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Existing variable order step size numerical techniques for solving a system of higher-
order ordinary differential equations (ODEs) requires direct calculating the integration
coeflicients at each step change. In this study, a variable order step size is presented
for direct solving higher-order orbital equations. The proposed algorithm calculates the
integration coefficients only once at the beginning and, if necessary, once at the end. The
accuracy of the numerical approximation is validated with well-known orbital differential
equations. To reduce computational costs, we obtain the relationship for the predictor-
corrector algorithm between integration coefficients of various orders. The efficiency of
the proposed method is substantiated by the graphical representation of accuracy at the
total evaluation steps.

Keywords: applied mathematics, backward difference, ODEs, multistep, variable order
step size.
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1. Introdcution

Numerous significant scientific problems can be formulated in the form of a higher-order initial value
problem (IVP) of Ordinary Differential Equations (ODEs). Consider the higher-order ODE of the form

The initial value condition is denoted by Y () = 7], where

Y(t) = (y7y,7 cee 7y(d_l))7 £= (575,7 e 7€(d_1))7 a < x g ﬁ (2)

For this study, we focus on non-linear ODEs in the form of orbital problems with periodic solutions.
A novel technique for approximating higher order ODEs was suggested by some studies, such as [1-4].
Suleiman [3]| designed an algorithm for direct solving stiff and nonstiff higher-order ODEs directly.
This eliminates the need for the tedious calculations when reducing the problems to first order ODEs.
This technique was referred to as the Direct Integration (DI) method, which is a multistep method
based on a divided difference formulation. Although the DI algorithm was shown to be viable, it
had one major drawback. The tedious calculations of the divided difference integration coefficients at
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every step change were time-consuming. This study develops an efficient multistep method equipped
with a variable order step size (VOS) algorithm in predictor-corrector form for direct solving higher-
order initial value ODEs, which are formulated in backward difference form (1PVOSBD method). The
1PVOSBD code calculates the integration coefficients only at the start, contrary to the integration
coefficients required by the direct integration (DI) method. In addition, the backward difference
produces error formulae that are more elegant in comparison to the divided difference.

2. The explicit and implicit integration coefficients

Given the higher-order ODE (1), the derivation of the predictor—corrector backward difference method
begins with obtaining the explicit integration coefficient by integrating (1) once, yielding

tn+1
Y(tni1) :y(tn)+/ Fly vy y V) dt. (3)
tn

To solve the integral in (3), first consider P, (t) as the Newton—Gregory backward difference interpo-
lation polynomial. P,(t) interpolates f(y,y/, ...,y 1) at k back values (t,, fn), (tn_1, fn—1)s - - -
(tn—k+1, fn—k+1) defined as follows

Py(z) = ki%l(—w' < = > Vit 5= t_ht".

1=

This allows (3) to be approximated using P, (t). Next, by replacing dt by hds changes the limit of
integration yielding

1 k-1
VIV ) =)+ [0 () s

0 =0
The equation above can be denoted by

k—1

1rs _
y(d_l)(tn-',-l) _ y(d_l)(tn) + h2517iV1fn7 51,2‘ = (—1)2/ < ,3 > ds.
0

. 1
=0

Let I'; (t) denote the generating function for the sets of coefficients d; ; defined as follows:
o0 .
Ty(t) = o1t"
=0

Substituting 6y ; in I';(¢) yields:
1
Ty (t) = / e~s108(1-1) gy
0
Solving the integral above integrating the equation above, the generating function can be conveyed as

(1—-¢)t 1
log(1—¢t) log(1—¢t)]"

Iy(t) = —[

This gives the backward difference coefficients formulation, d; ; such as

k—1
01,
:1—5 —_— =1,2,... =1. 4
5l,k rar <]{7—’L+1>’ k s 4y ) 51,0 ( )
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Next, we proceed with the d-th order generating function. This is established by integrating (1) d
folds. Followed by some mathematical induction, we are able to obtain the general solution of y(t,+1)
in the following form of

pld=1) pd k=1

Y(tn+1) = y(tn) + hy'(ta) + ... + (d— 1)|y( Z‘Sd iV fn-
Similarly to the first-order generating function (I'1), the d-th generating functlon, G4(t) can be denoted
as

r (t) _ 1 1-— (d — 1)!F(d—1) (t)
@O\ = @=1)! log(1 —t)
with the generalized relationship between explicit coefficients of different orders
k—1 5(d) )
O(a),0 = 0(d=1),1>  O(d)k = O(d—1),k+1 — ZZ:; <m> , k=1,2,.... (5)

Hence, the generating function formulae for the set of implicit integration coefficients is as established
in an almost similar manner as its explicit counterpart and can be written as follows:

c 1 (1—1t) = (d—DIT7,_1 (1)
()= (d—1)! log(1 —t)

with coefficients as follows

1 k+1 k—1
S0 =D Oanir Oapk = D Oa—nyi = D Opyiliwsi—in k=12, (6)
=0 =0 =0

given that L;j41—; is the Lagrange coefficient. If large integration are involved, calculation of the
integration coefficients can be time consuming. This is avoided with a recursive relationship between
the coefficients. Similar to the calculations in [5], the general relationship between the explicit dth
order coefficients and implicit dth coefficients are given by

Z 5 i = Ok (7)

3. Determining order and step size

A key component, for developing a VOS algorithm is determining when an integration is considered as
acceptable for varying the order. Even though the strategies selected for VOS has a definitive effect on
the efficiency of the algorithm, the VOS acceptance criteria is determining factor which regulates its
reliability. The implementation of a variable order multistep method relies solely on the back values
stored. When varying the order, the number of previous values stored determines the possibility of
increasing the order and by simply by eliminating a certain number of back values allows us to reduce
the current order. Experience suggests that order strategies which does not favour lower orders when
are deemed efficient for solving nonstiff problems. Order strategies implemented in the current study
adopts similar to strategies developed in [6]. Let denote the calculated step size as h and the final step
size as henq. For a standard estimate of hepq, safety factor R is multiplied to the current step size of
h such that he,q = Rh in order to reduce steps rejected. To avoid issues regarding convergence and
stability [6] suggested restrictions on the ratio of successive step size. This is to ensure stability of
the method. Considering in a PECE algorithm, we adopt the doubling or halving the step size code
from [1] which is implemented in a step size changing technique from [7]. The step changing algorithm
applied in the current work is illustrated in Algorithm 1 and Algorithm 2 (source: [8]).
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Algorithm 1 Doubling the step size algorithm.

1: Begin

2 Hpin := 0.8Hpin

3 If(Hmm > 2)

4 Begin

5: H :=2H 4

6: End

7. If(H :=2Hgq)

8 Begin

9 For [ :=1,to N step 1

10: Begin

11: Vg = 3VE 1

12: ForT:=1,to K —2step 1
13: Begin

14: For M :=T,to K —2step 1
15: Begin

16: V™ 1= 2(men+1 - vnﬁb—’_lfn—i-l)
17: End

18: Ukl =2Vl
19: End
20: Vk=lf g =2VE 1,
21: End
22: End
23: End

Algorithm 2 Halving the step size algorithm.

1: Begin

2. Errors:= Errors+1

3: H :=0.5H4

4: X = X

5. For [:=1,to N step 1

6: Begin

T VF g o= 3V

8: For T':= K — 2, to 1 step —1

9: Begin

10: Vk_lfn-i—l = %Vk_lfn-i-l

11: For M := K — 2, to T step —1
12: Begin

13: V™ frt1 = %(men-i-l + Vm—i_lfn-i-l)
14: End

15: End

16: End

17: End

Mathematical Modeling and Computing, Vol.9, No. 1, pp. 101-110 (2022)
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4. Error estimation

The current study refers to the works of Hall and Watt [2] to establish the estimated local error for each
integration step. Estimation for the local error begins with denoting the set of predictors in following
form:

k-1
r (d )
P yﬁll = Z‘S(O),iv fns

d- 1}1 k-1
pryn_H_Z 'yn +hd25(d me
=0 =0

because the current work implements a P, ECy1FE algorithm, we are able to denote the corrector in
the form of

k—1

cr, (d * 7

yﬁzll = Z 0(0),i Vprfn+1,
=0
- (9)

d—1 h k—1

R SUVIEND SN
=0 =0

with V;T, as the i-th backward difference using f (xn+1, 375_:1) for fy+1. Due to (7), the corrector can
be simplified to the following formulation for computational purpose

Ty p’"yfﬁl + 5? 0 Vp fn+1, w0

The local truncation error (LTE) presented in this study follows the standard Milne error estimate,
which is represented by

Ek = (5?0)7kvlgrfn+1,
(11)
E\" = n5ty (Vo

To control the order and step size, an appropriate p for E]E:d—p )
proof from [9] the asymptotic validity can be established using

as mentioned in [3] and resembling the

d— —p 5*
E]E:-i—lp) = hd pd(d_p)’k+1vk+1fn+1.

5. Last step coefficient

As previously mentioned, the 1IPVOSBD method generally requires computing the integration coef-
ficients only once. This assertion is true except in particular last steps. When implementing the
1PVOSBD algorithm, the current step size does not always correspond with the final step, hepg-
For these specific cases, calculating the coefficients is required where we denote the last step size as
heng = rh, 7 > 0 (refer to [5]). This yields the coefficients with the following relationship

z+5 ¢
(d),k—(1+4) ‘
Soop = i wZ( A T () ).

=0
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6. Numerical results

Over recent years, research focusing on the second order periodic initial and boundary value problems

with oscillating and periodic solutions have been investigated by various authors (see [10-16]).

efficiency of the 1IPVOSBD by will be verified by comparing numerical approximations with the DI
method established by [3]. Numerical results obtained are from popular orbital problems test problems
which will inherently highlights the benefit of the 1IPVOSBD method. The results for Problems 1-3,
are the approximated solutions obtained using direct integration and backward difference method
The current work evaluates the maximum error of all computed solution. The error
type chosen to estimate the solutions can be found in [17]. The following indicates abbreviations used

respectively.

throughout the current section:
FAIL: the number of failed steps,
STEPS: total steps,
TOL: the tolerance used,
DI: direct integration,

1PVOSBD: backward difference,

MAXERR: the overall maximum error
MAXERRI1: the maximum error (Equation 1),
MAXERR2: the maximum error (Equation 2),

We proceed with the following test problems and numerical results.

Orbit Problem 1: Two-body problem (source [9]).

where y1]o =1, ¥ |o

1.00E+00

0.00E+00

-1.00E+00

-2.00E+00

-3.00E+00

-4.00E+00

Accuracy (Maxe)

-5.00E+00

-6.00E+00

-7.00E+00

-8.00E+00

yi (t) =

=0, y2l0 = 0, 4o = 1 with the analytical solution y;(t) = cost, ya(t) = sint.

—y1(1)

T

9

Yo (t) =

—ya(t)

T

,or= () +351)) 7,

Table 1. Approximation for Problem 1.

(M3

o

TOL MTD STEPS FAIL MAXERR1 MAXERR2 MAXERR
102 DI 95 5 1.00000(0)  9.99583(—1)  1.00000(0)
10~2 1PVOSBD 132 8 1.00000(0)  9.98054(—1)  1.00000(0)
104 DI 137 2 1.11352(—2) 1.27865(—2) 1.27865(—2)
10~ 1PVOSBD 136 1 4.64941(—2) 4.02291(—2) 4.64941(—2)
106 DI 179 2 1.01987(—3) 1.55778(—3) 1.55778(—3)
1076  1PVOSBD 181 1 1.12302(-3) 1.32391(—3) 1.32391(—3)
1078 DI 210 0 1.34432(—4) 2.68910(—4) 2.68910(—4)
10~ 1PVOSBD 205 0 2.00681(—5) 2.31411(—5) 2.31411(-5)
1010 DI 366 1 2.84946(—7) 5.69993(—7) 5.69993(—7)
1071 1PVOSBD 252 0  3.22339(—8) 4.64242(—8) 4.64242(—8)
N S A B o | [T ]
50 100 ‘3&150 200 250 300 350 400 . 00E+nlflz ,1‘0 ,‘g ,‘6 ‘4 ,./// ;

i:‘\\ §—2.00E+00 7;;

i AN gf.znomnn — /" 5\“,‘

"'\G ™. & -400E+00 Pamn — -
. ‘»\ ~ ?j -5.00E+00 / -
B ™~ < 600E+00 / >
\ ~7.00E+00 /
-8.00E+00
Total Steps Tolerance (Tol)

=+—DI —+—1PVOSBD

Fig.1. Accuracy of 1IPVOSBD and DI method.

Fig. 2. Efficiency of 1PVOSBD and DI method.
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Orbit Problem 2: Stiefel and Bettis (source: [18]).

y'(t) = —y(t) +ee’, y(0)

can be written in the equivalent form

yi(t) = -
yilo =1,

y1(t) + ecost,
Yilo =0,

and ¢ = 0.0001 with the analytical solution

1.00E+00
0.00E+00
-1.00E+00
-2.00E+00
-3.00E+00
-4.00E+00

-5.00E+00

Accuracy (Maxe)

-6.00E+00

-7.00E+00

-8.00E+00

-9.00E+00

=1, 3(0) =0.9995i,

yeC

Y5 (t) = —ya2(t) + esint,
y2lo =0,  yhlo = 0.9995,

1 1
y1(t) :cost+§etsint, ya(t) :sint+§€tcost eR.
Table 2. Approximation for Problems 2 and 3.
TOL MTD STEPS FAIL MAXERR STEPS FS MAXERR
10~2 DI 1176 1 1.06797(0) 1178 1 1.00035(0)
10~2 1PVOSBD 1173 0 1.06695(0) 1173 0 1.00032(0)
1074 DI 2488 4 9.60862(—3) 1951 11 1.00054(0)
10~* 1PVOSBD 2706 0 1.98095(—5) 2706 0 1.98263(—5)
10— DI 3145 1 3.13723(—4) 3146 1 3.1712(—4)
10— 1PVOSBD 3144 0 1.65277(—6) 3150 0 1.17117(—6)
10-8 DI 3650 1 6.71619(—5) 3650 1 6.72156(—5)
10-8 1PVOSBD 3652 0 1.19971(—7) 3651 0 1.20103(—7)
10~10 DI 6615 2 1.37306(—7) 6616 2 1.40038(—7)
10~ 1PVOSBD 4242 0 2.12600(—8) 4246 0 1.92072(—8)
‘ ‘ ] ‘ ‘ ‘ ‘ ‘ ‘ LOOE+00 ‘ ‘ ‘ ‘ ‘ — l ‘
\ BN i i i i w 0.00E+00 | | : i : —=4 \
0 1000 w2000 3000 4000 5000 6000 7000 s 0 5 s N -
N “100E+00
X . -200E+00
\ \m - é ~3.00E+00 —
N i\\ev 7 -A00E+00 ] -
= 1 £ 5008400 / 7 =
L E -6.00E+00 / —= 4
< ™~ ~7.00E+00 -
~8.00E+00
~9.00E+00
Total Steps Tolerance (Tol)

—+#=DI —=—1PVOSBD

Fig. 3. Accuracy of 1IPVOSBD and DI method.

Orbit Problem 3: Franco and Palacios (source: [19]).

y'(t) = —y(t) +ee™,

can be written in the equivalent form

yi(t) = —
y1lo

y1(t) + € cos i,

=1,

Yilo =0,

y|0 = 17 y/|0 = i?

Yy (t) = —
Y20 =0,

=+=DI —==1PVOSBD

Fig. 4. Efficiency of 1IPVOSBD and DI method.

yeC,

Y2 (t) +e€ sin ¢t>

Yslo = 1,
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and € = 0.0001 and ¥ = 0.01 with the analytical solution

1—e—? 1—e—?
y1(t) = Tz cost + T w2€tcos¢t ya(t) = T sint + - w2€tsmwt.
LOOE+00 LOOE+00
0.00E+00 1 ‘ J 1 1 1 1 1 0.00E+00 1 1 L‘\‘* ; 1
10084+00 © 1000, 2008 3000 4000 5000 6000 7000 _1.00E+00 2 -10 - - //[1 5.4/ 2 0
-2.00E+00 \ _ -2.00E+00 // /
0} %
éé -3.00E+00 N g -3.00E+00 —F / 7
T -4.00E+00 N = ~400E+00 y
% - M S — /
g -5.00E+00 4 % -5.00E+00 /
E ~6.00E+00 "o S -6.00E+00 ——
~7.00E+00 S ™~ ~7.00E+00 ]
-8.00E+00 - -8.00E+00
~9.00E+00 ~9.00E+00
Total Steps Tolerance (Tol)
~+-DI —+—1PVOSBD ~+-DI —+-1PVOSBD
Fig.5. Accuracy of 1IPVOSBD and DI method. Fig. 6. Efficiency of 1IPVOSBD and DI method.

7. Discussion and conclusion

When solving orbital problems, the DI method occurs some difficulties due to its division component,
which may cause the divided difference to be small enhancing the round-off errors, especially with
trigonometric solutions. This becomes evident when dealing with small tolerances (as shown in Figs.3
and 4) that both 1PVOSBD and DI are competitive for greater tolerance. From TOL = 10(-9) the
1PVOSBD breaks away and shows to be more efficient. The overall numerical results demonstrate the
advantages of the IPVOSBD over the DI method when solving orbital problems. In terms of accuracy,
the 1IPBDVSO is more accurate than the DI method and shows to be more stable, especially when
facing problems with a higher level of difficulty. Figures 3, 5, and 7 illustrate the efficiency of both
methods by the undermost curve. Hence, by comparison of efficiency and accuracy, we justify our
conclusion that the method of choice would be the 1IPVOSBD. This study has proposed a 1IPVOSBD
method as proven to be an efficient ODE solver due to reduced computational cost with minimal to
no loss of accuracy. For future works, the IPVOSBD method can be fitted with a block formulation
to significantly lower computational costs.
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METO,D, 3MIHHOIO I'IOpFl,D,Ky KpOKy Ans pOBB $l3yBaHH$I Op6ITaJ'IbHVIX
3aga4y i3 I'IepIO,EI,I/l‘-IHI/IMI/I p03B A3KaMm

Paceni A. @. H.', Txxamamymin H. A2, Hamxu6 H.',
A6yn Carap M. X.3, Bour T. Ixx.4, Koo JI. @4

! Exonomiunuts daxyavmem i Myamanam,
Ynisepcumem icaamcoruxr nayrx Manratiszii,
71800 Hinati, Heeepi Cembinan, Manatizis
2 [Jenmp 06oponHux 0ocAiddHcens,
Havionarvruti ynisepcumem oboporu Manatiaii,

Kem Cyneati Beci, 57000, Kyana-JIymnyp, Manratizis
3Ilenmp PyroamernmarvHut 00cAi0Ncens CiabCoko20Cn00aPCHROT HaYKU,
Ynisepcumem Ilympa Manatizis,

48400 UPM Cepdane, Ceaanzop, Manratizis
4 Kagedpa mayxu i mecriru,

Darysomem 2yMaHimMapHuT HayK, MEHEOHCMEHMY Ma HAYKU,
Vwisepcumem Iympa Manatisii,

Binmyay Capasax Kamnyc, 97008, Binmyay, Capasax, Maratizis

Icuytoui uncenpHi TexHIKM 31 3MIHHUM PO3MIpOM KPOKY JJIs PO3B’3yBaHHSI CHCTEMU 3BU-
vafinux nudepenianpbanx pieastEb (3/IP) BUIIOro NOpSIKY BUMATAIOTH GE3M0CEPETHBO-
ro obunc/ieHHs KOedilieHTiB iHTerpyBaHHs TPU KOXKHIHl 3MiHI KPOKY. ¥ IIbOMY JIOCJIiI-
JKEHHI 3aIIPOIIOHOBAHO PO3MIp KPOKY 3MIiHHOTO TOPSIKY, SKUH JT03BOJIsI€ O€3M0CepeHE
pO3B’si3yBaHHs OPOITAJIBPHUX PIBHSIHD BHUIIOIO IOPSJIKY. 3AIIPOIOHOBAHO AJITOPUTM, 33
SIKAM OOYHCITIIOITHCA KOeMIIIEHTH IHTerpyBaHHsI JIUIIE OJIMH Pa3 Ha MMOYATKY i, 38 HEOOXiT-
HOCTi, OIMH pa3 Hanpukinii. TOUHICTh YnCcebHOTO HAOJIUKEHHS IMiATBEP/KEHO Ha Bil0-
MUX OpOiTanbHUX JudepeHIiaJIbunX piBHAHHAX. J[1s 3MeHIeHHsS 009nC/IIOBaIbHUX BUT-
paT JJisi aaropuTMy MPEIUKTOP-KOPPEKTOP OTPUMAHO 3B’SI30K MiK KoedirieHTamMu iHnTe-
TpYBaHHSI PI3HUX MOPSAKiB. EMEKTUBHICTH 3alIpOIOHOBAHOTO METOLY IIiATBEPIXKYETHCS
rpadgivHuM MOJAHHAM TOYHOCTI Ha yCiX KPOKaX OIIHKH.

Knio4oBi cnoBa: npukiadia Mamemamuka, 360pomHa Didhuus, 36unalini dudeper-
YIANOHT PIBHAHHA, 0G2GMOKPOKOSICMY, 3MIHKHUT NOPAJIOK KDPOKY.
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