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Geometric Quantum Mechanics is a mathematical framework that shows how quantum
theory may be expressed in terms of Hamiltonian phase-space dynamics. The states are
points in complex projective Hilbert space, the observables are real valued functions on
the space, and the Hamiltonian flow is specified by the Schrodinger equation in this frame-
work. The quest to express the uncertainty principle in geometrical language has recently
become the focus of significant research in geometric quantum mechanics. One has demon-
strated that the Robertson—Schrédinger uncertainty principle, which is a stronger version
of the uncertainty relation, can be defined in terms of symplectic form and Riemannian
metric. On the basis of this formulation, we study the dynamical behavior of the un-
certainty relation for the spin 1 system in this work. We show that under Hamiltonian
flow, the Robertson—Schrédinger uncertainty principles are not invariant. This is because,
unlike the symplectic area, the Riemannian metric is not invariant under Hamiltonian flow
throughout the evolution process.

Keywords: differential geometry, uncertainty principle, geometric quantum mechanics,
quantum dynamics, Hamiltonian mechanics.
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1. Introduction

The fact that classical mechanics, general relativity and others are highly geometrical inspired some
physicists to cast quantum mechanics in geometrical language [1-15] in order to better understand
the quantum-classical transition. The deeper investigation shows that the Hilbert space H is not the
true space of states, since any two state vectors W, ® € H such that ¥ = a® are physically equivalent
(U «~ @). Thus, the proper quantum space of pure states is the set of rays through the origin in H, i.e.
P(H) := H/ «~ which is known as the complex projective Hilbert space or the quantum phase space
for both finite and infinite dimensional H. Furthermore, the existence of Hermitian inner product in
‘H endows P(H) with the structure of Kéhler manifold (w,g,j), where w is non-degenerate, closed
symplectic two-form, ¢ is Riemannian metric and j is the compatible complex structure satisfying
j2 = —1. Thus, similar to classical mechanics, the correct quantum state space is also regarded as a
symplectic manifold. In term of self-adjoint operator on H, via its expectation value, one can obtain
a real valued function on H that has well defined projection h to P(H). Note that every phase space
function induces a flow along its Hamiltonian vector field Xj;. Hence, on Hilbert space, the flow is
certainly defined by Schrédinger equation of the quantum theory. In other words, Schrédinger evolution
is exactly the same as the Hamiltonian flow on quantum phase space P(H). Here, one can directly
see that classical mechanics and quantum mechanics have many similarities. However, the fact that
Riemannian metric in quantum phase space is closely related to the notion of probability provides us
with several main features that are missing in classical mechanics such as uncertainty principle and
state vector reduction in quantum measurement processes.
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Despite the successful of quantum mechanics in terms of application, the true nature of this theory
is still far from being understood. In other words, some of its principles and concepts are clearly
counter-intuitive and very difficult to explain in simple language since most of them do not have
classical analogue. One of the famous examples to describe the weirdness of quantum mechanics is the
uncertainty principle. The effort to cast uncertainty principle in term of geometrical language appeared
to become the subject of intense study in geometric quantum mechanics. One of earliest studies refers to
the work of Anandan [19] who proposes a new geometric meaning of times-energy uncertainty principle
for an arbitrary quantum system. After that Ashtekar [5] has shown that for pure quantum state, the
fact that the expectation values of observables correspond to the Riemannian and symplectic structure
allow one to formulate a geometric version of Robertson—Schrédinger uncertainty relation. Further
study of this research line is conducted by Andersson and Heydari [26, 27| by deriving a geometric
uncertainty relation for observables acting on mixed quantum states. Recently Barbara [28] extends
the geometric quantum mechanics which includes elements of the symplectic topology of quantum
state space by defining the Robertson—Schrodinger uncertainty relation for pure quantum states as the
differential version of the energy identity in the J-holomorphic curve theory.

It is generally accepted that uncertainty principle is a purely quantum concept and cannot be
described using classical mechanics. However, this statement is not entirely true when recently one
had successfully shown that the uncertainty principle can naturally arise from the structure of classical
mechanics [20-25|. This is achieved through a topological tool known as symplectic capacity together
with the notion of quantum blob. As we know, Heisenberg uncertainty principle is a minimum for the
product of the uncertainties of position and momentum measurements. This is consistent with the
property of symplectic camel which asserts that it is not possible to shrink a cross-section defined by
conjugate coordinates like z and p, to zero. It means that we have a minimum cross-sectional area
within a given volume which cannot shrink further. Thus, it is clear that all the uncertainty principles
mention in these papers are invariant under symplectic transformation since they can be expressed in
term of symplectic capacity.

In this paper, motivated by this work, the possibility of the uncertainty principle in geometric
quantum mechanics is invariant under the Hamiltonian flows has been demonstrated since in this
formulation the uncertainty principle is partly expressed in term of symplectic form. This research
may become a significant step in order to construct a connection between geometric quantum mechanics
and symplectic topology.

2. Robertson—Schrédinger uncertainty principle

Uncertainty principle, firstly discovered by the German theoretical physicist Werner Heisenberg [16] is
one of the fundamental concepts that shows the weirdness of quantum mechanics. It set the limitation
of complementary variables such as position and momentum to be measured simultaneously with high
precision. Furthermore, Robertson [17] generalized the inequality to an arbitrary observables A and B
given by

32 4. BD)

(AA)(AB) > o

and within a year the stronger extension was proposed by Schrodinger [18] by adding covariance term
to the formulation

In geometric quantum mechanics, Ashtekar [5] shows that the symplectic form and Riemannian
metric allows one to formulate a geometric version of Roberton—Schrédinger uncertainty principle. In
order to do this, let ¥ be a normalized state vector, the uncertainty of the observable A in the state
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is defined as X R R
(AA) = (A%)y — (A}
Consider operators A, and B, as follows
Xi=A0, Xz=B7,

where X ﬁ and X g are vectors orthogonal to state vector ¥. Then these operators can be defined as

A :=A-1A4, B,:=B-1.B,
where A and B are the e>A<pectation values of A and B respectively and 1 is an identity operator. It is
obvious that (AA)2, = (A2 )y, and therefore

(AA)F (AB)F = (A7) (BY)w = (V[AT|0)(V|BE ).
Now, by applying the Schwartz inequality
(W[AT W) (U|BY W) > [(U|ALBL|W)[

and define 1 )

ALBy = [AL Bil+ 5lAL Bul+,
where [AJ_,BJ_]J,_ = A B, + B, A, then we have

A ~ 1 A A 2 A A2
(AD}ABY > 7 (AL Bu)y - (A B)) (1)

which is the standard form of the uncertainty relation for two quantum observables A and B in the
Hilbert space formulation. Now let rephrase the above formula in terms of the canonical geometric
structure of H that is the symplectic form € and the Riemannian metric G. Both structures can be
expressed as

O(X 4, Xp) = —ih (X 4(D)[X5(D)) — (X(T)|X 4(P)))

(U[AB — BAIW) = — (4, ),

h
Gu(X 4, Xp) = h((X4(9)[X5(9)) + (X5(P)| X 4(V)))
= L(WIAB + BAI) = 2 (V]l4, B, )
where ]
X;=—7AV, Xp=—BU 2)

are Schrodinger vector fields. Furthermore, since

[A1,B1]y = [A, Bl +2(AB — AB — BA),
then o

([AL, Bil+)w = hGu(X 4, Xp) — 2(AB)(9).

Thus, we may rephrase the Robertson-Schrodinger uncertainty principle (1), without any reference to
a given state vector that is

(AA2(AB) > <gQ(XA,XB)>2 + <gG(XA,XB) - AB>2,

where (AA)? denotes a function on H given by (AA)*(¥) := (AA)2. Lastly, we may see how the
Robertson—Schrodinger uncertainty principle can also be expressed on the quantum phase space P(H).
Now, let consider two quantum observables A and B, and let a and b be the corresponding functions
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on P(H), i.e.

aoll = (A)yg = A(¥), boll =(B)y = B(V),
where II is the canonical projection H — P(H). Besides, for X, = II,(X ) and X} = II,(Xp) are
elements of T}, P(H), one can define the so-called Poisson bracket and Reimannian bracket by

{a, b}w = w¢(Xa,Xb), (a, b)g = g¢(Xa,Xb),

where w and g represent the associated symplectic form and metric tensor on P(H), respectively.
By doing this, one can show that

wp(Xa, Xp) = (X7, X5),  9p(Xa, Xp) = Gu (X5, X5)
and

Qu (X7, X3) = Qu(X 4, Xp),
2

Thus, the Robertson—Schrédinger uncertainty principle may be rephrased as the following equation in
terms of mathematical objects define on P(H):

2
(B2 > B (X, %) 1 9(X,0 0)?)
2
> 7 ({0, 0) + (@,)2)

where (Aa)?(y) := (AA)?(¥) and (Ab)2(v) := (AB)?(¥).

3. The evolution of uncertainty principle in Hilbert space C3

Let us compute the Robertson—Schrodinger uncertainty principle for the case of spin 1 in order to

compare with the results of spin % particle. The corresponding self-adjoint operators are defined as

0 —i 0 1 0
i 0 —i|, S.=—10
V2o i o V2 \

8
Il
o = O
—_ o =
O = O
<
Il
O O O

-1
and the orthonormal basis in Hilbert space H =2 C3 is represented by (e1, e, e3) satisfying

(alles) = dap-

Then, we represent the state of spin 1 by

|V) = Zile1) + Zale2) + Zsles).

~

We begin with calculating the Schrodinger vector fields correspond to the operators 5}, Sy and S,.
Recall that the corresponding evaluation function of S, is

A h _ _ _ _
Se(V) = (V[S,|¥) = ﬁ(%zz + Z1Z5 + ZoZ3 + Za Z3);

A ih - . _ _
Sy(\I’) = <\I’|Sy|\1f> = E(leg — LWLy + 2oy — Zng);

S.(¥) = (V]S.]W) = h(|Z1* — | Z5),
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and based on the equation (2), one can define Schrodinger vector fields correspond to these operators

as
X, |¥) = ddZtl er) + dZ?yeQ> dZ3\eg> L (DiSuler) + ZaSilen) + ZsSiles)):
rw—ﬁlwﬁ%mwﬁﬁm> (B8 ) + 28, e2) + 25, )
X |¥) = %@ + %@ + % es) = %(zléueg 1 ZoS.les) + ZsS.les)).
Therefore, we get
(X, 1) = S =~
(el X, 19 = T = 2
(o1 Xs [0) = 1 iz,
and in the similar way, we find
(el X 9) = 2 = 2D,
(el X, J9) = 2 = A
(ealXg W) = 2 =,
and
(el X, 19) = 52 = 2
(el Xg, 19 = 2 = L
(e31X 5,1 0) = 0 = iz,
Other than dftl, ddth and ddZtS, one is required to compute ddZtl, dCZ? and dZ3 since here we consider that

C? is complexification of real vector space R®. Hence, the complexified tangent space is spanned by 6

VeCtors; 577y 9230 9250 9,0 9720 975
Let (V| =
fields with respect to operator S, Sy and S, are

Wxg = Do+ L2y Doy = L
(1xg, = o) + L2y + Ly =
Wxg, = Do iy Py L

Hence, it is clear that
(¥[Xg Jer) = 22

r

Zi{e1| + Za{ea| + +Za{es| be a state in dual Hilbert space H*. The Schrédinger vector

<Z1<€1|S +ZQ<€2|S +Z3<63|S)
Zy(e1|Sy + Za(e2|Sy + Z3<€3|gy> ;
Zl<€1!5'z + 22<€2\§z + 23(63\§z) .

Zy
V2i
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(W] Xg e1) = dd—Ztl = %;
(U] Xg, ler) = dd—Ztl S
Besides, one finds that
(U]Xg le2) d(? Zl\;%iZs’
(T]Xg le2) d(? 23\;521
<\II‘X5 le2) = d(? =0,
and
(W] X les) % %
(W|Xg les) % = —%;
(V| X les) % =iZ;3.

Therefore, the Schrodinger vector fields correspond to Sy, §y and S, are

X — Zy 0 B (Zl + Zg) 0 B Zy O n ZQ 0 n (Zl + Zg) 0 n Zg 0 ] (3)
Sz z\/§ 071 z\/§ 025 z\/§ 073 z\/§ aZl z\/§ 622 Z\/§ 823 ’
Zy O  Zs—Z1 0  Zy O Zy O  Zs—Z1 O  Zy O

Xe =—= + - =t ==+ s 4

S V207 V2 0Zy 20735 207, V2 0Zy /2073 (4)
., 0 ., 0 0 0

XSz —’LZla—Zl—’LZgaZs ZZlaZ —l—’LZgaZ3 (5)

The solutions of Z; and Z5 according to X g, are computed as follows. From equation (3) we can show

that
@ R dZs (Z1 + Z3) dZs Z

N A TN B N oY

Rearrange the equations, one can obtain

le
—iv/22L = 7, 6
1 dt 25 ( )

ng
— —=71+Z 7
{ dt 1+ 43; (7)

dZs
—iV2—= = Z>. 8
W2 =% (8)

From equations (6) and (8), we notice that Z; = Z3 and equation (7) becomes

V2 dZs
— ST 7 = s, 9
9 dt 1= 9)

Substitute equation (9) into (6)
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2 dt
d2 7,
2

It is obvious that, the general solution for equation (10) is

_Zﬂ% <_@%> = Zo;

+ Z5 = 0.

Zo(t) = Ae' + Be™™,

where A and B are complex numbers.
From equation (9)

Z\/_d i —1
lezgz—Tdt(A t+B€ t)

= Z\/_(er“t iBe™™).

Thus, one obtains

V2 V2

Zl(t) = Zg(t) = TAeit - 7B€_it.

Furthermore, we calculate the solution for Z; and Zs with respect to X 3, Referring to equation (4),

it is obvious that

iZy 7y dZy  (Zs—21) dZs 7y
a2 dt 2 7 dt 2
Rearrange the equations, we obtain
le
¢ _ g
dt 23
dZsy
282 _ g 7,
dt 3 1,
dZs
—V2—=7Z
at %
From equations (11) and (13), we notice that Z; = —Z3 and equation (12) becomes
V2 dZ;
—— =71 = Zs.
2 dt P
Substitute equation (14) into (13)
V2 dZ,
2 [M2822) _ 4,
\[dt ( 2 di z
d>Zy
Zy = 0.
e T

It is obvious that, the general solution for equation (15) is
Zy(t) = Ce + De™ ™,

where C' and D are complex numbers. From equation (14)

d
le—Zgz {dt(c zt+D—zt)
= —g('Ceit —iDe™ ).
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Thus, one obtains
ol /3 ‘
Z1(t) = —Z3(t) = —%C’e” + %De‘“.

Lastly, we find a solution of Z; and Z, for the case of X 3. According to equation (5), one can show
that

dZ,

at = 1Z1; (16)
dZs .

L = —iZ,. 1
a (17)

Solve the equation (16), we get ‘
Zi(t) = Be", E = const.

Solve the equation (17), one obtains
Zy(t) = Fe™™, F = const.

Note that, in C3, the Schrédinger equation defines a hamiltonian system with respect to the symplectic

form €2 stated as
Q =1ihdZi N le +ihdZy N ng + thdZs N\ ng

and the Riemannian metric is represented by

G = hlele + hdZQng + hngng.

Now we are ready to calculate the Robertson—Schrodinger uncertainty principle for the case of
spin 1 particle. The uncertainty principles for this case are

N N i 2 A 2
(ASy)Q(ASZ)2 > <§Q(X§Q7X§z)> + <§G(X§y,X§Z) — Sy5z> ; (18)
N N i 2 A 2
(ASI)Q(ASZ)2 > <§Q(X§£,X§z)> + <§G(XSE,X§2) — SISZ> ; (19)
- - h > (h 2
(B8 (88, > (30(x5,. X)) + (56X, Xs) - 5:5,) (20)
where the contraction of these Schrodinger vector fields with symplectic form 2 are given by
A o L
Q(Xﬁy’XSZ) = X, Lx5, = _ﬁ(zlzz + 212 + ZyZ3 + Zy Z3);
ih - _ _ _
Q(ng,ng) = LXS‘mLXS'ZQ = 5(2122 — 2179 + Z2Z3 — Z2Z4)’

0(Xg,, Xg,) = 1xg, LngQ = (| 23> — | Z.%),

and the components of Riemannian metric correspond to the vectors are

ih _ _
G(Xg,, Xg,) = %(2122 — 22+ ZoZs — ZoZ3):;

ho _ o
C(Xg, Xs) = (D 2y = 2oZs + D1 2y = Do Zs);

G(ng,ng) = iﬁ(leg — 2123).

Then, we can express the equations (18), (19) and (20) as
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. . B2 L L 2
(AS,)*(AS,)? > {——(le2 + Z1 2o+ ZoZs + 2223)]

2V/2
i _ i, . ) Nk
+ | —=(L149 — Z1Ly + Lo L3 — LoZ3) — —=(L1 L9 — Z1 Lo + ZoLs — Lo Zs)(| 217 — | Z ;
[m<12 T+ Talhs - D)~ o (ta T~ D+ TaTa ~ TaZ) |2 |3|>}
ih2 2
A§m2AS‘22>[ ZZ—ZZ+ZZ—ZZ}
(AS;)*(AS,) 2\/5(12 1Zoy + ZoZs — ZyZs3)
oo = = 5 h? = 5 = 5 2 Nk
+ |\ ——=(Z1Fy — ZoZa + L1 Zo — ZoZs) — —(L1Zo + Z1Jo + ZoZs + ZoZ3)(| 2117 — | Z ;
[2\/5(12 273 122 2773) \/5(12 1722 223 + ZyZs3)(| 21| \3!)}

. . B2 2
(A8 788, > | 512 - | 4P)

2
(leg + 2122 + Zng + Zng)(leg — 2122 + Zng — ZgZ4)j| .

ih? _ _ ih?
+ [7(2123 — 7173) — -

Thus, the evolution of Robertson-Schrédinger uncertainty principles correspond to operators
1. S’y and S, along Xg is
(Agy)z(AS'Z)2 > [h2(]B\2 . \A[2)]2 + [ih2 (ABGM . f_lBe_zit)]z;
2. S, and S, along XSy is
(AS)2(AS.)? = [B2(DP — [CP)]° + [—ih? (CDe¥* — CDe 2]
3. S, and Sy along Xg is
2

292
ih (EFe%t _EFe—2it)

2

. . K2 2
2 2 2 2
(8788, > |G 0rP - 18P + |
Note that, similar to the case of C2, any state vector ¥, ® € H such that ¥ = ¢®, ¢ € C has different
expression of uncertainty principles although these state vector represent the same physical state.
Therefore in this context, it is necessarily to find the expression of Robertson—Schrédinger uncertainty

principle in CP? which is the quantum phase space of spin 1 particle.

4. The evolution of uncertainty principle in projective Hilbert space CP?

In order to compute the Robertson-Schrodinger uncertainty principle on CP?, we need to find
the pushforward vector field of X, X 3, and X 3. under the map Il.: TyH — TyP(H). Let

1(Z1,22,Z3) = (21,22) = (%, %) be a local coordinate of Uy, where Z7 # 0. Firstly we compute the

pushforward bases as follow

I <i> :%i+%i:i<é>i+i<é>i:_éi_éi.
* 821 821 8Z1 821 622 821 Zl 8Z1 821 Zl 8Z2 Zl2 621 Zl2 622’
1 <i> :%i+%i:i<é>i+i<é>izii
* 822 822 821 822 82’2 Z?Zg Zl 821 822 Zl 822 Zl 82’1
1 <i> :%i+%i:i<é>i+i<é>i_ii
¥ 623 823 8Z1 823 622 623 Zl 8Z1 823 Zl 8Z2 Zl 622
1 <i> :%i+%i:i<é>i+i<é>i:_éi_éi.
"\0Z1) 0210z 0710z  0Zy \Z1) 0m1  0Z1 \Z1) 0% 7207 7?0z
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(2 910 om0 0 (Z\O 0 (Z\d 10
* 822 N (922 0z1 822 0z N (922 Zl 0z1 (922 Zl 0z N Zl 0z’

n (2 N\_920 0% 0 0 (Z\O0 9 (Z)0o 10
* 073 _823821 823852_(923 Zl 07z1 (923 Zl (952_21(952.

Then, the pushforward vector field corresponding to X R X S, and X g, are

L. Xg :%(z% — 29 — 1)aiz1 + %(2122 — zl)%
- %(ff %2 - 1%1 - %(azg — 21)8%;
M.Xg, == %(z% —22t 1)(%1 - %(2122 + 21)(%2
_ %(zs% —Z + 1)8%1 - %(2152 + 21)8—22;
IL.Xg =— z’zlaizl — 21’226—22 —i—z’z’la—Z_1 + 21‘518_51,

Note that, in CP?, the symplectic form w is expressed as

_ i |:(1 + |Z|2)d21 ANdZ1 — Z1dz1 N z1dZ n (1 + |Z|2)dZ2 A dZy — Zodzg N 22d52:|
a (1+ [2[%)? (1+ [2*)?

and the Riemannian metric is given by

(1 + ’22‘2)d21d21 — Z129dz1dZy (1 + ‘Z’z)dZQdEQ — 2221d22d22:|

g=2h [ @+ 2P @+ 2P

where |2]2 = |21]2 + |22|%.
Now we are ready to compute the Robertson—Schrédinger uncertainty principle for the case of spin 1

on CP2. Let us define the Robertson-Schrédinger uncertainty relation corresponding to the operators
Sz, Sy and S, as

>

h2
2?2 Tlw(ILXg  ILXg )* + g(ILXg | ILXg )?);

h2
27 > (L Xy TLX )+ g(TLXg  TLXg )?);
A A K2
(AS,)*(AS,)? > Z[W(H*ng’H*Xsy)2 +g(H*X§z,H*X§y)2],

(AS)*(A

(AS,)*(A

where the contraction of pushforward vector fields with symplectic form w are

i (z1+ 21+ 2122+ 5122)'
V2 1422+ 2
ﬁ (21 — 21 — 2129 + 512’2) )
V2 Lzt
h(|z2[* — 1)

1+ 212 + |22?

W(H*Xsy,H*Xs,z) = LH*XS'y LH*XSZW =

w(H*ng,H*st) = ULXg ULXg W= —

W(H*ng,H*Xs,y) = U1, X

X, ML Xg W=

and the components of Riemannian metric with respect to these vectors are

ih [(21 — 21+ 2129 — 2122)’21‘2 + (—321 +3z1 + 2122 — 5122)’22’2]

g(H*ng,H*ng) = 0 5 5
V2 (1+ [z1]* + [22]?)
ﬁ [(1 —3Z9)z1 — (1 — 32’2)21] ]

+ ;
V2 (T [aP + )
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i [(21 + 21 — 2129 — 5122)‘21’2 + (321 +321 + 2122 + 5122)‘22’2]
V2 (L+ |21 + [22]?)
i [(1 + 322)2’1 + (1 + 32’2)21] ]
V2 (Lt |z )
ih{(z2 — Z2) (|21 — |22?) + (1 = 25)2f — (1 — 23)2} — 20 + 2]
(L |z1]? + [22]?)?

g(H*ng s H*ng) =

(L. X, TL.Xg ) =

Thus, the evolution of Robertson—Schrédinger uncertainty principle for the case of
1. S’y and S'Z is

(AS))2(AS.)? = [(K[|B? — |A]Y])? + (ik?[ABe*" — ABe™%"))?]

along the projection of solution associated with Hamiltonian vector field X 3,

2 (t) = Z(t) = At + Be™™ :
Z1(t)  Zpeit — V2Be-it]

() = B0 _ 2 At — 2Beit
Zi(t) M2 Aeit — Y2Be-it

2. 5} and SZ is
(A8:)2(A8.) > [(RICP = D)) + (=iR*[CDe¥ — CDe21))’]

along the projection of solution corresponding to Hamiltonian vector field X 3,

21(t) = Zo(t) _ Ce' + De™
Zi(t)  —2Ceit 4 Y2 De-it’

() = Z8) _ BECet - SEDet
Z1(t) —¥C6” + %De—it

3. 5} and Sy is

h2

) 2
(@8,7(88,2 > (g (7P - 1BP)") + (- [BFe - Bre))

along the projection of solution corresponding to Hamiltonian vector field X 3

_Z@1) 0
) = Zi(t)  Feit 0
B Zg(t) . Fe™®

() = Zi(t)  Eet

5. Discussion and conclusion

In our computation previously, we start by examining the Robertson—Schrédinger uncertainty principle
in Hilbert space C3. We show that the symplectic areas Q(X S”z-’X S‘j) uniquely preserved along Xg, .

This is based on the fact that Q(Xg , X S‘j) = 5% and the evaluation function Sy is uniquely preserved
along X S, since it satisfies the condition ¢ Xg Q =dSy.
k
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Besides, we demonstrate that, the angles 6 between X 60X 3, and X g, vary under symplectic trans-

formation since G(Xg , X¢ ) continuously change for all time ¢. It is clear that, the anti-commutator
i Jj

condition [SZ, S}].,. # 0 is manifested by non-orthogonality of vectors in geometric framework. Note
that, although the angle and magnitude of X 3, and X g, vary with time, they must preserve symplectic
area (Xg , Xﬁj)'

According to the above equations, it is obvious that, the Robertson—Schrédinger uncertainty prin-
ciples for spin 1 particle are not constant under any Hamiltonian flows. However, these results clearly
show that for the case of Robertson uncertainty principle i.e.

. . h 2
2 2
@888 > (5005, X))
it is invariant under Hamiltonian flow along Xg .

Note that, although for any state vectors ¥, ® € H such that & = ¢V, ¢ € C define the same
physical state, the expression of uncertainty principle for @ is different compared to ¥ by factor |c|?
as follows

AN2A G2 hlef? ’ hfef? 2 2 ’
(AS)(AS))” > | 5 UXg, Xg)) | + | —5-G(Xg,, Xg,) = [lel"Sillle]"5)]

Thus, since the uncertainty principle’s expression is not unique in C2, it is necessary to find the
expression of Robertson-Schrédinger uncertainty principle in CP? which are the quantum phase space
for spin 1 particles.

In this space, the contraction of IT, X s, and 11, X 3 with symplectic form w(I1, X . IL.X Sj) is invari-
ant under projection of Hamiltonian flow induced by X s, implies that the area between vectors 11, X s,
and H*XSj is preserved under the transformation. This is because W(H*XS‘ivH*XSJ-) = Q(XSi’XS‘j) =
Si and the evaluation function Sy is uniquely conserved along X 4 since it satisfies the condition
L XS‘kQ = dSk

The fact that the Riemannian metric g(H*XSZ_,H*ng) is non-zero since g(H*XSi,H*XSJ) =
G(X SZ_,X SJ) — %S,-Sj and varies under any Hamiltonian flow shows that the magnitude and angle
between I1,X 3, and IL,.X g, are changing under the transformation. However, these vectors preserve
symplectic area w(IL.X §i7H*X SJ) Besides that, unlike C? the Riemannian metric g(IL. X §i7H*X SJ)
represent the covariance since g(IL,Xg , ILX S‘j) = G(Xg,. X SJ) — 25;5;. The covariance is purely
depends on G(Xgi,ng) due to the fact that S;5; = 0 along the flow.

Generally, we show that the Robertson-Schrédinger uncertainty principle in CP? varies under any
Hamiltonian flows. However similar to C? the Robertson uncertainty principle i.e.

. . h 2
2 2

in CP? are invariant under projection of Hamiltonian flow generated by X G, This invariant property of

Robertson uncertainty principle may become an excellent step to make a connection between geometric

quantum mechanics and symplectic topology.
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EBontouis reomeTprmyHoOro npuHuuny HeBM3HA4YeHOCTI
PobepTcona—LLlpeainrepa gns cucremn 3i cnivom 1

Vumaip X1, Banyngin X223, Yan K. T.2, Cain Xyceitn 111, K.23

HTenwmp dyndamernmnuc 00caiodncers ciabcvkozocnodapcvkoi naykuy,
Ynisepcumem Ilympa Manatizis,
48400, Ceaaneop, Manratizis
2 Qaxysvmem npupodHUNUT HaYK,
Vnisepcumem Ilympa Manaiizis,
48400, Cenaneop, Manratizis
3 Incmumym mamemamusHuz 00caioHceHs,
Ynisepcumem Ilympa Manatizis,
48400, Ceaaneop, Manratizis

Teomerpuyna KBaHTOBa MexaHIKa — II€ MATEMATUIHUIA OIMUC, SIKUI MTOKA3y€, sIK KBAHTO-
Ba TeOpis Moxke OyTH BUparKeHa y TePMiHAX MAMLIBTOHOBOI AUHAMIKA (ha30BOTO IIPOCTOPY.
Cranu € TOYKAMI B KOMILJIEKCHOMY IIPOEKTUBHOMY TIpocTopi ['insbepra, ciocrepexxyBai €
JificauMu DYHKIAMEA ¥ IIbOMY IIPOCTOPI, & FaMiJIbTOHOBHII MTOTIK BU3HAYAETHCSI PIBHAHHSIM
Ipeninrepa y npomy omnuci. Ilntanna BupakeHHs NPUHINIIA HEBU3HAYEHOCT] HA reOMeT-
PUYHIi# MOB1 HEIO/IABHO CTAJIO IIEHTPOM 3HAYHUX JIOCJII/PKEHb Y T€OMETPUYHIN KBAHTOBI
mexadini. Byno mokasamno, mo npuHnun HeBudnadenocti Pobeprcona—Illeminrepa, skuii €
G1/IBIIT CUJIBHOIO BEPCIEI0 CIIBBIHOIIEHHST HEBU3HAYEHOCTI, MOXKe OyTH BU3HAYEHUI 3 TOU-
KM 30Py CUMILTEKTHYIHOI popMu Ta pimaHiBchbkol Merpuku. Ha ocHOBI 1p0r0 hopMmyitio-
BaHHS JIOCJIPKYEMO JIMHAMIYHY MOBEJIIHKY CIIIBBIJIHOIIEHHS HEBU3HAYEHOCTI JIJIS CHCTe-
mu 3i crminom 1. ITokazyemo, 1110 i1 TaMiJIBTOHOBOTO MOTOKY HMPUHIIAIYN HEBU3HATEHOCTI
Pobeprcona—Ilpeninrepa e € inBapiantanmu. Lle mosicHIOETHCST TUM, 10, Ha BiAMiHY Bif
CHMILIEKTUIHOI 00J1acTi, piMaHOBa METPHUKA HE € iHBapiaHTHOI Il TaMiJIBTOHOBOTO II0-
TOKY y IPOIIECi €BOJIIOTI].

Knto4voBi cnoBa: dugepenuianvha 2e0Mempis, NPUHUUN HeGU3HAMEHOCTE, 2E0MEMPULHA
KEAHMOBA METAHIKG, KEAHMOEAa OUHAMIKG, 2AMINDMOHOBA METAHIKA.
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