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In this paper, we utilize a time-fractional diffusion equation for image denoising and signal
smoothing. A discretization of our model is provided. Numerical results show some
remarkable results with a great performance, visually and quantitatively, compared to
some well known competitive models.
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1. Introduction

Image processing is a mathematical process for improving the image quality. This field has many classes
like image denoising [1–4], image super-resolution [5,6], image recognition [7,8], image registration [9,
10], image restoration and enhancement [11, 12], etc. In literature, there exist many techniques that
can be applied in image denoising, but in our paper, we will concentrate on using partial differential
equations (PDEs) [13, 14].

The PDEs are power tools when it comes to denoising, it has been proven that they are handy in
deleting noises and also in preserving important detail of the observed image. They were first utilize
with the so-called heat equation [15], by using the Laplacian as a diffusion operator, but the result
image is useless because of the appearance of blurriness caused by the isotropic diffusion (Laplacian
operator). To remedy this problem, Perona and Malik proposed a anisotropic diffusion equation [16],
by the name Perona–Malik equation. They used the gradient of the image to formulate the diffusion
process and to control it. Let’s consider u an observed image, t the time, and c(·) the diffusion function,
the Perona–Malik diffusion can be presented as follows

∂u

∂t
= ∇ · (c(|∇u|)∇u). (1)

The function c is chosen to enhance the homogeneous region in a fast way while keeping the details
of the original image and preserving features as much as possible. Perona–Malik equation has shown
its capability against noise, and its preservation of features. Despite its effectiveness, Perona–Malik
diffusion has weaknesses regarding the appearance of blocky effect, because the diffusion function
cannot detect the corners and edges with an adequate precision, so that the diffusion process can be
over smoothly. In [17], the author managed to propose an improvement of the Perona–Malik model, by
changing the argument of the diffusion function c with |∇(Gσ ∗u)|, where Gσ is a Gaussian convolution

kernel, it has the following form Gσ(x) = 1
2πσ2

exp
(
− |x|2

2σ2

)
. This choice has led them to explore a new

reliable edge detector.
Another successful attempt was introduced by Weickert [18]. His idea is to generalize the mod-

ified Perona–Malik equation, instead of using directions with the function c(·), he replaces it with
orientations by applying a diffusion matrix D. His model has the following form:

∂u

∂t
= ∇ · (D (Jρ(∇(Gσ ∗ u)))∇u) (2)
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with proper conditions. More details about the terms D and Jρ will be mentioned next. Moreover, this
approach shows some magnificent results compared to the other well-known models. But unfortunately,
it destroys details near edges and strong corners.

After defining the general frame, we can talk about the tool used in this paper, which is the
fractional derivative [19, 20]. This later is a powerful tool modeling general nonlinear phenomenons,
and now it is considered as a needful gear in image processing [21]. The time-fractional derivative is a
new and a powerful tool, which can be found and applied in many domains (see [22–24] for more info).

In our paper, we are going to apply the time-fractional order derivative in the sense of Caputo [25,26]
on the problem (2) instead of the first derivative. A good reason why we made this change is that a
fractional-order derivative over time of an image u can be looked as a weighted sum of the successive
terms ut0 , ut1 , . . . , utN . In other words, it uses explicitly the old versions of the observed image until
it converges to the desired image. The model based on the time-fractional derivative reduces the noise
in an image because it improves the smoothing process. One may wonder, what diffusion process will
we be using, that can give great results with time-fractional derivative? The answer of that question
is by using a diffusion based on orientations instead of directions, like in the Perona–Malik [16] or the
improved Perona–Malik [17] models.

The paper is organized as follows, in section (2), we will explicitly introduce our model. A dis-
cretization of our equation is provided using a finite difference method. Section (3) will show the
results of our model, visually and quantitatively, compared to some other competitive models. Some
discussions will be provided. Finally, we will sum up with a conclusion in section (4).

2. The proposed time-fractional diffusion filtering

In this section, we introduce our model. For x ∈ Ω ⊂ R2, t ∈ (0, T ) and 0 < α < 1, the diffusion
filtering can be described as follows





∂αu

∂tα
(t, x) = ∇ · (D (Jρ(∇uσ))∇u) + λ

(
u− u0

)
in (0, T ) × Ω,

u(0, x) = u0(x) on Ω,
〈D(Jρ(∇uσ)∇u, n〉 = 0 on (0, T ) × ∂Ω.

(3)

Where u0 is the initial (observed) noisy image, λ is positive constant.
The term ∂αu

∂tα (t, x) is the time-fractional derivative in the sense of Caputo [25], it has the following
form:

∂αu

∂tα
(t, x) =

1

Γ(1− α)

∫ t

0

∂u

∂τ
(τ, x)

1

(t− τ)α
dτ, 0 < α < 1.

D is an anisotropic diffusion based tensor which depends on its structure Jρ. This latter is defined
by

Jρ(∇uγ) = Gρ ∗ (∇uγ ⊗∇uγ) = Gρ ∗ (∇(Gγ ∗ u)⊗∇(Gγ ∗ u)t),

Gρ and Gσ are two Gaussian convolution kernels, they have the following form Gτ = 1
2πτ2

exp
(
− |x|2

2τ2

)
.

The diffusion tensorD has been calculated using the eigenvalues and the eigenvectors of its structure
tensor Jρ. Its purpose is to preserve the initial image details, like corners and edge, while deleting the
noise. The function D is defined as follow:

D := f+(λ+, λ−)θ+θ
t
+ + f−(λ+, λ−)θ−θ

t
−, (4)

where λ+/− (resp. θ+/−) are the the eigenvalues (resp. the eigenvectors) of the tensor structure Jρ.
The eigenvalues are calculated as:

λ+/− =
1

2

(
trace(Jρ)±

√
trace2(Jρ)− 4 det(Jρ)

)
, (5)

one could give a reasonable cause of this choice using the geometric characteristics of the restored image.
In other words, if λ+/− ≈ 0, the smoothing in homogeneous regions is isotropic, but if λ+ ≫ λ− ≈ 0
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(or λ− ≫ λ+ ≈ 0), the smoothing process in this case is anisotropic and directed along the edges.
However, if λ+ ≫ λ− ≫ 0, the smoothing goes off into corners.

For the functions f+(λ+, λ−) and f−(λ+, λ−), they are chosen to fulfill the following constraints:

— isotropic: in the homogeneous regions, the diffusion has to be isotropic;
— anisotropic: beside sharp edges and corners, the diffusion in this case has to be anisotropic.

While this process in a generalization of all the diffusion equation applied on image processing, one
must wonder, the functions f+/− associated to the Perona–Malik equation, which are defined as:

f+/− (λ+, λ−) = exp
(
− (λ++λ−)2

k

)
,

where k is a positive constant, chosen numerically. The functions f+/− associated with the Perona–
Malik model [16] or the Weickert model [27] destroy the details of the restored image, especially
corners and singularities. To remedy this, we propose a new choice of the functions f+/−, so that the
orientation of the diffusion works in a perfect way, while preserving and conserving features, corners
and characteristics of the observed image. In other words, the eigenvalues λ+ and λ− are needed when
the diffusion is near a corner or a contour, in this case λ+ is high so the diffusion will be carried by
the direction θ−.

A considerable choice of those functions are the following:




f+ (λ+, λ−) = exp
(
−λ+
k1

)
,

f− (λ+, λ−) = exp
(
−λ−
k2

)
+ 0.001 exp

(
−λ+
k1

)
,

(6)

where k1 and k2 (respectively) are two thresholds that control the diffusion along the directions θ+
and θ− (respectively).

2.1. Discretization of the proposed model

For simplicity reasons, we consider a one-dimensional function u, and for 0 < α < 1, the Caputo’s
fractional derivative is approached by:

∂αuki
∂tα

∼= σα,τ

k∑

l=1

ω
(α)
l

(
uk−l+1
i − uk−li

)
= σα,τ

[
uki −

k−1∑

l=1

(
ω
(α)
l − ω(α)

l+1

)
uk−li − ω(α)

k u0i

]
,

where

σα,τ =
τ−α

Γ(2− α)
, ω

(α)
l = l1−α − (l − 1)1−α, 1 = ω

(α)
1 > ω

(α)
2 > · · · > ω

(α)
k .

In order to introduce a discretization of the equation 3, we define a spatial partition of the image
domain Ω. Let u be an image with the size of N ×M in Ω. We denote ui,j the value of u at the pixel
(i, j), for all i = 1, . . . , N and j = 1, . . . ,M .

Now, we present a discretization of the equation. In order to do that, we need to control the
diffusion. In other words, the term div(D∇u) must be discretized in a way that our discrete model can
be stabilized. In our case, we consider a method presented by Weickert in [18] which use a convolution
on the discrete image, called non-negative stencil, in order to stabilize its scheme.

We rewrite the fractional diffusion matrix as follows

D =

(
a b
b c

)
,

practically, a, b and c can be calculated

a = λ1 cos2 θ + λ2 sin2 θ,

b = (λ1 − λ2) sin θ cos θ,

c = λ1 sin2 θ + λ2 cos2 θ.
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Where θ is

tan(2θ) =
2J12

J11 − J22
,

where again, J11, J12 and J22 are the components of the structure tensor Jρ. It has the following form:

Jρ =

(
J11 J12
J12 J22

)
.

Now we can start calculating the term div(D∇u),

div(D∇u) = div

[(
a b
b c

)(
∂xu
∂yu

)]

= ∂x(a∂xu) + ∂x(b∂yu) + ∂y(b∂xu) + ∂y(c∂yu)

= ∂xa∂xu+ a∂xxu+ ∂xb∂yu+ b∂xyu

+ ∂yb∂xu+ b∂yxu+ ∂yc∂yu+ c∂yyu.

We denote (∂xu)i,j (resp. (∂yu)i,j) the discretization of the operators ∂xu (resp. ∂xu). They can be
calculated as follows:

(∂xu)i,j =

{
ui+1,j − ui,j if i < N,

0 if i = N,

(∂yu)i,j =

{
ui,j+1 − ui,j if j < M,

0 if j = M.

For the second derivatives:

(∂xxu)i,j =





ui+1,j − 2ui,j + ui−1,j if 1 < i < N,

ui+1,j − ui,j if i = 1,

ui−1,j − ui,j if i = N,

(∂yyu)i,j =





ui,j+1 − 2ui,j + ui,j−1 if 1 < j < M,

ui,j+1 − ui,j if j = 1,

ui,j−1 − ui,j if j = N,

(∂xyu)i,j =





ui,j+1 − ui,j + ui−1,j+1 + ui−1,j if 1 < i < N, 1 < j < M,

0 if i = 1,

0 if i = N,

(∂xyu)i,j =





ui+1,j − ui,j + ui+1,j−1 + ui,j−1 if 1 < i < N, 1 < j < M,

0 if j = 1,

0 if j = M.

Using those derivatives, we rewrite the term div(D∇u) at the inner point (i, j) by:

[div(D∇u)]i,j = (∂xa)i,j(∂xu)i,j + ai,j(∂xxu)i,j + (∂xb)i,j(∂yu)i,j + bi,j(∂xyu)i,j

+ (∂yb)i,j(∂xu)i,j + bi,j(∂yxu)i,j + (∂yc)i,j(∂yu)i,j + ci,j(∂yyu)i,j . (7)

The discretization of (7) can be seen as a convolution product on u at a point (i, j) using an array
of size 3 × 3 called the Stencil. However, one of the conditions imposed by Weickert on the matrix
associated with the diffusion term is the positivity of its components. It is required for the stability
of the scheme. Moreover, (7) does not guarantee this condition. To deal with this problem, Weickert
proposed in [18] a new non-negative discretization summarized in Table 1.
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Table 1. Non-negative discretization stencil.

|bi−1,j+1|−bi−1,j+1

4

+
|bi,j |−bi,j

4

ci,j+1+ci,j
2 − |bi,j+1|+|bi,j|

2
|bi+1,j+1|+bi+1,j+1

4

+
|bi,j |+bi,j

4
ai−1,j+ai,j

2

− |bi−1,j |+|bi,j |
2

−ai−1,j+2ai,j+ai+1,j

2

− |bi−1,j+1|−bi−1,j+1+|bi+1,j+1|+bi+1,j+1

4

− |bi−1,j−1|+bi−1,j−1+|bi+1,j−1|−bi+1,j−1

4

− |bi−1,j |+|bi+1,j |+|bi,j−1|+|bi,j+1|+2|bi,j |
2

− ci,j−1+2ci,j+ci,j+1

2

ai+1,j+ai,j
2

− |bi+1,j |+|bi,j |
2

|bi−1,j−1|+bi−1,j−1

4

+
|bi,j |+bi,j

4

ci,j−1+ci,j
2 − |bi,j−1|+|ci,j |

2
|bi+1,j−1|−bi+1,j−1

4

+
|bi,j |−bi,j

4

Let’s consider A(u) the matrix after discretization, that contains the components of the operator
div(D∇u). We also consider the matrix S of size 3 × 3 containing the components of Table (1), we
note:

S =



d11 d12 d13
d21 d22 d23
d31 d32 d33


 .

For a fixed point (i, j), the term [A(u)]i,j can be calculated as follows:

[A(u)]i,j = ui−1,j−1d11 + ui−1,jd12 + ui−1,j+1d13

+ ui,j−1d21 + ui,jd22 + ui,j+1d23

+ ui+1,j−1d31 + ui+1,jd32 + ui+1,j+1d33.

We completed the discretization of (7). The final following discretization of our PDE is:

σα,τ

[
uki −

k−1∑

l=1

(
ω
(α)
l − ω(α)

l+1

)
uk−li,j − ω

(α)
k u0i,j

]
=
[
A(uk−1)

]
i,j

+ λ
(
uk−1
i,j − (u0)i,j

)

for k > 1, 1 6 i 6 N and 1 6 j 6M .
This last implies that:

uki,j =

k−1∑

l=1

(
ω
(α)
l − ω(α)

l+1

)
uk−li,j + ω

(α)
k u0i,j +

1

σα,τ

[[
A(uk−1)

]
i,j

+ λ
(
uk−1
i,j − (u0)i,j

)]
(8)

for k > 2, 1 6 i 6 N and 1 6 j 6M , where

u0i,j = (u0)i,j, u1i,j = ω
(α)
1 u0i,j +

1

σα,τ

([
A(u0)

]
i,j

+ λ
(
u0i,j − (u0)i,j

))
.

3. Results and discussion

This section will provide some important results, to prove the efficiency of our time-fractional diffusion
model, compared to some competitive well-known denoising methods.

In our case, we will compare the obtained results from our model, with the improved Perona–
Malik [17], the Weickert filter [18] and the fractional-order Total Variation [28] i.e. TV β for 1 < β < 2.
Which is a better performed version of the well-known Total Variation model [29]. For the sake
of comparison. In this work, all the simulations were done by Matlab 2016, on a computer with a
processor at 3 GHz and 8 Gb of RAM. To test the performance of our approach compared to the
others, we used the peak signal-to-noise ratio (PSNR) and also the structural similarity index (SSIM)
in order to measure the quality of the result images. All the parameters in all the models were set
manually in terms of PSNR and SSIM values.
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3.1. Enhancement in case of noise

In order to study the effectiveness of the proposed method, we will perform some experiments. First
experiment will be 3 images corrupted by a Gaussian noise with zero mean and standard deviation
σ = 30. Figure 1 shows denoising results for the 3 images. We can see clearly the difference between
the restored images as the noise is reduced. We take λ = 1

σ ; Maxiter = 1000 and α = 0.6. For the
choices of the diffusivity function f+/− In Table 2, we present a quantitative comparison between the
obtained images with different values of the noise level σ. The PSNR and SSIM values are set and
show a big improvement compared to the other models.

Original image Noisy image σ = 30 Improved P-M eq. [17] Weickert model [18] Our approach

Fig. 1. Denoising results applied on three noisy test images, with a noise level σ = 30.

Table 2. Comparison of different models with 3 different images using the PSNR and SSIM values.

Image Our approach TV β [28] Improved P-M [17] Weikert filter [18]
σ = 10 PSNR=31.7012 PSNR=31.2850 PSNR= 31.2427 PSNR= 31.3077

SSIM=0.898 SSIM= 0.888 SSIM= 0.890 SSIM=0.896
Barbara σ = 20 PSNR=28.2458 PSNR= 27.7976 PSNR= 26.6231 PSNR= 27.5048

SSIM=0.839 SSIM=0.820 SSIM=0.819 SSIM=0.831
σ = 30 PSNR=25.0945 PSNR= 24.9479 PSNR= 24.4496 PSNR=24.7579

SSIM=0.786 SSIM= 0.778 SSIM=0.773 SSIM = 0.782

σ = 10 PSNR=34.5859 PSNR= 34.4747 PSNR=33.6393 PSNR=34.0937
SSIM=0.925 SSIM= 0.902 SSIM=0.917 SSIM=0.851

Lena σ = 20 PSNR= 31.4599 PSNR=31.2153 PSNR=29.7665 PSNR= 30.2254
SSIM=0.855 SSIM=0.828 SSIM=0.831 SSIM=0.844

σ = 30 PSNR=29.9105 PSNR=29.3855 PSNR= 27.4437 PSNR=28.7537
SSIM=0.807 SSIM= 0.766 SSIM=0.725 SSIM=0.786

σ = 10 PSNR=34.1985 PSNR= 34.0619 PSNR=33.6967 PSNR= 33.9521
SSIM=0.982 SSIM=0.989 SSIM= 0.966 SSIM= 0.978

Peppers σ = 20 PSNR=31.3677 PSNR=31.0285 PSNR=30.0275 PSNR= 31.0017
SSIM=0.941 SSIM= 0.938 SSIM= 0.924 SSIM= 0.926

σ = 30 PSNR= 30.0596 PSNR=29.0046 PSNR=27.4982 PSNR= 28.7789
SSIM=0.884 SSIM=0.888 SSIM=0.865 SSIM=0.880
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Fig. 2. Sensitivity test of the four parameters for the Man test with σ = 35.

3.2. Sensitivity test of the parameter efficacy

In general, the choice of parameters depends on the image, its nature, the noise level and discontinuity
of lines.

We start with the parameter selection in (6), the two threshold k1 and k2 are chosen in order to
show the best values of PSNR as shown in Fig. 2a, for an optimized value of k1/2, we fix k1/2 = 25.
We use the same technique to pick the parameter γ (see Fig. 2b). For ρ, Weickert has demonstrated
in [27] that in general ρ = 3γ.

The last important parameter α (the time-fractional order) mostly depends on the nature of the
image. Moreover, as is shown in Fig. 2c, the values of α are obtained by the best value of the PNSR.

3.3. Robustness in the case of noisy images

Almost every model in the literature can reduce small noises, but a finite of those being robust can face
big noises and preserve as much as possible at the same time. To test the robustness of our proposed
approach against high level of noise, we take more test images using different Gaussian additive noise
variances (σ = 40 and σ = 50). Figures 3 to 8 show the denoised images of different models. We see
clearly that for the proposed method, the noise is reduced and important details are conserved. These
results demonstrate that our model is more robust against noise compared to the others. Visually, some
differences are visible in image locations with smoothly varying intensities, such as Fingerprint’s lines
and in Barbara’s face. While, even if the competitive model are feature preserving, especially the TV α

regularization (that proves to be more useful than the Total Variation, which is known by it success in
avoiding staircasing effect), the noise is not completely removed and the texture is damaged. However,
the proposed time-fractional diffusion model does not suffer from the presence of the staircasing effect.
The results show that the proposed model outperforms the others visually and quantitatively in terms
of both PSNR and SSIM values.
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a Original image. b Noisy image σ = 50. c TV β model [28].

d Improved PM [17]. e Weickert model [18]. f Our approach.

Fig. 3. Comparison of our approach with other models using Fingerprint image
where the noise variance is σ = 50.

a Original image. b Noisy image σ=40. c TV β model [28].

d Improved PM [17]. e Weickert model [18]. f Our approach.

Fig. 4. Comparison of our approach with other models using House image
where the noise variance is σ = 40.
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a Original image. b Noisy image σ = 50. c TV β model [28].

d Improved PM [17]. e Weickert model [18]. f Our approach.

Fig. 5. Comparison of our approach with other models using House image
where the noise variance is σ = 50.

a Original image. b Noisy image σ = 40. c TV β model [28].

d Improved PM [17]. e Weickert model [18]. f Our approach.

Fig. 6. Comparison of our approach with other models using Man image
where the noise variance is σ = 40.
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a Original image. b Noisy image σ = 50. c TV β model [28].

d Improved PM [17]. e Weickert model [18]. f Our approach

Fig. 7. Comparison of our approach with other models using Man image where the noise variance is σ = 50.

a Original image. b Noisy image σ = 40. c TV β model [28].

d Improved PM [17]. e Weickert model [18]. f Our approach.

Fig. 8. Comparison of our approach with other models using Barbara image where the noise variance is σ = 40.

3.4. Smoothing signals

In this subsection, we will present some results in the smoothing process of signals to extract useful data
from them. Figires 9 and 10 show the recovery of data from destroyed signals shaped in smooth data.
From these figures, it is clear that the recovery of peaks and details from noisy signals is successfully
guaranteed using our approach, contrarily to the competitive models. Hight frequencies are preserved
thanks to the time-fractional derivative and its memory effect potential.

Additionally, our approach fixes the drawbacks of the competitive models, such as Staircasing effect.
It can be seen in some hight peaks that were not treated by either of the competitive models. However,
this drawback is reduced in our case with the help of the diffusion process and the fractional derivative.
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Fig. 9. Signal of cropped part of Fingerprint image with different smoothing methods.
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Fig. 10. Signal of cropped part of Man image with different smoothing methods.
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4. Conclusion

In this work, we manage to integrate a powerful tool into our approach with a strong diffusion process
based on tensor diffusion regularization, with a considerable choice of the functions that controls the
isotropic behavior near flat regions and nonlinear filter beside sharp edges, corners and contours. To
legalize our model, Simulated visual results show that the efficacy of our new approach and also unfold
the robustness with respect to noise reduction compared to the competitive models. However, for
quantitative results, we have shown that the model yields to better PSNR and SSIM values in every
comparison. In future work, a double fractional-order derivative on time and the diffusion term will
be included in one model. This choice has a powerful background in the literature.
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Рiвняння дифузiї з дробовою часовою похiдною для
згладжування сигналу та зображення

Бен-Логфiрi А., Хакiм А.

LAMAI, Унiверситет Кадi Айяд, Марракеш, Марокко

У цiй статтi використовується рiвняння дифузiї з дробовою часовою похiдною для
знешумлення зображення та згладжування сигналу. Подано дискретизацiю запро-
понованої моделi. Числовi результати показують деякi чудовi результати з високою
продуктивнiстю, як вiзуально, так i кiлькiсно, порiвняно з деякими добре вiдомими
конкурентними моделями.

Ключовi слова: знешумлення зображення, дробова похiдна, похiдна дробового по-
рядку за часом, тензор дифузiї.
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