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The main idea proposed in this article is an efficient shifted Legendre pseudospectral
method for solving a class of nonlinear delay Fredholm integro-differential equations. In
this method, first we transform the problem into an equivalent continuous-time optimiza-
tion problem and then utilize a shifted pseudospectral method to discrete the problem.
By this method, we obtained a nonlinear programming problem. Having solved the last
problem, we can obtain an approximate solution for the original delay Fredholm integro-
differential equation. Here, the convergence of the method is presented under some mild
conditions. Illustrative examples are included to demonstrate the efficiency and applica-
bility of the presented technique.

Keywords: delay Fredholm integro-differential equations, pseudospectral method, nonlin-
ear programming.
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1. Introduction

Integro-differential equations (IDEs) have gained a lot of interest in many applications, such as biologi-
cal, physical, and engineering problems. The numerical methods for solution of FIDEs have been inves-
tigated in many studies [1-4]. An important class of IDEs are delay IDEs (DIDEs). Up to now, many
numerical methods are proposed to solve special classes of these equations. Mahmoudi et al. [5] pro-
posed a convergent numerical method for solving nonlinear delay Volterra integro-differential(VIDESs)
equations. Also, Mahmoudi et al. [6] proposed a convergent numerical method for solving nonlinear
delay differential equations. Belloura and Bousselsal 7] suggested a new numerical and convergent
approach based on the use of continuous collocation Taylor polynomials for the numerical solution
of VIDEs. In [8], spectral and pseudospectral Jacobi—Petrov—Galerkin approaches were developed to
solve the second kind VIDEs. Yuzbasi [9] presented a matrix method for obtaining the approximate
solutions of the delay linear Fredholm IDEs (FIDEs) with constant coefficients using the shifted Legen-
dre polynomials. Saadatmandi and Dehghan [10] applied the Legendre polynomials for the solution of
the linear FID equation of high order. Kucche and Shikhare [11] presented results about existence and
uniqueness of solutions and Ulam—Hyers and Rassias stabilities of nonlinear Volterra—Fredholm DIDEs.
Gulsu and Sezer [12] presented few techniques available to numerically solve linear FID difference equa-
tion of high-order. Issa et al. [13]| proposed the perturbed shifted Chebyshev—Galerkin method for the
solutions of delay Fredholm and Volterra IDEs. Boichuk et al. [14] presented a Fredholm boundary
value problem for a linear delay system with several delays defined by pairwise permutable constant
matrices. Sahin et al. [15] considered an approximate solution of general linear FID difference equa-
tions under the initial-boundary conditions in terms of the Bessel polynomials. Sezer and Gulsu [16]
presented a numerical method for solving the high-order general delay linear Volterra—Fredholm IDEs
with variable coefficients under the mixed conditions in terms of Taylor polynomials. Ordokhani and
Mohtashami [17] presented an appropriate numerical method to solve nonlinear FIDEs with time delay
by using Taylor method.
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Nonlinear delay Fredholm integro-differential equations (DFIDEs) have a wide range of applications
in science and engineering. Due to the existence of nonlinearity and delay times, these equations
must be solved successfully with efficient numerical methods. Hence we proposed an efficient and
applicable method for such problems. We first convert the problem into an equivalent continuous-time
optimization (CTO) problem and then approximate the optimal solution of this CTO problem by an
interpolating polynomial. Here, the interpolation are related to the shifted Legendre—Gauss—Lobatto
(LGL) nodes. After discretization the problem in these nodes, we get a nonlinear programming (NLP)
problem, by solving of which we approximate the solution of original DFIDE. Moreover we analyze the
convergence of approximate solutions and show the performance of approach by solving three numerical
examples.

2. Nonlinear DFIDE

In this paper, we focus on the following class of nonlinear DFIDES,

T
y(z) = f(z,y(2),y(z — o)) +/0 h(z,s,y(s),y(s —o))ds, 0<z<T,
y(x) = &(z), —o<z<O,

where f,h: [0,T] x R" x R™ — R and &: [0,T7] — R"™ are given continuously differentiable functions,
y: R — R is an unknown function and 0 < ¢ < T is a given delay parameter. We assume that the
system (1) has a unique solution.

We can use the transformations s; = 3t + 5 and sy = ”t + U'"T respectively, to convert the
intervals [0, 0] and [0, T] into [—1,1]. By these DFIDE (1) is transformed into the following equivalent
System

(1)

1
(£(0(0). 60— ) + 5 [ o5t 5 (5+5) € (50— 9)
/ (2, T52t + b2y (Tsof 4
W)= fopeote o) + 5 [ 050 Gy (5149 £ G- 9) <2>
+152 [1 (o, T Tmy (Lot s Tym) y (Tgot s o)) at, o <o

1
y(0) = £(0).

Now, we suggest the following CTO problem:
Minimize J = (y5(0) — £(0))? subject to

1
fvle)cle =) +3 [ h(egte 5 (5+5).€ (50— 5) d

1
o [ (e T 25y (524 23y (B2 4 T52)) . 0 <z <o

"%
o
Q

).y (%t +59))dt, 0<w<o

1
Fve)ste =) +5 [ hg+5u(3+3).6(5-9)

1
+%/ h(z, 559t + 2Ly (552t + 2L) y (552t + 559)) dt, o< <T.
-1

It is trivial that the solution of (2) is an optimal solution for the problem (3). Also, since problem (1)
has a unique solution, the problem (2) is feasible and has a unique optimal solution. Note that the
CTO problem (3) help us to analyze the convergence of the method.

In next section, we implement a shifted Legendre pseudospectral method for solving CTO prob-
lem (3).
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3. Implementation of the method

We approximate the solution of CTO problem (3) as follows

N
y(a) - gL <a<T, @)
7=0

where g, j =0,1,..., N are unknown coefficients and L;(-), j = 0,1,..., N are the Lagrange polyno-
mials which they are defined as follows

r — I

Liz) =[] , j=0,1,...,N. (5)
im0 Lj — Ti
i
Here, {z; };-V:o € [0, 7] are the shifted LGL collocation points, and they are the roots of

Qs () = (1 _ <%x _ 1>2> dp];t@

where py(+) is the shifted Legendre polynomial of degree N. This polynomial can be calculated on
[0,T] by the following recurrence formula,

2
p()(.Z') = 17 pl(l’) = Tx - 17

- (6)
27 +1 (2 ; .
piaa(e) = 25 (2o 1) i) - dhrpale), F= 120
Notice that L;j(zy) =0, if j # k, and Lj(x) =1 if j = k. Hence, we get
y(zr) = yn (k) = Y- (7)
Also, p N
d—y(a:k) Zyg = Z%’ij, (8)
where Dy; = L;(x;) and can be given by B
( LN(I'k) 1
) k .7
L (xj) wx — 7
2 _N(N +1) )
— k = =
Dy=T 4 1=0 (9)
2 N(N +1) .
= k=j=N
T 4 b ‘_7 )
{ 0, otherwise.

Now, by utilizing relations (4) and (7), we discretize the CTO problem (3) as the following NLP
problem:

Minimize J = (yg — 5(0))27
N 1
Zoﬂjij = f(k, Tr, &2, — 0)) + %/lh (zr, St + 5ouv (51 +5),6 (56— 5)) dt
J= B
1
H[h%%ﬂ%mm%w%%m%%ﬂﬁw,hww%’um

1

N
3 3Dk = § (o s i = ) + 5 hlon gt g (30+8). (50— 9)

+%#j%%ﬂ%%W¥H%%M%H%%%kﬂﬁth

Here we have assumed that index [, satisfies ;, < 0 < x;,4+1 < T. Integral in constraint of prob-
lem (10) can be approximated by using the following lemma.
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Lemma 1 (Ref. [18]). For any polynomial p(-) of degree at most 2N — 1, we have

/ Zp Jwj,

where w; = N(J\27+1) (pN(ltj))Q, j=0,1,...,N, {tj} "o and pn(-) are the LGL nodes and Legendre

polynomial of degree N on [—1,1], respectively.

Now, by Lemma 1, the problem (10) can be approximated as follows:

Minimize J = (yo — 5(0))27

( N N
Zoﬂjij = f(2k, G, E(xk — 0)) + § Zowj (wk’ atj + 3 E yiLi ($t; + %) € (5t — %))dt
j= iz
N N
+152 Zowjh@fk?%tfr#’zoyﬂi (552t + 75T) Zyz i (552t +%)), k=1,2,...,1,
J= 1=
N N
> 55Dk = f (w yk,zyz (xk_a))+gzwjh(xk,gtj+g,;)yiLi(%tﬁ%),é’(%tj—%))dt
J:
N
+557 %wjh<$kﬁ¥tj+”+T Z%yz (552t + 5L, Zyz Z(Tg"thr%)), k=l,+1,...,N.
\ J= 7

(11)

Having solved NLP problem (10) we obtain the point wise approximation §* = (g5,95,...,yy) and
continuous approximation

N
=0

for the original DFIDE (1).

4. Convergence analysis

In this section, we analyze the convergence of the obtained approximate solutions to the exact solutions.
We show that constraints of the problem (10) can be relaxed to guarantee the feasibility. Here, the
notation W™P is Sobolev space that consist of all functions n: [0,7] — R whose N9, 0 < j < m, lie

in LP, with the norm )
s = ([ @)

7=0
We first convert the problem (10) into the following problem:

Minimize J = (yo — £(0))® subject to

N 1
ZOQJDIC] - f(xlmglmg(tk - U) - %/lh (wka %t+ %7yN (%t+ %) 7§ (%t - %)) dt
j= _

1 .
5 [ (ow, Z5t Lz (B 248 (Bt L) <V = DI k=12

N
> YiDrj — f (@, G yn (b — 0))

g2 [ o Tyt g (Lgeten ) (B4 L)

1 -
—g/ Bk Gt + 3 yn(§t+9),6 (5t —9)) dt| < (N —=1)2"™, k=1, +1,...,N.

\ -1

(13)
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Lemma 2 (see [19]). For any given function n(-) € W™, there is a polynomial p,(-) of degree at
most N, such that
17(-) = Pn()llec < CCoNT™,

where C' is a constant independent of N and Cy = ||n||ym.cc.

Theorem 1. Assume that y(-) € W m > 2 is an optimal solution for the problem (3). Then,
there exists a positive integer Nj such that for any N > N; problem (13) has a feasible solution

Y= (g()v Y, 7gN) satisties
[y(zx) =Gl S LN =17, k=0,1,.... N, (14)
where {:Ek}]kvzo are the shifted LGL points and L is a positive constant independent of N.

Proof. By Lemma 2 there exists an polynomial p(-) of degree (N — 1) and constant C independent
N, such that

15(-) = p()lloe < Cr(N —1)'7™
We define

So we have

Hence, for z € [0,T]

ly(z) —yn ()| =

| @t - pispas
0

< [ lg(s) —p(s)lds
J
T
< Cy(N — 1)1—m/ ds < C1T(N —1)'=™, (15)
0

So by assumption L = C1T and x = xp, k = 0,1,..., N relation (14) can be obtained. Now we show
that yn(zk), k = 0,1,..., N satisfy the constraints of the problem (13). By relation (15), y(xy) for
k=0,1,...,N are in a compact set such as Q C R™. Moreover, since f(-,-,-) on [0,T] x Q2 h(-,-,")
on [0, T]? x Q2 are continuously differentiable, there are constants My, M independent of N such that

|f($70-170-2) - f($7¢17¢2)| < M1(|01 - ¢1| + |J2 - ¢2|)7
’h(l’,t, 01702) - h(%tywlﬂh)’ g MQ(‘Ul - wl‘ + ‘0-2 - 1/}2’)

for all z,t,€ [0,T] and o1, 09,171,192 € Q. By definition yx(-) is a polynomial of degree less than or
equal to V. The derivative of any polynomial of degree less than or equal to N at the shifted LGL

(16)

nodes xg,r1,...,x N can be given exactly by the differential matrix D. Hence, we get
N
> 9iDkj = g (). (17)
§=0

Therefore, by (14), (15) and (17) for k =1,2,...,l, we have,

1

‘ZJN(a:k) — flar, yn(ap), Elap — o)) — %/_1 h(zr, §t+ G, yn (5t +§) .6 (5t —F))dt

1
52 [ b (o Tyt T (T + T42) o (T2t + T5%)) e

< un(ar) — 9(@e)| + | f (2 yn (@), E(e — ) — f (2, y(a), E(zp — 0))|
1

1
5[ hegte g (5+5).€ G- ) -5 [ o5 5 (54 5). (50— 5)ar

+
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1
552 [ (o T T (S5t 42) g (L% + 15%)) de

-1

1
~252 [ o Ty 52y (C2t+ T52) o (T4 T52)) o
1

i)~ F(onpon) o - 0) =5 [ o ger f (504 5).€ (5 - ) a

1
~252 [ (o Ty 5oy (C2t+ T52) oy (Tot+ T52)) o
1
< |p(zr) — g(@r)| + Mi|yn (zr) — y(zr)| +M2%/1 lyn(5t+9) —y (§t+5)|dt
1
M52 [y (5524 T2 —y (55204 T32) |

1
a5 [ (T2 552) -y (524 T5%) |

< COYN =)™ 4 MiTCy{(N — 1)'™™ 4+ Moo CyT(N — 1) ™™ 4 2My(T — 0)C,T(N — 1)
= Cy (N =)' (1 4+ M\T + MaoT + 2M>T(T — o)),

and for k=1, +1,..., N we obtain

1
gn(zx) — f(zryn(z), yn (2, — 0)) — % /_lh(% St+G.un (5t +5),6(5t—§))dt

1
e [ (o T g2 (S T2) o (T2 + T52)) b

< () = 9law)| + [ f (@ryn(en), yn (ee = o) = f (@, y (@), y(zx — o))
1

1
5 [ (o5t o 5+ 8).(5t—5) it =5 [ hon 5+ 5y (504 5).6(5 - 3))

+

1
#[Za [ o Zae Ty (S5 L) o (5214 252))
-1

1
~252 [ (o Tpoee Ty (S5 150) o (B4 552)) o

1
+ 'y(xk) — @k, y(aw), y(zg — o)) —%/_111 (2, §t+ %y (§t+ %), 6 (5t - %)) dt

1
~252 [ (o Tette Ty (S 152) o (Gg2t+ 552)) o
< |plar) — 9(@e)| + My (Jyn(z) — y(@e)| + lyn (ze — 0) — y(zp — 0)])

1 1
#3005 [ Jun(ge+ 5y (5 Dl + 0 T5 [ (57t + 542) -y (Tt + T e
1 —1

1
552 [y (Zg2+ 552) -y (T2t 4 T52)
<C(N = D)™ 4 2M TCL(N — D)™ 4 MaoCyT(N — )™ 4+ 2My(T — 0)CyT(N — 1)1
= C1(N — )™ (1 + 2M\ T + Moo T + 2MT(T — o)),

where My, My are the Lipschitz constants and satisfy relation (16). Now, we consider a positive integer
Ny such that for all N > Ny, 14+ 2M T + MyoT + 2MoT(T — o) < (N — 1)%_”"”. By this, for any
N > Ny, = (Yo, 91, ---,yn) satisfies the constraints of the problem (13). |
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Now, let (%5, 97, --,¥x) be an optimal solution for the problem (13). Define

N
yi(@) = S g Li(e), @ €[0T, (18)
k=0

where Li(-), k =0,1,..., N are the Lagrange interpolating polynomials. We have a sequence of direct
solutions {73, 71, -, Untne n, and their sequence of interpolating functions {un () = Ny

Theorem 2. Let {7,797, ... ,g}"v}?\?le be a sequence of optimal solutions of the problem (13) and
{yn()}N—n, be their interpolating sequence. It is assumed that the sequence {yy(-)}y_y, has a
subsequence that uniformly converges to the continuous function. Then,

¥ (z) = /0 Cyr)dr 4 €0), 0<z<T, (19)

is an optimal solution for the problem (3).

Proof. Assume that {y}*\,l()}zl
lim g3 () = ¢(-). So we get lim yy (-) = y*(-). Also, by considering the objective function of the
1—00 * 1—00 K

is a subsequence of sequence {y} (-)}_; such that lim N; = co and
- 1—00

problem (13), we have

J = (g5 — €0)% = (lim y4,(0) — £(0))* = (5(0) — £(0))* = (£(0) — £(0))* = 0.

1—»00

Hence, it is sufficient that we show y*(-) is a feasible solution. Assume that y*(-) does not satisfy the
constraint of problem (3). So, there is a time Z € [0,7’] such that

J (@) = (2,57 (2),y"(2 - 0)) #0,

1
5% [ h(o gt Ty (Tt + T32) o (T2 + T5%)) dt, 0 <o <o,

+552 [ h(e, 5o+ B2y (52t + H2) oy (552t + 559)) dt, o <a <T.

Since, shifted LGL nodes {zx}32, are dense in [0,7] (see [20]), there is a sequence zy, such that
0 <kn, < N; and lim x, = . Thus

11— 00

§'(@) =¥ (2,y"(@),y" (T — 0)) = lim (§"(zry,) — (@ry,, " (@ry, ), ¥ (Thy, —0))) # 0. (20)

1—00

On the other hand, lim (N; — 1)%_’” = 0. So by constraints of problem (3), we have

1—00
lim (y*(kal) - g(kai ) y*(xkzvi)v y*(f - U)) =0,

1—00

which is a contradiction to (20). Thus y*(+) is an optimal solution for problem (3). [
Note that y*(+) is also a solution for the DFIDE (1).
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5. Numerical examples

In this section, we show the efficiency of presented method by solving three DFIDEs. Here, we calculate
the absolute error of approximate solution by

E(z) =ly(z) —y*(z)], 0<z<T,

where y(-) and y*(-) are the approximate and exact solutions, respectively. We utilize the FMINCON
in MATLAB software to solve the obtained NLP problems.

Example 1. Consider the following DFIDE

2
y(:n):y(:n—1)+e$—ex_1+e_1—e—|—/ y(s—1)ds, 0<=z
0
y(z) =¢(z), —-1<z<0,

N

. (21)

where £(x) = e*, —1 < & < 0. The exact solution is y(z) = e*. We represent the obtained approximate
and exact solutions for N = 10 in Fig. 1. The absolute errors of approximate solutions for N = 8, 10,
12 are presented in Fig. 2. It is observed that when IV increases, the absolute error tends to zero.

Example 2. Consider the following DFIDE

us

y(z) =y(x — 1) + cos(z) — sin(z — 1) +sin(1) — cos(1) + /02 y(s—1)ds, 0<z<2, (22)

y(l’) S(x)v -1 ST < 07

where £(x) = sinz, —1 < z < 0. The exact solution is y(z) = sinx. We show the approximate and
exact solutions for N = 10 in Fig.3. The absolute errors of approximate solutions for N = 8, 10, 12
are given in Fig. 4. It is observed that when IV increases, the absolute error tends to zero.

Example 3. Consider the following DFIDE

s

1
y(x) =y(x —1) —cos(x — 1) — 5 sin(2) — /4 — sin(x) + /2 y?(s —1)ds, 0<z<2, (23)
0
y(x) = &(x), —-1<z <0,
where £(x) = cosz, —1 < x < 0. The exact solution is y(z) = cosz. We represent the approximate

and exact solutions for N = 10 in Fig. 5. The absolute errors of approximate solutions for N = 8, 10,
12 are presented in Fig. 6. It is observed that when N increases, the absolute error tends to zero.

O  Approximate solution
Exact solution

y()
ok M W & O o ~N ®
T T I T
Log,, (Error)

11 L L L L L L L L L
0 0.2 0.4 0.6 0.8 x 1 12 14 16 18 2 0 0.2 0.4 0.6 0.8 X 1 12 14 1.6 18 2

Fig.1. The exact and approximate solutions with Fig. 2. The absolute errors for Example 1.
N =10 for Example 1.
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12
s
08
sk
< 06
04

02

T

O Approximate solution N=8
N=10

N=1.

Exact solution

Log, ,(Error)

-10

12 =

0.2 0.4 0.6 x 08 1 12 14 1.6 0 0.2 0.4 0.6 x 08 1 1.2 14 16

.3. The approximate solution with N = 10 for Fig. 4. The absolute errors for Example 2.

Example 2.

0.8

0.6 [~

y(x)

0.4

0.2

©O  Approximate solution -4
Exact solution

N=10
N=12

Log,,(Error)
&
T
|

-0.2
0

Fig.

0.2 0.4 0.6 X 0.8 1 12 14 16 0 02 04 0.6

5. The exact and approximate solutions with Fig. 6. The absolute errors for Example 3.
N =10 for Example 3.

6. Conclusions

In this article, we presented an efficient shifted Legendre pseudospectral method for nonlinear delay
Fredholm integro-differential equations. The feasibility and convergence of the obtained approximate
solutions are analyzed. Also, the performance and capability of the method is shown by solving some

DFIDEs.
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Po3s’sisyBaHHsA knacy HeniHilHMX iHTerpo-gndepeHuianbHUX piBHAHb

CDpe,u,ronbma 3i 3aTpNMKOIoO 3 aHani3om 30I>KHOCTI

Maxmymi M., T'osarmang M., Hypi Ckangapi M. X.

Daxyasvmem mamemamuynux wayk, Ilaxpydcorul mexnonroeiunuts yrisepcumem, Hlaxpyd, Ipan

OcHoBHa inest, 3aIIPOIIOHOBAaHA B IIiil cTaTTi, — e(DEKTUBHMIT 3MIIEHNIT [ICEBIOCIIEKTPAIIb-
Huit Meton, JlexxaHapa Uit PO3B’sI3yBaHHS KJIACY HEJIHINHUX 1HTErpo-audepeHIiabHuX
piBuaabs OpenrosibMa 31 3aTPUMKOIO. Y ITbOMY METOJ1 CIIOYATKY ITePETBOPIOETHCS BUXITHA
3a/l1a4a B €KBIBaAJIEHTHY 3a/[a4y ONTHMI3allil 3 HENEPEPBHUM YacOM, & IOTIM BUKOPHUCTO-
BYETHCS 3MIIEHU TICEBIOCTIEKTPAJIBHIN METO, JIjIsd AucKpeTu3arii 3agadi. [lum meTomom
OTPHUMAHO 33/1a4y HEJHIIHOro NporpaMyBanns. Po3B’s3asmum 11, MOKHA OTpPUMATH HAO-
JIM2KEHUH PO3B 30K BUXITHOTO iHTErpo-andepeniaapHoro piBasaHs Ppearosbma 3i 3a-
TpuMKO. TyT momano 36iKHICTh METOMY 3a JIesdKuX M aKuX yMoB. HaBemeHo irocTpaTuBHi
MIPUKJIAIA JJIsI JeMOHCTpAIlil epeKTUBHOCTI Ta 3aCTOCOBHOCTI 3aIIPOIIOHOBAHOTO METO/TY.

Kntouosi cnoBa: inmezpo-dugepenuianvii pisnarns Opedzosvma 3i 3ampumroro, ncee-
docnexmpanvHutll Memood, HEATHITHE NPOPAMYEAHHA.
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