKITIOHAJILHO-TU(EpEHITiaIbHe
PIBHSIHHS TEPIIOTO MOPSAKY 3 HEMHITHMH MakKcUMyMaMu. BUKOPHCTOBYEMO TOYATKO-
Bl rpanumuHi ymoBu, mo0 3abe3mednTu €IUHICTH pPO3B’si3Ky. [yt 3acTocyBaHHS METO-
JIy IIOCJIJIOBHOT'O HAOJIM?KEHHs Ta JIOBEJEHHS OJHO3HAYHOI'O PO3B’A3yBaHHS, II€PETBODE-
HO OTpHUMaHe HesiBHE (DYHKITIOHAJILHO-TIMepeHITiaibHe PIBHIHH 10 HEJTiHIHOrO iHTEerpo-
audepeHItiaIbpHOro piBHAHHA BoJsibTeppa 3 HETIHITHUMA MaKCAMYMaMH.

Kntouosi cnoBa: inmezpo-dudeperyiansvhe piehanhs, HeATHitine GyrKyionasvro-duge-
PEHUIAAbHE DIGHAHHA, SUPOIdCEHE AOPO, HENTHITHT MAKCUMYMU, PERYAAPU3GULA, 00HO-
3HAYHE PO36 AYEAHHA.
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