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Knock-out power calls are options that incorporate barriers to the valuation of power
calls. Introducing barriers to power calls reduces the costs to hold power calls which
are known to have higher leverage than the standard vanillas. In this paper, we model
the valuation of knock-out power calls using Crank–Nicolson and Monte Carlo simulation
under Black–Scholes environment. Results show that Crank–Nicolson is more accurate
and more efficient than Monte Carlo simulation for pricing knock-out power calls.
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1. Introduction

Option is a financial derivative that is based on the value of an underlying security, such as share
prices, which can be a European that limits exercise to its expiration date, or an American that allows
its holder to exercise at any time before its expiration date (inclusive). Option can be further divided
into calls and puts, where the former allows its holder to purchase the underlying at a specific price
within a specific time period, and the latter allows its holder to sell the underlying at a specific price
within a specific time period.

The basis of an option has been the vanilla option. However, through time, many studies have
extended the vanillas to accommodate other investment opportunities, which they referred to as exotic
options. One such option is the power option where its payoff at expiry is raised to a power of the
underlying price. The work of [1] shows the pricing and hedging of power option and parabola option
in particular. The valuation of power option under Black–Scholes model [2] has been obtained using
fast Fourier transform, which is an efficient way to price the power option since it is more flexible
and reliably fast to price the option since it can produce a range of prices for a range of strikes [3].
Furthermore, [4] studies on general valuation principle for arbitrary payoff and applications for power
option under stochastic volatility where they found equivalent martingale measure (EMM) for complete
market is equivalent to the physical measure, while in incomplete market, an attainable numeraire for
every measure equivalent to the physical measure does not exist. Power options can increase leverage
in markets where the underlying trades within narrow limits. In order to make power options cheaper
because of its leverage, [5] introduces a barrier to the valuation of power options. Recent studies
provided combination of options, such as power exchange options [6], Parisian exchange options [7]
and compound exchange options [8].
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In this paper, we aim to estimate the prices of knock-out power call options using Crank-Nicolson
and as a benchmark, Monte Carlo simulation, under Black–Scholes framework. Black–Scholes model is
a seminal mathematical model for pricing option contracts, which estimates financial derivatives and
assumes the derivatives are log-normally distributed. The equation derives the price of a call and puts
option by using this assumption and factoring in other important variables. Some studies such as [5]
and [9] used Black–Scholes framework to derive pricing formula of exotic options.

The organization of this paper is as follows: Section 2 reviews the closed-form solution for knock-out
power call options. Section 3 describes Crank–Nicolson technique for knock-out power calls pricing,
while Section 4, Monte Carlo simulation. Section 5 documents some numerical examples, and Section 6
concludes the paper.

2. Knock-out power calls

This section presents the closed-form solution for knock-out power options under Black—Scholes en-
vironment. Power option is a non-linear payment option. Let (Ω,F,Q) be a probability space which
defines a standard Brownian motion Wt 0 6 t 6 T that generates a filtration Ft, 0 6 t 6 T , and Q is
a risk neutral measure, under which the asset price process St, 0 6 t 6 T follows the dynamics below:

dSt = r St dt + σ St dWt.

Under Black–Scholes model, the volatility σ and interest rate r are assumed to be constant. Suppose
that we raise the underlying asset price to a power of a constant, say β. Itô’s lemma implies that SβT
also follows a geometric Brownian motion [10], such that:

dSβT =

(
β r +

1

2
β2σ2 − 1

2
β σ2

)
SβT dt+ β σ SβT dWt.

To reduce notation, we let Zt = SβT . Then using Itô’s lemma, the process followed by the logarithmic

asset price zt :=ln SβT is defined by

dzt = β

(
r − 1

2
σ2
)
dt + β σ dWt,

with a constant drift β(r − 1
2σ

2) and volatility β σ. Therefore, the change in zt for some time T is
normally distributed with mean β(r − 1

2σ
2)(T − t), and variance β2σ2(T − t). Algebraically:

lnSβT ∼ φ

[
lnSβT + β

(
r − 1

2
σ2
)

(T − t), β2σ2(T − t)

]
.

The payoff function of a power call option is the vanilla call option function that is adjusted by raising
the underlying asset to a constant power that is defined by

V = (SβT −K)+, (1)

where Equation (1) is first European power call option. From Equation (1) we get first European call
power option as shown below:

PC = e−rTEQ
[(
Sβτ −K

)+]
= Sβe

[
(β−1)r+ 1

2
β(β−1)σ2

]
τN
(
d1p
)
−Ke−rτN

(
d2p
)
, (2)

where

d1p =
ln Sβ

K + β(r + 1
2σ

2)τ

β σ
√
τ

,

d2p = d1p − β σ
√
τ .
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We consider knock-out power call option where we have St as asset price, K as strike price, H is barrier
and T is time to expiration. For a down-and-out option, we consider the case where the strike price is
higher than the barrier, K > H and for up-and-out option we consider the case where the strike price
is lower than the barrier, K < H. The payoffs of down-and-out power call DOPC and up-and-out
power call UOPC are:

DOPC:
(
SβT −K

)+
1{mT>Hd}, (3)

UOPC:
(
SβT −K

)+
1{MT<Hu}, (4)

where mT = min{Sβt : t < T} and MT = max{Sβt : t < T}.
The derivation of down-and-out power call option can be obtained by solving its discounted expected

payoff given by Equation (5), at a risk-free rate r as follows:

DOPC(K > H) = e−r(T−t)EQ
[
max

(
SβT −K, 0

)
1{mT>Hd}

∣∣Ft
]
. (5)

Solving for the expectation requires the restricted density function which are

φ
(
x
∣∣mT > Hd

)
=




f(x) −

(
Hd

Sβ
t

)2λβ
f(x− 2b), for x > b;

0, for x 6 b.
(6)

The price of a down-and-out power call option discounted at risk-free rate r is given as below:

DOPC(K > H) = PC −
(
Hd

Sβt

)2λβ+2

Sβt e
µβ(T−t)+ 1

2
σ2
β
(T−t)N(y1p) −

(
Hd

Sβt

)2λβ

KN(y2p), (7)

where

y1P = y2P + σβ
√
T − t, y2P =

ln(H2
d/KS

β
t ) − µβ(T − t)

σβ
√
T − t

.

Similarly for an up-and-out power call option, this is obtained by solving its discounted expected payoff
given by Equation (8), at a risk-free rate r as follows:

UOPC(K < H) = e−r(T−t) EQ
[
max

(
SβT −K, 0

)
1{MT<Hu}

∣∣Ft
]
. (8)

Solving for the expectation requires the restricted density function which are

φ
(
x
∣∣MT > Hu

)
=




f(x) −

(
Hu

Sβ
t

)2λβ
f(x− 2b), for x < a;

0, for x > b.
(9)

The price of an up-and-out power call barrier option discounted at a risk-free rate r:

UOPC(K < H) = PC +

(
Hu

Sβt

)2λβ+2

Sβt e
µβ(T−t)+ 1

2
σβ2(T−t)N(y1p) −

(
Hu

Sβt

)2λβ

KN(y2p)

−
[
Sβt e

µβ(T−t)+ 1
2
σβ2(T−t)N(Z1p) −Ke−r(T−t)(Z2p)

]

−
(
Hu

Sβt

)2λβ
[(

Hu

Sβt

)2

Sβt e
µβ(T−t)+ 1

2
σβ2(T−t)N(w1p) −Ke−r(T−t)(w2p)

]
, (10)

where

z1P = z2P + σβ
√
T − t, z2P =

ln(Sβt /Hu) + µβ(T − t)

σβ
√
T − t

,

w1P = w2P + σβ
√
T − t, w2P =

ln(Hu/S
β
t ) + µβ(T − t)

σβ
√
T − t

.
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3. Crank–Nicolson method

Consider Black–Scholes differential equation:

∂f

∂t
+ r S

∂f

∂S
+

1

2
δ2S2 ∂

2f

∂S2
= rf, (11)

where f is the option value for a given underlying asset price S at a given risk-free interest rate r and
constant volatility σ.

Given the explicit and implicit methods, respectively, as follows: implicit scheme is given by:

fi+1,j − fi,j
δt

+ rjδS
fi+1,j+1 − fi+1,j−1

2δS
+

1

2
σ2j2δS2 fi+1,j+1 − 2fi+1,j + fi+1,j−1

δS2
= rfi,j, (12)

fi+1,j − fi,j
δt

+ rjδS
fi,j+1 − fi,j−1

2δS
+

1

2
σ2j2δS2 fi,j+1 − 2fi,j + fi,j−1

δS2
= rfi+1,j. (13)

Taking the average of these two equations, and rearranging terms, yields:

−ᾱjfi,j−1 + (1 − β̄j)fi,j+1 − γ̄jfi,j+1 = ᾱjfi+1,j−1 + (1 + β̄j)fi+1,j + γ̄jfi+1,j+1, (14)

where

ᾱj =
δt

4

(
σ2j2 − rj

)
, (15)

β̄j = −δt
2

(
σ2j2 + r

)
, (16)

γ̄j =
δt

4

(
σ2j2 + rj

)
. (17)

Expressing Equation (14) as Cfi = Dfi+1 yields the following tridiagonal system:




1 + β̄1 γ̄1
ᾱ2 1 + β̄2 γ̄2

ᾱ3 1 + β̄3 γ̄3
. . . . . .

ᾱM−2 1 + β̄M−2 γ̄M−2

ᾱM−1 1 + β̄M−1







fi+1,1

fi+1,2

fi+1,3
...

fi+1,M−2

fi+1,M−1




which can be solved using Thomas algorithm [11].
In order to implement the Crank–Nicolson method, we first set up the grid that contains (t, S)

points such that S = 0, δS, . . . ,MδS = Smax on the horizontal line, and S = 0, δt, . . . , NδS = T on
the vertical line, where δt = T

N , δS = Smax

M .
Let fi,j be the grid notation for the option price at point (i, j) on the grid that corresponds to time

iδt and stock price jδS. Then we set up the boundary conditions such that the domain for power calls
is f(t, Smax) = 0 and f(t, 0) = 0 with payoff

(
SβT −K

)+
. For knock-out power calls, the domain for

down-and-out power call is Hd 6 SβT 6 Smax with boundary conditions f(t, Smax) = 0 and f(t,Hd) = 0

with payoff
(
SβT −K

)+
1{mT>Hd}, while the domain for up-and-out power call is Hu > SβT > Smax with

boundary conditions f(t, Smax) = 0 and f(t,Hu) = 0 with payoff
(
SβT −K

)+
1{MT<Hu}.

Next, we set up the coefficients as given by Equations (15), (16) and (17), and solve the sequence
of linear systems using LU-decomposition. This will return the option price using linear interpolation
for asset price that is not equal to a value on the grid.
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4. Monte Carlo simulation

In this section, Monte Carlo simulation [12] is utilized to price the knock-out power calls. Given the
pricing functions of the knock-out power calls as in Equations (3) and (4), the options are priced at
strike price K with maturity T . Suppose ST,j is the asset price at time T on the jth path, the prices
of the knock-out power calls are as follows:

DOPC(t, xT ) =
e−r(T−t)

n

n∑

j=1

(
SβT −K

)+
1{mT>Hd},

UOPC(t, xT ) =
e−r(T−t)

n

n∑

j=1

(
SβT −K

)+
1{MT<Hu},

where mT = min{Sβt : t < T}, MT = max{Sβt : t < T}, and n is the number of simulations. Let
xt = lnSt with the following process:

xt =

(
r − σ2

2

)
dt+ σ dWt. (18)

The asset path is discretized using the Euler scheme as:

xj+1 = xj +

(
r − σ2

2

)
∆t+ σ∆Wj, (19)

∆Wj = Wtj −Wtj = Z
√

∆t,

with Z(0, 1), over time interval [t, T ]. A random sample is withdrawn from a normal distribution for
each j = 0, 1, . . . ,m to simulate (19), thus generates a sample path for xT by simulating xj for j = 1
to j −m. This is repeated to generate many paths to estimate the price of the knock-out power calls.

5. Numerical Results

In this section, a numerical comparison is documented between Crank–Nicolson and the Monte Carlo
simulation techniques described earlier. There are three problems that we study: pricing power calls,
down-and-out power calls and up-and-out power calls, using Crank–Nicolson and Monte Carlo simu-
lation.

The hypothetical parameters used to price power calls are: S = 10, K = 75, β = 2, r = 0.02,
σ = 0.2 and T = 1. Table 1 and Table 2 document the power call prices obtained via Crank–Nicolson
and Monte Carlo simulation, respectively.

Table 1. Power Call Prices via CN. Table 2. Power Call Prices via MCS.

N = M PCCN Rel Error %

100 36.0775 6.8233 · 10−2

1000 36.0534 1.3869 · 10−3

2000 36.0527 5.5474 · 10−4

3000 36.0528 2.7737 · 10−4

4000 36.0529 0

N PCMCS CI Rel Error %

102 38.1229 (30.2837, 45.9621) 5.7416
103 36.7312 (34.1087, 39.35760) 1.8814
104 35.7728 (34.9695, 36.5760) 0.7769

The hypothetical parameters used to price down-and-out power calls are: S = 10, K = 9, β = 2,
r = 0.05, σ = 0.2, T = 1 and Hd = 5. Table 3 and Table 4 document the down-and-out power call
prices obtained via Crank—Nicolson and Monte Carlo simulation, respectively.
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Fig. 1. Power call prices.

Table 3. Down-and-Out Power Call
Prices via CN.

Table 4. Down-and-Out Power Call
Prices via MCS.

N = M DOPCCN Rel Error %

30 102.9368 3.9614 · 10−1

40 103.8386 4.7646 · 10−1

50 103.6406 2.8487 · 10−1

60 103.1810 1.5985 · 10−1

70 103.4614 1.1147 · 10−1

80 103.4132 6.4831 · 10−2

90 103.2332 1.0934 · 10−1

100 103.3666 1.9739 · 10−2

110 103.3462 0

M DOPCMCS CI Rel Error %

102 99.8234 (88.4492, 111.1975) 3.4087
103 101.8983 (98.3480, 105.4487) 1.4010
104 103.6511 (102.4793, 104.8228) 2.9503 · 10−1
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Fig. 2. Down-and-out power call prices.

The hypothetical parameters used to price up-and-out power calls are: S = 10, K = 50, β = 2,
r = 0.05, σ = 0.2, T = 1 and Hu = 110. Table 5 and Table 6 document the down-and-out power call
prices obtained via Crank–Nicolson and Monte Carlo simulation, respectively.

The relative errors between the closed-form solutions and the other two applied methods are com-
puted as follows:

ε ≈ |PT − PA|
PT

· 100%, (20)

where PT is the price obtained from the closed-form formula, and PA is the price obtained from Crank–
Nicolson and Monte Carlo simulation. It can be seen from the tables, the relative errors are small,
which implies accurate prices are produced by the both methods.
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Table 5. Up-and-Out Power Call Prices via CN.

N = M UOPCCN Rel Error % Time (seconds)

100 53.6563 3.2768 · 10−1 0.0158
200 53.7913 7.6905 · 10−1 0.0283
300 53.8166 2.9907 · 10−2 0.0726
400 53.8256 1.3189 · 10−2 0.1807
500 53.8298 5.3871 · 10−3 0.4725
600 53.8322 9.2880 · 10−4 0.8224
620 53.8326 1.8576 · 10−4 0.8960
621 53.8327 0 0.9187

Table 6. Up-and-Out Power Call Prices via MCS.

M UOPCMCS CI Time (seconds) Rel Error %

102 52.1308 (43.3074, 60.9543) 0.7269 2.8928
103 51.7587 (48.8824, 54.6351) 1.2459 3.8527
104 52.9001 (51.9597, 53.8405) 13.8557 1.7324
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Fig. 3. Up-and-out power call prices.

6. Conclusion

This paper develops a pricing framework for power calls and knock-out power calls under Black and
Scholes [2] which utilizes Crank–Nicolson technique and Monte Carlo simulation.

Monte Carlo simulation is more straightforward to implement than Crank—Nicolson one; neverthe-
less the latter produces more accurate prices than the former. Crank–Nicolson is also computationally
efficient than Monte Carlo simulation.

Pricing power knock-out options with numerical methods can be difficult and certain methods can
be slow to converge. Future research in this area would focus on developing other models to produce
computational efficient option prices, such as the fast Fourier transform (FFT) which has been used
to study the valuation of various types of options, given the characteristic functions are available in
closed-form [13,14].
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Оцiнка степеневих кол опцiонiв-нокаут за описом Блека–Шоулза

Савал А. С.1,2, Iбрагiм С. Н. I.1,2, Лагам М. Ф.2
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2Iнститут математичних дослiджень,
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Степеневi кол опцiони-нокаут — це опцiони, якi включають бар’єри для оцiнки оп-
цiонiв. Введення бар’єрiв для опцiонiв зменшує витрати на утримання опцiонiв, якi, як
вiдомо, мають бiльший важiль, нiж стандартнi ванiльнi опцiони. У цiй статтi оцiню-
ються степеневi кол опцiони-нокаут за допомогою моделювання Кранка–Нiколсона
та Монте–Карло в описi Блека–Шоулза. Результати показують, що моделювання
Кранка–Нiколсона є бiльш точним i ефективним, нiж моделювання Монте–Карло,
для визначення цiни на степеневi кол опцiони-нокаут.

Ключовi слова: степеневi кол опцiони, степеневi кол опцiони-нокаут, моделюван-
ня Блека–Шоулза, Кранка–Нiколсона, Монте–Карло.
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