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Bootstrap is one of the random sampling methods with replacement, that was proposed
to address the problem of small samples whose distributions are difficult to derive. The
distribution of bootstrap samples is empirical or free and due to its random sampling
with replacement, the probability of choosing a specific observation may be equal to one.
Unfortunately, when the original sample data contains an outlier, there is a serious problem
that leads to a breakdown OLS (Ordinary Least Squares) estimator, and robust regression
methods should be recommended. It is well known that the best robust regression method
has a high breakdown point is not more than 0.50, so the robust regression method would
break down when the percentage of outliers in the bootstrap sample exceeds 0.50. It is
well known that fixed-r bootstrap is resampled the residuals which probably are having
outliers. Moreover, the leverage point(s) is an outlier that occurs in X-direction, so the
effects of it on fixed-x bootstrap samples would be existence. However, the decision-
making about the null hypothesis of bootstrap regression coefficients could not be reliable.
In this paper, we propose using weighted fixed-z bootstrap with a probability approach
to guarantee the percentage of outliers in the bootstrap samples will be very low. And
then weighted M-estimate should be to tackle the problem of outliers and leverage points
and taking a more reliable decision about bootstrap regression coefficients hypothesis test.
The performance of the suggested method has been tested with others by using real data
and simulation. The results show our proposed method is more efficient and reliable than
the others.

Keywords: bootstrap, robust regression, confidence intervals, point, WBP, weighted M,
hypothesis test.
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1. Introduction

The hypothesis test about regression coefficients is very important due to it helps to know which vari-
ables are more impact on the dependent variable and that can be used for prediction. It is well known
that the estimates of the LS method are the best linear unbiased estimates when their assumptions are
met. Unfortunately, in the real world of data is very hard to satisfy all of these assumptions (Uraibi
et al., 2009). For instance, the presence of outliers violates the normality assumption of random errors
and therefore robust regression methods are recommended. There are two types of outliers in regres-
sion data, one in the y-direction or in the regression residuals which are so-called outliers, and leverage
points that are present in X-direction. So, the random error distribution F. is approximately normal
and can be formulized as follows,

F.=(1—-¢)N +¢H, (1)
where N is normal with zero mean and constant variance, H may be another distribution, and ¢ €
[0,0.5]. Sometimes, H is also normal distribution but with different parameters and in case Eq. (1) is
considered mixture normal distribution. However, the parameters of H would determine the shape of
the distribution, probably thin-tailed or heavy-tailed (thinner or heavier than exponential distribution),
for more details about the effect of outliers, see (Uraibi et al.; 2015, Uraibi and Midi; 2019, Uraibi and
Midi; 2017). Huber and Ronchetti (1981) introduced M-estimate that is an iterated and re-weighted LS
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method to obtain robust regression coefficients. Rousseeuw (1984) Least Median Squares (LMS) which
is ordering the squared of residuals from lower to upper values and then the estimation of regression
coefficients is based on the half of data that analog the lower values of squared residuals. Rousseeuw
and Leroy, (1987) considered dealing with 50% of data means losing a lot of information about the
studied phenomena, therefore they suggested Least trimmed squared (LTS) which looks for the clean
subset of data after trimming the proportion of outliers and then the regression coefficients should be
estimated using LS. Least Absolute Deviation (Huber, 1987) were put forward to minimize the sum
of absolute values of errors. The breakdown point of these methods is 1/n when the single leverage
point is present in the dataset set (Croux et al., 2003). Yohai (1987) proposed MM-estimator which
is a highly efficient and 50% breakdown point that is resistant to the presence of outliers and leverage
points (Yohai and Maronna,1976).

Bootstrap is another approach that has not required any distributional assumptions for random
errors (Efron, 1992). It is a random resampling procedure with replacement to construct free or
empirical distribution for data. The fast and efficient non-parametric bootstrap method is fixed-x
bootstrap or what is called residual bootstrap method which is fully dependent on resampling regression
residuals. MacKinnon (2006) pointed out that when the model is linear with independent errors that are
not correlated with independent variables then accurate inference can be done by residual bootstrap.
On the contrary, Koenker (2005) reported that the residual bootstrap probably is independent but
not identically distributed. Consequently, fixed-x bootstrap does not guarantee the homogenous of
resampled residuals.

Moreover, due to the fixed-x bootstrap is sampling with replacement, the outlier could appear in
the residuals bootstrap sample probably one time, two times, or as a full dataset. In this case, the
simulated bootstrap distribution perhaps influenced by these bootstrap samples because it is a higher
proportion of outliers than in the original data set. Consequently, the classical fixed-x bootstrap is
non-robustness (Shao, 1990) and it fails when the error distribution is the heavy tail (Athreya, 1987).
Great efforts have been paid the literature for bootstrap robustness (see, e.g. Shao (1992), Stromberg
(1997), Singh (1998), Willems and Van Aelst (2005), and Midi et al. (2009)). Amado and Pires (2004)
suggested resampling bootstrap with probability to ascribe more importance to some sample than the
other one. Midi et al. (2009) mentioned that the previous method is not for regression setting and
therefore were proposed weighted bootstrap with probability (WBP). The WBP algorithm assigns very
chance probability to outlier to be chosen in bootstrap samples.

The WBP algorithm assigns a very low chance of abnormal observation to be chosen in bootstrap
samples. Therefore, using WBP with residual bootstrap would be resampling the normal residuals
that possess a high probability to be selected in the bootstrap samples. Consequently, if there are no
leverage points in the data, the classical LS method can be used to estimate the regression coefficients
of each bootstrap sample. As we know that, the breakdown point of LS is 1/n in the presence of
outliers (leverage point). So, when the data are having leverage points, the LS would not be a feasible
choice. In this paper, we propose weighted the design matrix X to reduce the effect of leverage points.
Employing a weighted design matrix with WBP should increase the resistance of LS to the effect of
leverage points. Homogeneity of residuals is an essential issue therefore, the scaled residuals are used
with WBP instead of residuals to get a constant variance.

Cherink and LaBudde (2011) stated that the relationship between hypotheses tests and confidence
intervals make it possible to construct a bootstrap test to obtain bootstrap confidence interval. For
instance, reject the null hypothesis Hy: 8 = 0, where the significant level is « if and only if the value of
zero lies outside the bootstrap confidence interval, even of using one or two tailed confidence intervals
for one or two tailed tests. One of the prevalent incorrectness of the practitioners of statistics is that
they considered the confidence intervals of resampling methods such as bootstrap do not have the
interpretation, and believed that through one sample there is a (1 — a) chance the confidence interval
around the estimated parameter contains the true one. Indeed, if the distribution of the estimated
parameter is exactly or approximately derived, the exactly or approximately confidence intervals can be
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formed, respectively. But when the distribution of the estimated parameter is unknown, the bootstrap
method is one of the solutions to estimate the distribution that is used for forming approximate
confidence intervals. Furthermore, the repeated samples may include (1 — «) out of 100 confidence
intervals that would be expected to contain the true parameter.

This paper suggests hypothesis testing of Weighted Fixed Bootstrap with Probability of WM-
regression coefficients (WFBP.WM). The WFBP.WM is put forward improve the performance of WBP
method in the presence of outliers and leverage points and obtaining accurate hypotheses test. This
paper is organized to present the Weighted M-estimate in Section 2. Section 3 describes the algorithm
of WFBP.WM hypotheses test. Section 4 and Section 5 illustrate numerical example and simulation
study to assess the performance of the WFBP.WM algorithm. Section 6 presents the conclusion.

2. Weighted M-estimate

Consider the linear regression model
yi:XZ-B—I—ei, 1=1,2,...,n, (2)

where X; is the p dimensional of independent variables which may include intercept, 5 is a p-vector
of unknown regression coefficients, e; is the random errors with mean equals to zero and constant
variance. By taking the expected value of Eq. (2) would result in,

ZJZ:XJBy Z:1,2,,7'L, (3)

where ﬁ estimates are the best linear unbiased estimates minimizing the objective function of sum
squared residuals.

n
ﬁ:argminZe?, 1=1,2,...,n, (4)
b=

where ¢; = y; — X ZT B . Suppose that the data set is having a leverage point in the z-direction and let
the e; terms follow the distribution of contaminated model Eq. (1). In this case, LS is not a practical
choice and robust methods are recommended. One of the familiar robust methods is M-estimate
which is resistant to outliers but it is sensitive to leverage point with zero breakdown. Our proposed
algorithm takes into account weighted M-estimate (WM-estimate) to increase the breakdown point.
WDM-estimate can be described into steps:

Step 1. Weighted the design matrix X. In this step, the MCD (Rousseeuw and Van Driessen,
1999) location and scatter estimators have to computed and then calculation the vector of Robust

Mahalanobis Distance RMD? as follows,
RMD?* = (X — jinicp) Critp (X — finien). (5)

It is obvious that, when the ¥ observation is leverage point the i RMD? would be large value.
So assigning low weight for leverage point requires inversely proportional of the i RMD? with the
clean subset (Giloni et al.; 2006a, Uraibi; 2019), we adopt Giloni et al. wieghted function,

X2

and the new weighted design matrix can be written as x,, = w.x, and the estimates of LS with x,, can
be formulize as follows,

/30.) = (XJ;Xw)_lXJ;ya
gw = Xnga (7)
éw =Yy — XLE/B/;U?

Mathematical Modeling and Computing, Vol.9, No. 1, pp.26-35 (2022)



Robust bootstrap regression testing in the presence of outliers 29

Step 2. Iteratively reweighted least squares (IRLS) for (x,,y). The BM estimates are obtained by
minimizing an objective function p that can be expressed as

n
M — argmian(ém), 1=1,2,...,n, (8)
i=1

where p is a symmetric function with a unique minimum at zero. Taking partial derivative with
respect to 8 and setting them equal to zero, producing a system of normal equations that can solve
this minimization problem. Thus, by letting 1) = p’, we would get

D (6wi) Xui = 0. 9)

Several choices of p and 1 functions are available, in this paper we used bisquare functions (Tukey,
1964) as follows,
e\’
. 1—[1— ﬂ) if [ewi| < F,
pew) = [ (5 ] e (10)
1 if |éw2| > k?,

A 2
P(Ewi) = €wi [1 — <%> ] if 1(|éwil) <k, (11)

~ 2
5 Cwi p A
() = Loei) P_<?>] el sk (12
0 if |éwz| > k?,

where I(-) stands for indicator function, that is

1 ife, > 0,
[(60:) = { 0

0 ife, <O.
Consequently, the estimation equation maybe written as,

Zw(éwi)Xwi =0. (13)

Theses estimating equations require minimizing Y w?(é,;)? by using iteratively reweighted least
squares (IRLS),
BMG) = (Xlw(j_l)Xw)_lXJJw(j_l)y. (14)

In TRLS, the initial fit is calculated, and then a new set of weights is calculated based on the results
of the initial fit. The iterations are continued until a convergence criterion is met.

3. The WFBP.WM method

ﬁf\f[ *, Eq. (14) is robust against outliers and leverage points, that is not the residuals of WM are free
from outliers, where “*”
because the residuals are the differences between y and g = Xwﬁﬂ/f ¥, €y =Yy — Y, as a result é, is
having outliers due to y is already having outliers based our assumption in above. To protect the whole
bootstrapping procedure, the WBP method suggested to x;v?ighted bootstrap with probability. Thus

refers to j™* iteration in which the convergence criterion is met. That is

L(*). In this case, these probabilities would

n

the i residual will get the selection probability of P; =

=1 "1
control the mechanism of sampling with replacement whereby the residual outliers are ascribed less
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importance to than the clean ones (Ramli, 2009). In the other word, only e D) subject to bootstrap

procedure, where D is the number of residuals that poses zero weights according to Eq. (12) and zero
probability. This procedure will allow us to use WLS with bootstrap samples to get robust regression
coefficients and computing the standard errors. The confidence intervals and the hypotheses test of
WBP regression coefficients algorithm can be summarized as follows,

1. Let the observed ¢ values of robust regression coefficients are computed using MM-estimator (Yohai,
1987) such that,

MM - B

SD(SMM)’
where [ is the regression population parameter, BMM is robust estimated regression coefficients and
SD(AMM) the standard deviation of it.

2. Calculate the residuals of WM method é,,. (b)

3. Sampling n residual of bootstrap sample e;,” with probability from é, and then attach it to g,
~(b N b
yU(J) =4, + e,

4. Regress the bootstrapped values of gff’) on the fixed X, to get BU(Jb) = (XJJXW)_lXJJ;gU(Jb).

5. Due to the t statistic is pivotal quantity under normality assumption a centered and standardized

;=

(15)

bootstrap version of BS’) which is denoted as t(®) is asymptotical pivotal under the same assumption,
where (6
40 _ M (16)
sD(AY)

6. Repeat the steps (3-5), B times.

7. The bootstrap percentile intervals can be used the empirical quantity t® to form the confidence
intervals for (; such that tgli)) < tEg)) < ... < t(lg are the order of WBP replicqations of the ¢(®)
statistic. The lower and upper confidence intervaf for 8 can be computed as follows,

3 b) 3(b) AMM |, ,(b) A(b)
BMM SD(Ay)) < B <M+t SD(BY), 17
[(B+1)g] (57) [(B+1g] (47) (17
where the square brackets indicate rounding to the nearest integer.
The equal-tail bootstrap p-value is another test that can perform two tests on the same time,
against values in the lower and upper tail of the distribution, respectively, as follows,

B B
1 1
p(#;) = 2min <E St < %), 52 It > @-)). (18)
J J

4. The modified market value of Iraq’'s trade banks

The data are collected from the official website of the Iraqi Stock Market for nine local trade banks
which are the most traded than others for the period (2011 — 2015). The researchers are considered
six (Trading Rate (X1), Earning per share (EPS) (X2), share turnover ratio (X3), Annual Average
price (X4), the Assets (X5), and Undistributed earnings (X6). We modified this data by replacing
the 5" observation of X1 and 15" of X2 with random observations that have been generated from

X%0.05,50) distribution to contaminate both variables by leverage points. The y39 and y45 observations

are replaced with two values from X%0.05,50) distribution too, to contaminate the response variable,

where y is the banks market value that we expect it is affected with these variables according to the
multiple linear regression model that can be described as follows:

y = X(45)Brx1) T €4sx1)- (19)

Table 1 summarizes the results of the WFBP.M method, as we note that the percentile confidence
intervals (L.C.I, U.C.I) and P.value have agreed, that the two variables of assets and the annual price
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rate are the most significant than others in determining the banks market value in the Iraqi Stock
Exchange. While the results of the WFBP.WM method that is presented in Table 2 find five out of
six variables that are most significant in determining the banks market value were identified since the
trading Rate variable (X1) is excluded from that significance.

Table 1. The estimate of WFBP.M method for the modified market value of Iraq’s trade Banks data.

Variable Obs.t BMM L.C.I. | U.CI. | Sig | P.value | Sig
Intercept | —11.383 | —0.232 | —0.452 | 0.075 0.000 | **
X1 2.786 0.033 | —0.158 | 0.517 0.483
X2 —-5.913 | 0.105 | —0.591 | 0.366 0.292
X3 —0.623 | —0.018 | —0.202 | 0.324 0.268
X4 10.607 0.190 0.071 | 0.720 | ** | 0.090 | **
X5 7.991 0.402 0.004 | 0.790 | ** | 0.000 | **
X6 7.430 0.061 | —0.028 | 0.928 0.12

On the other hand, Table 2 depicts that perfect similarity between the tests of C.I. and p-values,
since only one case can be observed that the value zero value lies outside of C.I. of X1 which its P.value

of regression coefficient is greater than 0.05, consequently, both tests reject the null hypothesis about
the ﬁMM

Table 2. The estimate of WFBP.WM method for the modified market value of Iraq’s trade Banks data.

Variable Obs.t MM L.CI | U.CI | Sig | P.value | Sig

Intercept | —11.383 | —0.092 | —0.374 | —0.069 | ** | 0.011 | **
X1 2.786 0.024 | —0.058 | 0.333 0.310
X2 —5.913 | —0.331 | 0.450 0.105 | ** | 0.000 | **
X3 —0.623 | —0.262 | 0.125 0.181 | ** | 0.000 | **
X4 10.607 0.471 0.167 0.543 | ** | 0.000 | **
X5 7.991 0.802 0.113 0.574 | ** | 0.000 | **
X6 7.430 0.209 0.113 0.667 | ** | 0.010 | **

It is noticed in Table 2 that three of the regression coefficients are negative, which are the intercept,
the share turnover ratio, and EPS. It indicates that these variables have inverse relationships with the
market value. In other words, the higher the market value, for instance, results in the lower of both
variables (the share turnover ratio and EPS), and vice versa. As for the rest of the variables, they
maintained a positive relationship with the market value of the banks.

5. Simulation

The simulation studies have been done to know the performance of WFBP.WM algorithm compared
with WFBP.M. The WBP.M algorithm is similar to WFBP.WM except WBP combined with M-
estimate. Another comparison will be done inside WFBP.WM algorithm to know with which test this
algorithm will be stable. The design matrix X(,x¢) of the six independent variables is generated ran-
domly from multivariate normal distribution with zero means and pl“=7! variance and covariance matrix,
p = 0.20. The maximum value of X is replaced by value is generated from X%0.05,50) to create the high
leverage point, and m = a X n observations of X4 are contaminated by using the previous contami-
nation mechanism to create another leverage points, where « the percentage of outlying observation.
The first m of random errors e(,, 1) vector are generated from chi-square distribution with 50 degree of
freedom and the remaining e((,,_p,)x1] are generated from random normal distribution N (0, 2). Suppose
that population regression coefficients which is denoted asis known, and S(7,1) = (1,1,1,1,0,0,0), the
response variable y(;, 1) can be computed as follows,

Y = Xnxn)Brx1) + emx1)- (20)
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Table 3. The simulation result of WFBP.M method, where n = 45, o = 0.05.

Variable | Obs.t pMM Ave.L.C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 2.136 51.81 —10.334 25.729 0.393

X1 1.813 | —2049.26 | —11.126 27.345 0.320

X2 1.820 108.79 —10.485 26.209 0.560

X3 1.236 -75.75 —9.573 23.715 0.461

X4 0.009 8.29 —10.513 22.920 0.489

X5 0.156 187.12 —11.243 24.649 0.489

X6 0.669 77.32 —9.424 20.590 0.488

Table 4. The simulation result of WEFBP.WM method, where n = 45, a = 0.05.

Variable | Obs.t | MM | Ave.L.C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 2.136 | 1.020 —0.349 4.484 0.024 oK
X1 1.813 1.068 —0.414 4.660 0.032 oK
X2 1.820 | 1.080 —0.369 4.548 0.035 oK
X3 1.236 1.147 —0.248 4.211 0.033 oK
X4 0.009 | 0.001 —1.256 3.222 0.261
X5 0.156 | —0.003 —1.345 3.487 0.279
X6 0.669 | 0.039 —1.127 2.898 0.276

This simulation scenario has been considered when « equals 0.05 for n = 45,65, 85,100, where n
is the samples. This simulation study is designed to be having three non-zero coefficients and three
zero coefficients. The best method is the one that diagnostic the correct significant and non-significant
coefficients and is more stable than others. For this purpose, both methods were used to get the
results of 1000 datasets that each one replicated 200 times. The average of WEFBPP coefficients BMM,
an average of WFBP Lower and Upper bounds of Confidence Intervals Ave.L..C.I. and Ave.U.C.IL,
respectively, and the average of p(7;) is denoted as P value are computed for both methods’ overall
datasets. The decision-making about rejects or accepts the null hypothesis that assumes the regression
coeflicients are equal to zero would be for two statistics, percentile confidence intervals, and p-values.
If zero lies outside the interval between Ave.L.C.I. and Ave.U.C.I., the null hypothesis has to reject,
and when the (P.value< 0.05), the null hypothesis should reject too. When the alternative hypothesis
of specific regression coefficient is accepted that means it is different from the zero. The method will
recognize the significant coefficient is the result by two stars (**). The best method is the one that
diagnostic the correct significant and non-significant coefficients. In another hand, the best test is that
one is more stable than the other.

Table 5. The simulation result of WFBP.M method, where n = 65, a = 0.05.

Variable | Obs.t MM | Ave .C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 2.457 7.07 —6.113 17.633 0.393

X1 2.798 35.82 —6.639 18.541 0.297

X2 1.597 | —4.74 —6.285 17.701 0.576

X3 2.226 6.76 —5.617 16.440 0.410

X4 0.427 | —10.96 —6.637 15.454 0.480

X5 —0.296 | —11.38 —7.097 16.670 0.457

X6 —0.174 | 4.95 —5.951 13.786 0.501

The results in tables (3 and 4) show the simulation result when n = 45 was contaminated by 0.05
outliers and leverage points. It is clear that percentile confidence intervals statistic of WFBR.M and
WEFBR.WM could not diagnose the significant variables, so the null hypotheses of both methods are
accepted. It is notable that zero lies in the interval (Ave. L.C.I. and Ave. U.C.L.) of both methods. The
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Table 6. The simulation result of WFBP.WM method, where n = 65, a = 0.05.

Variable | Obs.t | fMM | Ave.L.C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 2.457 | 1.048 0.131 3.710 1 0.005 oK
X1 2.798 | 1.084 0.072 3.827 oK 0.013 ok
X2 1.597 | 1.076 0.104 3.720 oK 0.014 ok
X3 2.226 | 1.095 0.175 3.494 oK 0.010 ok
X4 0.427 | 0.011 —0.846 2.479 0.267
X5 —0.296 | 0.001 —0.883 2.694 0.264
X6 —0.174 | 0.037 —0.736 2.236 0.298

Table 7. The simulation result of WFBP.M method, where n = 85, a = 0.05.

Variable | Obs.t | MM | Ave.L.C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 3.961 5.73 —3.520 12.982 0.300

X1 3.794 | 36.30 —3.696 13.478 0.221

X2 2.254 | —7.07 —3.621 13.064 0.451

X3 2.992 2.16 —3.174 11.892 0.318

X4 0.854 3.61 —4.132 10.939 0.422

X5 0.210 1.26 —4.502 11.820 0.431

X6 —0.278 | —4.85 —3.742 9.957 0.411

Table 8. The simulation result of WEFBP.WM method, where n = 85, a = 0.05.

Variable | Obs.t MM Ave L.C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 3.961 1.031 0.329 3.316 o 10.002 oK
X1 3.794 1.093 0.309 3.395 oK 0.003 ok
X2 2.254 1.039 0.282 3.296 oK 0.003 ok
X3 2.992 1.067 0.356 3.081 oK 0.002 ok
X4 0.854 0.013 —0.631 2.105 0.273
X5 0.210 | —0.018 —0.693 2.267 0.258
X6 —0.278 | 0.028 —0.563 1.917 0.303

P value statistic of WFBR.WM method appears in table (2) the X1, X2, X3 variables are significant,
but all variables are non-significant in Table 3 which is the result of the WFBR.M method.

Increasing the sample size to (65) in Tables 5 and 6 has not changed the performance of the
WFBR.M method as the result of Table 5 is shown but in Table 6 the Ave.L.C.I. of WFBR.WM
method of regression coefficients of X1, X2, X3 variables is greater than zero and less than zero
for X4, X5, X6 variables. The WFBR.WM method has kept its high performance and showed more
stability than the WFBP.M method when the n = 85,100 according to the results that are displayed
in Tables 7-10.

Table 9. The simulation result of WFBP.M method, where n = 100, = 0.05.

Variable | Obs.t MM Ave.L.C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 3.340 1.38 —1.716 11.141 0.194

X1 2.741 64.70 —1.911 11.559 0.127

X2 2.869 | —17.16 —1.793 11.312 0.330

X3 5.028 4.70 —1.520 10.317 0.209

X4 —0.359 | —3.65 —2.504 9.291 0.361

X5 —1.134 | —6.26 —2.685 10.131 0.375

X6 —0.963 | 0.06 —2.301 8.501 0.395
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Table 10. The simulation result of WFBP.WM method, where n = 100, o = 0.05.

Variable | Obs.t MM Ave.L.C.I. | Ave.U.C.I. | Sig | P value | Sig
Intercept | 3.340 1.010 0.392 3.127 *10.001 oK
X1 2.741 1.053 0.356 3.191 oK 0.001 ok
X2 2.869 1.087 0.387 3.170 oK 0.001 ok
X3 5.028 1.087 0.451 2.968 oK 0.000 ok
X4 —0.359 | 0.003 —0.564 1.952 0.275
X5 —1.134 | —0.004 —0.615 2.123 0.252
X6 —0.963 | —0.010 —0.524 1.779 0.289

6. Conclusion

This paper suggests the weighted M-Huber method to tackle the problem of leverage points present
in the design matrix X. Due to the M-Huber being resistant to outliers in regression residuals, the
WDM-Huber is resistant to outliers and leverage points. Furthermore, based on the results of real data
and simulation, the evidence points are almost exclusive to the high performance and robustness of
the WM-Huber. At the same time, the M-Huber method has been unreliable when the high leverage
points are present in the dataset. These findings encourage us to recommend using the WM-Huber in
scientific applications.
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PobGacTHe OyTcTpan perpeciiHe TeCTyBaHHSA 3a HasiBHOCTI BUKUAIB

Xaccan C. VY., Ani K. X.

Kagedpa cmamucmuru, Ynisepcumem Aav-Kaducis,
eyn. Anvamen, Jlieanva, Ipax

Byrcrpan — 1e omuH i3 MeToniB BUOOPY BHUIIAIKOBOI BUOIPKY i3 3aMiHOIO, sIKMii OB 3a1po-
[TOHOBAHUN JJIs1 BUPIMIEHHS TPOOIeMU MaJINX BUOIPOK, PO3IOIIIN SIKUX BayKKO OTPUMATH.
Pozmozin 6yrcrpan-subipok € emmipuaauM abo BIIBHUM, i 3aBIAKH HOTO BUIMAIKOBOMY
BiOOpy i3 3aMiHOIO IMOBIPHICTH BUOOPY KOHKPETHOT'O CIIOCTEPEXKEHHST MOXKEe JTOPiBHIOBA-~
Tn oxuuauil. Ha »kaJyb, Kom BuxXiaHi gaHi BUOIPKU MICTATHL BUKUIM, BUHUKAE CEpHO3HA
pobJieMa, sika IPU3BOINTH JI0 HEKOPEKTHOCTI OIIHKY 3a JOMOMOTOI0 3BUYAHUX HAIMEH-
X KBAJIPATIB, TOMY CJIiJ] peKOMEeHIyBaTu pobacTri Meromu perpecii. Jlobpe Bimomo, 110
Hafikpaia pobacTHa perpeciiina MOJe b MAa€ BUCOKY TOUYKY Ipoboro He Oiibire Hik 0.50,
TOoMy pobacTHUil perpeciiiuuii MeTo]; He Oy/e IPAIOBATH, AKIIO BiJICOTOK BUKHUIIB Yy BH-
6ipri nepesumye 0.50. JTobpe Bimomo, 1o 6yTcTparn-mporec 3 dhikcoBaHUM T POOUTDH Iie-
peBUbIpKY 3aJ/IMIIKiB, 9Ki, AMOBIpHO, MalOTh BUKuIMU. Bijibiie Toro, Touka(u) Baxkeis €
BUKHUIOM, KUl BUHUKAE B X-HAIPsIMKY, TOMY OyJie iCHyBaTH HOro BILIUB Ha OyTCTpar-
Bubipku 3 ikcoBaHuM x. ToMy NPUITHATTS PINIEHHS MO0 HYJIBOBOI rimoTe3u KoedilieHTin
OyTcTpal-perpecii He Moxke 6yTu HAIIHHUM. Y TIi#f CTATTI MPOIMOHYETHCS BUKOPUCTOBYBATH
3BaXKeHuit Oyrcrpar i3 dikcoBaHUM & i3 HIMOBIpHICHUM i IX070M, 00 TapaHTyBaTH, 11O
BiZICOTOK BUKUJIB y OyTcrpal-Bubipkax Oyje jiy»ke HU3bKUM. A 1oTiM 3BakeHa M-oIiHKa
[MOBUHHA Oy THU CIIPIMOBAHA HA PO3B’s3aHHs MPOOJIEMI BUKU/IIB 1 BAyKJINBUX TOYOK Ta TIPUii-
HATTS OUIBINT HAIIHHOTO PIIMIEHHS MO0 IePeBipKu rimore3u mpo KoedimienTn OyTcTpar-
perpecii. EdekTuBHiCTH 3a1IpOITIOHOBAHOTO METO/TY OyJ/Ia MOPIBHIHA 3 IHIITMMU METOIaAMU Ha
peaJIbHUX Ta 3MOJEJIbOBAHUX JTAaHUX. Pe3ybTaTu NOKa3yoTh, IO 3AIIPOIIOHOBAHUN HAMU
MeTO/1 € e(DEKTUBHIIIIM Ta HAIIRHIIIAM 3a iHII.

Knw4osi cnosa: 6ymcempan, naditina pezpecis, 0o6ipui iHMEPEAAU, TOYKE, 36GHCEHUT
bymempan 3 tUmosipnicmio, 3eascene M, nepesipka 2inomesu.
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