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In the present work, we define a stochastic model using machine learning techniques to
generate random fields of some uncertain parameters. The proposed stochastic model is
based on Bayesian inference and aims at reconstituting the parameters of interest and
their credible intervals. The main goal of this work is to define a model that estimates the
values of the uncertain parameters known only by their distribution probability functions
and some observed spatial measurements. We note that this type of parameters may
be associated with some mathematical models usually traduced by non-linear differential
equations. In our case, we study the uncertainty of the retardation factor in a radionuclide
transport model. To achieve a more realistic parameter estimation, Markov сhain Monte
Carlo (MCMC) algorithms are applied. We demonstrate that the obtained results confirm
the feasibility of our proposed model and lead to a new understanding of contaminants’
behavior.
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1. Introduction

Because of industrial, agricultural and consumption-based lifestyles, the groundwater environment is
being attacked by an increasing number of contaminants. As a result, it poses serious threats to the
environment and human health. In order to create strategies for the protection of groundwater, the
numerical simulation of transport contaminants is therefore essential to understand their behaviour in
porous media. In the numerical study of complex phenomena, the modeling of transport contaminants
is usually expressed by partial differential equations (PDE) that represent an important tool in un-
derstanding the behaviour of these phenomena in time and space [1–5]. It is due to the mathematical
modeling of these phenomena through PDE targeting extremely precise forecasts. One of the critical
part in the resolution of PDE is the estimation of the associated uncertain parameters that influence
hugely the solution accuracy. As a result, several methods have been suggested in the literature for
estimating uncertain parameters. Among the most popular methods, we find the Bayesian estima-
tion [6–9]. In [6], authors propose the Bayesian estimation method to extract the geometrical and the
electrical parameters used in CMOS pixelated nanoscale biosensor platforms. The same method has
been developed in [8] to estimate the kinetic rate parameters of lactoferrin-mediated iron transport
across blood–brain barriers from posterior probability density functions. As an alternative, many re-
searchers proposed the Least Square Method [10,11] to estimate uncertain parameters. In [12], authors
used the Maximum Likelihood method to estimate random parameters. This last proposed method
was applied to experimental tumor data and the corresponding results were compared in terms of ef-
fectiveness to the results obtained when using Nonlinear Least Squares approach. The main conclusion
is that the principle of Maximum Likelihood can give more reliable predictive results for individual
tumor when combined with a Hidden Markov Model.
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In [13], authors defined a conditional generator of parameter random fields coupling to an uncon-
ditional generator of parameters based on A. Mikhailov algorithm [14] (known as Palm process) and a
kriged interpolator at observed localisations. This last work was an extension of an already published
work [15–17] which deals with an unconditional random field generator. The objective of this present
study is to apply a machine learning technique to predict the retardation factor related to radionuclide
contaminants transport model in groundwater. This estimation will be achieved using Bayes’ theorem
coupled with the Metropolis–Hastings (MH) algorithm.

In section 2 of this paper, we describe briefly the transport of radionuclide contaminants equation.
In section 3, we discuss in details the Bayesian inference for parameter estimation. Section 4 illustrates
the application of the proposed methodology to simulate the retardation factor associated to the
radionuclied transport model. We close this paper with a conclusion and some directive ideas for
future work.

2. Radionuclide transport model

Several phenomena are likely to carry radionuclides from a deep geological repository into the biosphere,
through the various containment barriers. Consequently, the migration of radionuclides in groundwater
can be described by the advection and diffusion–dispertion equation [16] and may be written as:

θRf
∂(c)

∂t
= −∇(qc) +∇[θ(Dm +Dp)∇c]− θRfλc+ S, Ω× (0, T ), (1)

where c = c(z, t) represents the concentration of the radionuclide per unit volume of fluid at location
z ∈ Ω and time t ∈ [0, T ], Rf is the retardation factor which represents the sorption to the soil; θ is
the porosity; q is the Darcy velocity; Dm is the molecular diffusion tensor; Dp is the dispersion tensor;
λ is the radioactive decay constant; S is the source term and T > 0 is the final time of observation.

Retardation factor. The long-term safety of storing nuclear waste in deep geologic repository
mainly depends on the ability of natural and artificial barriers to slow down long-lived radionuclides
from the possible migration to the biosphere. As a result, the retardation factor Rf appearing in equa-
tion (1) is successfully applied in studies of the migration of radionuclide components in groundwater.
Therefore, it has a significant impact in the solution of the equation (1). For this purpose, a machine
learning technique have been developed to estimate the retardation factor Rf based on the Bayesian
inference. The retardation factor can be expressed as:

Rf =

(
1 +

KD ρ

η

)
, (2)

where KD represents the distribution coefficient; ρ is the density of the soil and η is the porosity.

3. Bayesian inference for parameter estimation

The Bayesian inference is a statistical analysis based on using probability to represent all form of
uncertainty. It is essentially based on two different types of information. First, the distribution of the
observed data conditional on its parameters. This distribution is described by a likelihood function
L(θ, Y ) = p(Y |θ), where θ represents the uncertain parameter to be estimated and Y represents the
samples. The second one is the prior information about parameter value that express one’s beliefs
about this parameter before some evidence is taken into account. This information can be obtained
from published papers, from past studies or from expert knowledge. Since the prior information of
θ is fraught with uncertainty; it is modeled through a prior distribution with probability density
function denoted π(θ). The Bayesian estimation of θ is to calculate the average of the so-called
posterior distribution π(θ|Y ) that represents the conditional probability of the parameters given the
measurement data Y , resulting from the prior distribution π(θ) and the likelihood function L(θ, Y )
according to Bayes’ theorem. The posterior distribution can be expressed as:

π(θ|Y ) =
p(Y |θ)× p(θ)

p(Y )
, (3)
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where p(Y |θ) denotes the likelihood function and p(Y ) is the marginal density of the data representing
the evidence and it can be expressed as:

p(Y ) =

∫

θ
p(Y |θ)p(θ). (4)

Since the evidence p(Y ) is known to be constant and difficult to be calculated, the equation (3)
can be rewritten with a proportional expression as:

π(θ|Y ) ∝ p(Y |θ)× p(θ). (5)

In addition, the likelihood function is expressed as L(θ, Y ) = p(Y |θ). Consequently:

π(θ|Y ) ∝ L(θ, Y )× p(θ). (6)

We underline two big challenges to implement Bayesian approach: The first one is the specifi-
cation of the prior probability distribution which expresses the subjective beliefs and the subjective
uncertainty about the parameter; and the other one is the computing of the posterior distribution.
In general, for a complex problem, the functional form of the posterior distribution is unknown and
is difficult to be calculated. To overcome this difficulty, the Markov Chain Monte Carlo (MCMC)
approaches can be used.

MCMC and the M–H algorithm. In Bayesian estimation, when the explicit computation of the
posterior distribution of the parameter to be estimated is very complex, we use the Markov Chain Monte
Carlo methods to provide the samples approximately distributed according to the law distribution. The
Monte Carlo method relied to the generation of random number according to the proposal distribution.
Moreover, the Markov Chain is a sequence of random numbers where each number is depending to
the previous number in the sequence. It is used to generate a new value of the random variable from
the proposal distribution with mean equal to the previous value of the random variable. According to
equation (6), several values of the posterior distribution are generated. For that reason, the Metropolis–
Hastings algorithm (M–H) is used to decide which proposed values of the estimated parameter θ∗ are
to be accepted or rejected. The implementation of the M–H algorithm requires a good specification of
the proposal distribution π(·) and an initial state θ(0). The M–H algorithm is described here after:

Algorithm 1 Metropolis Hastings.

Require:
1: The prior distribution π(θ).
2: The likelihood distribution p(Y |θ) of the measurement Y given the parameter value θ.
3: The number of sample Ns to be generated.

Ensure: Proposal distribution for sampling new values of the parameter;
4: Initialization : θ := θ0;
5: for k = 1 : Ns

6: Generate the next sample θ∗ according to the proposal distribution;
7: Compute the posterior probability of the new value θ∗;
8: Compute the posterior probability of the previous value θt−1;
9: Compute the ratio :

r(θ∗, θt−1) = p(Y |θ∗)×π(θ∗)
p(Y |θt−1)×π(θt−1)

;

10: The acceptance probability : α(θ∗, θt−1) = min[r(θ∗, θt−1); 1]);
11: if α = 1 then
12: θt := θ∗;
13: else
14: Draw u from Uniform(0,1);
15: if u < α(θ∗, θt−1) then
16: θt := θ∗;
17: else
18: θt := θt−1;
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To implement the M–H algorithm, the first step is to specify the likelihood function and the prior
distribution. Let θ(t) be the tth sampling iteration. We start with an arbitrary initial parameter θ(0),
and we deduce the next value of the parameter θ∗ according to the proposal distribution. In our
synthetical case study, we use a lognormal distribution with a mean equal to the previous accepted
parameter θt−1 and variance of 6% of θt−1 [7], the 6% of the variance is obtained from the synthetical
observed values. After that, we compute the posterior distribution of the new value θ∗ according to
equation (6) and we compare it to the posterior probability of the previous value θt−1. If the acceptance
probability α is equal to 1, then θ∗ is accepted and we continue with the next value; if not, we generate
a variable “u” with a uniform distribution U[0,1] and we compare it with the acceptance probability α;
if “u” is less than the acceptance probability α, then θ∗ is accepted; otherwise, we keep the old value
θt−1 and we restart sampling θ∗.

4. Numerical simulations and discussion

Geological statistical measurements have shown that the retardation factor Rf associated to the trans-
port model of contaminants is distributed according to the lognormal law Ln(µ, σ). For that, let
consider a stochastic machine learning model for the prediction of Rf assumed to follow a lognormal
distribution with unknown mean µ and unknown standard deviation σ. The estimation of the pa-
rameters (µ, σ) lead to the estimation of the uncertain parameter Rf . In order to apply the proposed
methodology, we consider a synthetical prior function π(Rf ) follow a lognormal distribution with mean
µ = 4 and variance σ2 = 0.5. Considering a likelihood function p(X|Rf ) assumed to be a lognormal
distribution of mean µ = 3 and variance σ2 = 1. The synthetical observation values of the stud-
ied parameter Rf are Xi = (33.71, 20.14, 7.16, 4.44, 18.68); they are generated randomly according to
p(X|Rf ). The likelihood function can be expressed as follows:

p(X|Rf ) =
1

x(σRf
)
√

2π
exp

[
−(ln(x)− µ)2

2(σ2Rf
)

]
. (7)

The details of the simulation using MH-algorithm is represented on table 1 and table 2. We note σ
the standard deviation, A the acceptance rate, B the efficiency average, C the log marginal likelihood,
D the Monte Carlo Stantard Error, M the median and [a, b] the 95% credible interval.

Table 1. Machine learning data based on MCMC iteration started from five synthetical observation values.

MCMC iterations Burn-in period MCMC sample size A B C
12500 2500 10000 0.4499 0.2347 −29.342521

Table 2. Comparative simulation of the estimated parameter using different types of prior distributions.

Prior Distribution µ σ D M [a, b]
Lognormal 2.935173 0.4087142 0.009229 2.928029 [2.147885; 5.738067]
Uniform 4.124898 0.1172293 0.004267 4.089218 [4.00323; 4.425667]
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Fig. 1. Posteriori distribution of the estimated parameter Rf obtained using the Bayesian simulation with
Lognormal prior distribution (left figure) and Uniform prior distribution (right figure).
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Fig. 2. Representation of the estimated parameter Rf obtained using the Bayesian simulation with Lognormal
prior distribution (left figure) and Uniform prior distribution (right figure).
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Fig. 3. Autocorrelation functions of the generater parameter simulated using Bayesian inference with Lognormal
prior distribution (left figure) and Uniform prior distribution (right figure).
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Fig. 4. Histrogram of the generated parameter using Metropolis Hastings algorithm with Lognormal prior
distribution (left figure) and Uniform prior distribution (right figure).

The Monte Carlo standard error (D) obtained from the Bayesien model is very low, and demon-
strates that the number of samples is sufficient for reaching a high numerical precision of the estimator.

5. Conclusion

In this study, we presented a machine learning technique for analyzing the uncertainty of the retardation
factor in a radionuclide transport model. This uncertainty was estimated using the Bayesian inference
implemented with Metropolis Hasting algorithm. The density function of the estimated uncertain
parameter (Fig. 4) is similar to the proposal distribution. The autocorrelation function dies-off quickly
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which explains the huge heterogeneity of the retardation factor. Among the advantages of the proposed
method, we can mention the ability to draw strong conclusions with prior knowledge about what we are
measuring and with small data sets. Moreover, when the prior distribution is uniform, the Bayesian
inference becomes the maximum probability method, because this last does not take into account
the prior distribution, which means that the Bayesian inference is more advanced than the maximum
probability. A future study will aim at comparing the results of this model with other machine learning
models based on neural networks.
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Стохастичне моделювання машинного навчання для оцiнки
деяких невизначених параметрiв. Приклад: коефiцiєнт

уповiльнення в моделi поширення радiонуклiдiв

Ель-Яманi М. А., Лазар С.

Група математики, комп’ютерних наук та додаткiв (ERMIA),
Унiверситет АБДЕЛМАЛЕКУ ЕССААДI, ENSA з Танжеру, Марокко

У цiй роботi визначено стохастичну модель iз застосуванням методiв машинного нав-
чання для створення випадкових полiв з деякими невизначеними параметрами. За-
пропонована стохастична модель заснована на баєсовому висновуваннi i спрямована
на вiдновлення шуканих параметрiв та їхнiх достовiрних iнтервалiв. Основною ме-
тою даної роботи є визначення моделi, яка б оцiнювала значення невизначених па-
раметрiв, вiдомих лише за їхнiми функцiями ймовiрностi розподiлу та деякими про-
сторовими спостережуваними вимiрюваннями. Зауважимо, що цей тип параметрiв
може бути пов’язаний з деякими математичними моделями, якi зазвичай описують-
ся за допомогою нелiнiйних диференцiальних рiвнянь. У нашому випадку вивчаєть-
ся невизначенiсть коефiцiєнта уповiльнення в моделi поширення радiонуклiдiв. Для
досягнення бiльш реалiстичної оцiнки параметрiв застосовуються алгоритми Монте-
Карло марковських ланцюгiв (MCMC). Продемонстровано, що отриманi результати
пiдтверджують доцiльнiсть визначення запропонованої нами моделi та призводять до
нового розумiння поведiнки забруднювачiв.

Ключовi слова: байєсовий пiдхiд, машинне навчання, алгоритм Метрополiса–
Гастiнгса, рiвняння з частинними похiдними, коефiцiєнт уповiльнення, стоха-
стичне моделювання.
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