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The current study provides a numerical method that is derived in a backward difference
formulation for ordinary differential equations. The proposed method employs a constant
step size algorithm of order 12. The backward difference formulation serves as a com-
petitive algorithm for solving ordinary differential equations. In the current study, the
backward difference method is used to analyze the dynamics of capital stocks in terms of
depreciation rate for the capital–labor ratio. Results provided in this study will validate
the accuracy of the backward difference algorithm hence proving it as a viable alternative
for analyzing economic problems in the form of ordinary differential equations.
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1. Introduction

In the pursuit of extending Euler’s method, Bashforth and Adams [1] established a method currently
known as the Adams–Bashforth method. The Adams–Bashforth method proposed in [1] was designed
to obtain the approximated solution using solutions from multiple previous steps, hence inspiring
the original multistep method. Since then, many variation of the multistep method were established
including the well known Adams-Moulton method. The Adams–Moulton method is an implicit method
that was actually conceived by Adam in [1]. Moulton’s name was associated with the Adams formulae
after his observation revealed in [2] that the Adams explicit (Adams–Bashforth) and implicit pair could
be used in tandem to obtain a more accurate approximation. His revelation of a Adam–Bashforth–
Moulton approach prompted the predictor–corrector method.

Inspired by works of Suleiman [3], a series of multistep method were established by various authors
such as [4–8]. Omar [4] extended the works of [3] by developing a block algorithm for Suleiman’s divided
difference formulation. Abdul Majid then established a fully implicit method for non-stiff solving higher
order ordinary differential equations (ODEs) in [5]. In [6], Ibrahim formulated an algorithm for solving
stiff ODEs using a backward differentiation approach. This area of research was then continued by [8]
with a backward difference predictor–corrector algorithm.
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The current research adopts a backward difference formulation in variable order constant step size
mode of order 12 (BDO12). Similar to the Adams–Bashforth–Moulton formulation, the proposed
method implements a predict-correct algorithm with explicit and implicit integration coefficients. The
backward difference method formulated in this study is used to analyze the dynamics of capital which
can be found in the field of economics. Results provided also include verification of the method’s
accuracy. For complete error estimation, we refer readers to the works of [9]. Latest study involving
multistep methods for solving ordinary differential equations can be found in [10–19].

2. Backward difference method

The current research considers the ordinary differential equation

ẏ = f(t, y), (1)

with the initial condition,
y(a) = η

in the interval t ∈ [a, b]. The proposed method implements back values up to the order 12. Euler’s
method is initially used to obtain the require back values before continuing with the backward difference
algorithm. Derivation of the algorithm begins by constructing the predictor formula. Firstly consider
the ordinary differential equation (1) which is then integrated once, from 0 to 1 yielding

yp(tn+1) = y(tn) + h

∫ 1

0
f(t, y) dt. (2)

Next by substituting the Newton–Gregory backward difference formula:

Pn(t) =
k−1∑

j=0

(−1)j
(
−s
j

)
∇jfn, s =

t− tn
h

, (3)

we are able to approximate f(t, y) in Eq. (2) thus establishing the folllowing:

yp(tn+1) = y(tn) + h

k−1∑

j=0

pα1,j∇jfn, pα1,j = (−1)j
∫ 1

0

(
−s
j

)
ds. (4)

The next step is to obtain the corrector formula. Again, by integrating (1) once but with the subtle
difference of changing the limit of integration from −1 to 0 as follows:

yc(tn+1) = y(tn) + h

∫ 0

−1
f(t, y) dt. (5)

Subsequently, by approximating f(t, y) with the following implicit version of the polynomial in (3):

Pn+1(t) =
k∑

j=0

(−1)j
(
−s
j

)
∇jfn+1, s =

t− tn+1

h
, (6)

provides the following first order corrector formula

yc(tn+1) = y(tn) + h

k−1∑

j=0

cα1,j∇jfn+1, cα1,j = (−1)j
∫ 0

−1

(
−s
j

)
ds. (7)
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3. Integration coefficients

In this section, we will derive the explicit and implicit integration coefficients formulae. This begins
by denoting the first order generating functions in terms of integration coefficients as follows:

Γp1(t) =
∞∑

i=0

pα1,jt and Γc1(t) =
∞∑

i=0

cα1,jt. (8)

By solving the integral

pα1,j = (−1)j
∫ 1

0

(
−s
j

)
ds (9)

establishes the first order explicit generating function in the following form

Γp1(t) =
−t

(1 − t) log(1 − t)
. (10)

Next, the first order implicit generating function is obtained by integrating

cα1,j = (−1)j
∫ 0

−1

(
−s
j

)
ds. (11)

which yields the following generating function

Γc1(t) =
−t

log(1 − t)
.

Next, through mathematical deduction, the first order explicit and implicit set of coefficients can be
expressed in the following recursive relationship

pα1,k =

k∑

j=0

cα1,j. (12)

The following Tables 1 and 2 respectively consist of coefficients used for both predictor and corrector
which was extended from [20].

Table 1. Predictor Coefficients for k = 0, 1, . . . , 12.

0 1 2 3 4 5 6

pα1,k

1
1

2

5

12

3

8

251

720

95

288

19087

60480

7 8 9 10 11 12

5257

17280

1070017

3628800

25713

899600

26842253

95800320

4777223

17418240

703604254357

2615348736000

Table 2. Corrector Coefficients for k = 0, 1, . . . , 12.

0 1 2 3 4 5 6

cα1,k

1 −1

2
− 1

12
− 1

24
− 19

720
− 3

160
− 863

60480

7 8 9 10 11 12

− 275

24192
− 33953

3628800
− 8183

1036800
− 3250433

479001600
− 4671

788480
− 13695779093

261534873600
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Because, “Acceptance criteria is crucial because implementing variable order in a multistep method
relies on the back values stored”, (refer to [21]) the error estimate Ek will used in determining order
increment or reduction.

1. The algorithm will reduce the order of the method by 1 when k > 2 and max(|E(k−1)|, |E(k−2)|) 6
|Ek|.

2. In the case when E(k+1) is available, the order will be reduced again by 1 for k > 1 if |E(k−1)| 6
min(|Ek|, |E(k+1)|).

3. Only when k + 1 successful step have been achieved, the order will be increased by 1 if for k > 1,
|E(k+1)| < |Ek| < max(|E(k−1)|, |E(k−2)|) and in the case of k = 1, |E(k+1)| < 0.5|Ek|.

4. The order of the method is restricted to the range 1 6 k 6 12.

4. Results, analysis and conclusion

The growth model examined in this research is a simplified variation which excludes markets and firms
such that the production function takes the form of

Y (t) = F
[
K(t), L(t), T (t)

]
,

where Y (t) is the flow of output produced given three inputs: physical capital K(t), labor L(t), and
knowledge T (t) in respect to time, t. Let the capital be a homogeneous good with a constant with a
depreciation rate δ > 0 which implies that a constant portion of the capital stock diminishes at each
point of time until it is no longer viable for production. Then under the assumption that all capital are
equally productive, the net increase in physical capital at a point in time equals the gross investment
less depreciation give by the following

K̇(t) = s F
[
K(t), L(t), T (t)

]
− δK(t),

with the saving rate s.
In this research, we analyze the dynamic behavior in economics from the perspective as characterized

by Solow [22] and Swan [23] production model by considering the Cobb–Douglas function

Y = AKαL1−α

The Cobb–Douglas production function can then expressed in form of steady–state capital–labor ratio
as

k∗ =
[
sA/(n+ δ)

](1/(1−α)
.

Note that k∗ increases together with the saving rate s and the level of technology A, and decreases
with the increment of population growth rate, n and depreciation rate, δ, thus provides the following
steady-state level of output per capita:

y∗ = A1/(1−α)[a/(n+ δ)
]α/(1−α)

.

As discussed in [24], because the transition of an economy’s per capita income converges toward its
own steady–state value and to the per capita incomes of other economies, the growth rate of k can be
written as

k̇/k = sAk−(1−α) − (n+ δ).

The parameter 0 < α < 1 denotes the output elasticity with respect to the capital and we let the
capital stock per effective labor be k = K/(AL). Next assume that the growth rate of population
is constant which is denoted by L̇/L = n, the growth rate of technological progress, Ȧ/A = γ > 0
and the rate of capital depreciation represented by δ, where δ ∈ [0, 1]. Thus, the dynamics per-capita
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capital k with respect to time t, and governed by the Cobb–Douglas production function associated
with the Solow–Swan model yields:

k̇ = s kα − δk,

with an analytical solution of

kt =
[(
k
(1−α)
0 − s

δ

)
e−(1−α)δt +

s

δ

]1/(1−α)
.

As t→ +∞, kt → (s/δ)1/(1−δ) (source: [25]).
Tables 3–5 are provided to highlight the accuracy of the method. Results displayed in the tables

are the average error per step between the approximated solution and the exact solution with a step
size of h = 0.01. We would like to note that when using a finer step size, the accuracy of the BDO12
increases substantially. For purpose of the current research, a larger step size is selected to present
the ability of the BDO12 algorithm under dire circumstances. Table 3 shows the error when s and α
are fixed but δ increases, Table 4 shows the error when s and δ are fixed but α increases and Table 5
shows the error when α and δ are fixed but s increases. Each table provides two circumstances, one if
the fixed parameters are low, the second when the fixed parameters are of high value. As illustrated
in Tables 3–5, the BDO12 method provides accurate approximation at almost every condition. The
result would be more efficient if a smaller step size was selected. In Table 3, with selected parameter
of s = 0.9, α = 0.9 and δ ∈ [0.1, 0.3] the results provided are less accurate. This is contributed to
the element of stiffness cause by the selected parameters. Because the BDO12 method is developed to
handle non-stiff ODEs, even the mildest of stiffness may affect its accuracy.

Table 3. Average error of the BDO12 for variable δ.

δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.9

s = 0.1, α = 0.1 5.37861e − 02 1.63504e − 01 1.72888e − 01 1.53322e − 01 1.30603e − 01
s = 0.9, α = 0.9 3.26335e + 00 1.64265e + 00 7.19939e − 01 2.04440e − 01 5.93420e − 02

Table 4. Average error of the BDO12 for variable α.

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

s = 0.1, δ = 0.1 5.37861e − 02 4.68832e − 02 3.80785e − 02 2.64712e − 02 1.04855e − 02
s = 0.9, δ = 0.9 5.04973e − 02 5.93991e − 02 7.01513e − 02 7.84862e − 02 5.93420e − 02

Table 5. Average error of the BDO12 for variable s.

s = 0.1 s = 0.3 s = 0.5 s = 0.7 s = 0.9

α = 0.1, δ = 0.1 5.37861e − 02 6.05377e − 02 1.46807e − 01 2.14518e − 01 2.69348e − 01
α = 0.9, δ = 0.9 1.53213e − 01 1.82670e − 01 1.99897e − 01 1.72165e − 01 5.93420e − 02

The selected saving rate, s > 0 because when s = 0 the dynamics per-capita capital equation will
be left with only a multiplicity of capital depreciation δk, hence merely providing the depreciated value
of k. Figures 1–6 are the approximated solutions of k by the proposed backward difference method
of order 12 (BDO12). Figures 1 and 2 illustrate the dynamics per capital when savings rate, s and
output elasticity, α are fixed but capital depreciation varies. Figure 1 considers a minimal savings and
elasticity whereas Figure 1 highlights the effect of the latter. On the other hand, Figures 3–6 analyze
the effects of fixed depreciation rate with different savings and output elasticity. In Figures 3 and 4, a
fixed depreciation rate of δ = 0.1 is selected and in Figures 5 and 6, a depreciation rate of δ = 0.9 is
selected to show the effect caused by different δ’s.
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Fig. 1. Numerical approximation of capital stock
per effective labor given s = 0.1 and α = 0.1 with

0 < δ < 1.

Fig. 2. Numerical approximation of capital stock
per effective labor given s = 0.9 and α = 0.9 with

0 < δ < 1.
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Fig. 3. Numerical approximation of capital stock per
effective labor given 0 < s < 1 and α = 0.1 with

δ = 0.1.

Fig. 4. Numerical approximation of capital stock per
effective labor given s = 0.1 and 0 < α < 1 with

δ = 0.1.
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Fig. 5. Numerical approximation of capital stock per
effective labor given 0 < s < 1 and α = 0.1 with

δ = 0.9.

Fig. 6. Numerical approximation of capital stock per
effective labor given s = 0.1 and 0 < α < 1 with

δ = 0.9.

As presented in Figure 1, when dealing with small δ and α, the increase of depreciation rate from
0 to 1 shows a rapid exponential decrease of k. Dissimilar to a large δ and α, the increase of δ reduces
an exponential increase of k to a static k. Figures 3 and 5 detail the effect of variable savings on
the dynamics per-capita capital. When a small δ is selected (Figure 3), the increase of s is able to
change a reducing pattern of dynamics per-capita capital to an increasing pattern. In contrast to a
high δ, increasing the value of s is only able to minimize the reduction of dynamics per-capita capital
(Figure 5). Next, Figures 4 and 6 exemplify the effects of a variable α. Unlike the effect of s as shown
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in Figure 3, the effects of an increasing α is only able to minimize the reduction of dynamics per-
capita capital when dealing with a small depreciation rate but barely shows any advantage with a high
depreciation rate (Figure 6).

Hence, it can be concluded that to provide a positive dynamics per-capita capital, both savings and
output requires a higher rate, where the increase of s provides a higher dynamics per-capita capital
and the increase α offers a better increment rate.
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Зворотнi рiзницевi форми для аналiзу динамiки запасiв капiталу
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Це дослiдження описує чисельний метод, виведений у зворотнiй рiзницевiй формi для
звичайних диференцiальних рiвнянь. У запропонованому методi використовують ал-
горитм сталого розмiру кроку 12-го порядку. Зворотна рiзницева форма слугує конку-
рентноздатним алгоритмом для розв’язування звичайних диференцiальних рiвнянь.
У цьому дослiдженнi метод зворотної рiзницi використовують для аналiзу динамiки
основних фондiв у величинах норми амортизацiї для спiввiдношення капiталу та пра-
цi. Отриманi результати пiдтверджують точнiсть зворотного рiзницевого алгоритму,
доводячи його альтернативнiсть для аналiзу економiчних проблем у виглядi звичай-
них диференцiальних рiвнянь.

Ключовi слова: прикладна математика, зворотна рiзниця, звичайнi диферен-
цiальнi рiвняння, багатокроковiсть.
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