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In the presented study, the mathematical model for drying the porous timber beam of
a circular cross-section under the action of a convective-heat nonstationary flow of the
drying agent is constructed. When solving the problem, a capillary-porous structure of
the beam is described in terms of a quasi-homogeneous medium with effective coefficients,
which are chosen so that the solution in a homogeneous medium coincides with the solu-
tion in the porous medium. The influence of the porous structure is taken into account
by introducing into the Stefan-Maxwell equation the effective binary interaction coeffi-
cients. The problem of mutual phase distribution is solved using the principle of local
phase equilibrium. The given properties of the material (heat capacity, density, thermal
conductivity) are considered to be functions of the porosity of the material as well as den-
sities and heat capacities of body components. The solution is obtained for determining
the temperature in the beam at an arbitrary time of drying at any coordinate point of
the radius, thermomechanical characteristics of the material, and the parameters of the
drying agent.

Keywords: plane problem of heat conduction, cylindrical beam, drying agent, porous
medium, quasi-homogeneous approrimation, integral transform, Bessel functions of the
first and second kind, Kontorovich—Lebedev transform, Steklov’s theorem, Green’s function,
moving boundary.
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1. Introduction

The processes of hydrothermal treatment of dehumidified materials are energy-intensive, and the use
of heat and moisture treatment is the main means to create energy-saving technology for their drying.
The application of enhanced systems increases drying efficiency by 26.5% time reduction [1|. Therefore,
the search for such enhanced techniques is topical to a nowadays science of drying. The purpose of this
study is to construct a mathematical model of the process of drying the cylindrical porous beam under
the action of the convective-thermal non-stationary flow of the drying agent in order to minimize the
energy costs of this process.

To control the process of drying we need to know the mechanism of moisture transfer inside the
material. In [2], different models of moisture migration during the drying process of porous media as
well as the numerical simulation used for their description, its restriction and applications are discussed.
The collection of papers joined in [3]| offers a comprehensive review of mechanisms in drying porous
materials at the pore scale and macro scale levels, including various drying technologies, and discussions
of the drying dynamics of fibrous porous material. In the case of wood, it is important to take into
account both the outer shape of a body and the capillary-porous texture of its inner structure. The
transfer of liquid occurs in the micropores of its cell membranes, where it condenses due to the fact
that unsaturated vapor in the macropores becomes oversaturated in the micropores. In the cavities of
cells, moisture moves in the form of steam [4].
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During heat and moisture treatment of wood, its ability to take or give off moisture in the form
of steam according to the state of the environment is used. If the water steam pressure in the drying
agent is lower than the pressure in the wood, desorption occurs, i.e., the wood is dried. Otherwise, the
wood absorbs water in the form of steam until the pressure is equalized and the balance of moisture in
the wood and the environment sets in. In the process of drying, a zone consisting of dry pores emerges
and those saturated with liquid, which are separated by the surface of the phase transition [5].

When the body is heated, moisture molecules near its surface acquire a greater speed and, over-
coming the forces of molecular bonds, fly into the environment. At the beginning of oven-drying, the
surface layer of the body comes into contact with the hot environment of the chamber and the mois-
ture molecules attain a higher temperature than it is in the center of wood. A temperature gradient
appears, which causes the flow of moisture towards low temperatures, and its place is substituted by
steam. Therefore, when the wood is dried in a high temperature environment, it has an excess pressure
of the steam-air mixture, which causes a steady movement of water vapor directed from the center to
the surface of the material [5]. However, the issue of the wood shape influence its drying rate raises:
whether the drying time of a wooden plate differs from that one of a cylindrical beam [6].

When solving the problem of drying objects with a capillary-porous structure, in particular wood,
they can be described in terms of a quasi-homogeneous medium with effective coefficients, which are
selected so that the solution in a homogeneous medium coincides with the solution in the porous
medium |7, 8]. The finite-difference approximations for the implementation of mathematical mod-
els, which provides accounting for the eridarity and selforganization of the material also can be
used [9,10]. Researcers often use non-integer integro-differentiation to model systems, which are char-
acterized by “memory” effects, structural heterogeneity, spatial non-locality, deterministic chaos, and
self-organization [11,12]. We take into account the influence of the porous structure by introducing the
effective binary interaction coefficients into the Stefan—Maxwell equation [13]. To solve the problem of
mutual phase distribution we use the principle of local phase equilibrium. The given properties of the
material, namely: heat capacity C, density p, thermal conductivity coefficients A, we introduce into
our calculations as functions of the porosity of the material as well as functions of densities and heat
capacities of body components.

We assume the initial temperature of the cylinder does not depend on its length and changes within
its cross-section only. Since the length of a wood column is much larger than the cross-sectional size
and the coefficient of moisture conductivity is much greater than the coefficient across the fibers, and
due to the great complexity of the structure of wood material, we limit ourselves to considering the
plane average heat transfer problem. As a tool for describing heat conduction, we use differential
equations in modeling nonstationary processes [14,15]. We use the method of integral transformations
to find the solutions [16].

2. Problem formulation

Consider a long cylinder of the radius R (0 < r < R). Given the symmetry of the boundary conditions
of this problem, we introduce a polar coordinate system (7, ¢), the polar axis of which is directed along
the axis of the cylinder. The cylinder is under the action of convective-thermal non-stationary flow of
R the drying steam-air agent of the velocity v. We assume
that the drying agent regime is three-stage, non-stationary,

and includes heating, keeping, and cooling.
The control parameter in this process is the temperature
of the drying agent T,. In convective drying, the heat sup-

// / plied by the gas is used to evaporate the liquid, heat the
N material, and overcome the energy of moisture bonds with

Fig.1. Schematic representation of the  the material. We assume that the moisture in the dried
wooden cylindrical beam. area is removed and in the rest of the volume it is preserved,
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known and its density is pr. The moisture content W retained in the body is calculated by the formula

W = pr (V_VV"L), where V' is the body volume; V;,, is the volume of the dried area. Note that when

hot air contacts with moisture particles, the latter break down into steam and smaller liquid particles.
The process of heat conduction is described by the equation:

2

T T T
[TL(Cypy+Capa)+(1—I)Csps) Z—T—F’y%T =) [7,2(;? + (2a+ 1)7"(27 + (a? - )\27"2)T}, 2a+1 > 0. (1)

Here 7 is time; r is the radius of running point(0 < r < R); ’y% is the particle decomposition coefficient.
Equation (1), using the Bessel differential operator, takes the form

d*T dr
B,[T) = [T2W + (20 + 1o+ (a® — >\2r2)T}
for the given volumetric heat capacity cp and averaged thermal conductivity A in the quasi-
homogeneous approximation, which can be used in wood drying problems with acceptable temperature
gradients, has the form [16]:

oT 2
— + ’72T = a2Ba[T7 T]) /72 = ’Y_la a>0, (2)
or cp

2 A . . .. .
where a® = T e Cap ) TO=TCop] 18 the averaged thermal diffusivity coefficient.
Let us construct the solution of Eq. (2) under the following boundary conditions:

T(T,T’)‘T:O =g(r), re(0,R), (3)

r—0 Or

.0, 0
hma—(r T) =0, <ah§+ﬂh> T|,_ 5 ="Talr). (4)

Here T}, is the temperature of the drying agent; 72 is responsible for the multiplication of particles of
the steam-air mixture (averaged coefficient of decomposition) in the porous material under the action
of the drying agent; indices v, a, s indicate the components of steam, air, and skeleton, respectively; I,
Cy, Cq, Cs, pu, pa, ps are porosity, heat capacity, and density of steam, air, and skeleton, respectively;
A is the averaged coefficient of thermal conductivity; a1, 51 T. K
are coefficients of thermal conductivity and heat transfer on the Tmax
outer surface of the cylinder.

The scheme of T,(7) behavior is shown in Fig. 2

The temperature of the drying agent T, (7) is as follows:

T, — T
Ty + =7, 0<T<m, Ty Yo
1
Ta(T) = Trnaxs TS TS To, (5) T
Tmaxm3 — 1172 Tmax — 11 1 1 1
- T, T2 ST XT3 ———— ] —
T3 — T2 T3 — T 0 1 To T3

) L ) ) Fig. 2. Control function T,(7).
Here Tj is the initial temperature of the drying agent; cooling

is carried out until an equilibrium temperature is reached.

3. Solving the problem

Let us find a solution for the boundary value problem (2)—(4).
Consider the governing function 7, (7).
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We expand this function into a trigonometric Fourier series with respect to cosine:

o
nm nm
To(1) = a0 + E o cos —T1, V2= —;
1 73 73
-

2 T T T T T T
0 == [Toax (-2 + 2+ 2)+ 12+ 1y (-2 + 2],

= 2 T T 2 2 2
2 | (T, — Ty . .
o, = = % (cosvim —1) + == (sin VAT — sinviT)
T3 v, n
2 TinaxTs — 1170 0 . Thax — 11 1 nnT
T3 T3 — T2 nim T3 — T2 Vp 73

Let T*(p,r) be the image of the Laplace transform of the temperature T'(t,r):
L[T(r,r)] = / T(r,r)e PTdr =T*(p,r).
0

Then, in accordance with the problem (1)—(4), we obtain the following boundary value problem with
respect to the function 7% (p,r):

d*T*  2a +1dTx* V2 — o2
_ 2 * — _ 2 % _ -
(Bua— AT 02 — ()\ + > >T g(r), (6)
i 2 (1 ) =0, (ady 4 ) 77,y = TE) (7)
r—0 Or ’ ) 11 dr 11 r=R a )

gr)y=a"?r7%g(r), vV*=0a?(p++?), p=o+ir, i¥=-L

Let us fix Rev = Re [a_l(p + 72)1/2] > 0. Construct a Cauchy function for Eq. (6) to satisfy
homogeneous boundary conditions [14]. A fundamental function €, (p, r, p) satisfying the homogeneous
equation corresponding to Eq. (6) and the homogeneous conditions corresponding to the conditions (7)
is the Cauchy function. The solution of Eq. (6) satisfying the homogeneous conditions corresponding
to the conditions (7), has the form:

R
T*(p,7) = /0 ex(p.r,p)d(p)p**dp,

where € (p,r, p) is a fundamental function of the boundary value problem (6)—(7) with the following
properties:

1. The function &% (p,r, p) satisfies the homogeneous equation corresponding to Eq. (6) and the fol-
lowing boundary conditions [16]:

Dy d .
}%E (7" € ) :07 (a%lg_‘_ﬁlll)e |T:R:0'

With this, €}, (p, 7, p)‘T:pJFO —ei(p,r, p)|7“:p—0 = 0.
2. The following holds %aZ(p, T, p)!T:erO - d%gZ(p’ r p)‘T’Zp—O = p~(2a+1)

* _ AlII/,a()‘p)a 0<r< p < Ra
Let us put e4(p.7:p) = { Aol (A1) + BoK, o (A1), 0<p<r<R.
Here I, o(Ar) and K, (A1) are modified Bessel functions of the first and second kind [17]; v =
ia” '8, Rev > a > —% write down in the form:

p=—(8+7%) =B+~ ",
dp = —28d8, b(B) =a"L5.
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Returning to the original, we obtain
a—2 R oo+i00 ) L
T(r,r) = 5= / < / ea(psm, p)e’”dp> g(p)p™*dp,
2mi 0 00—100

where a2 is a weight function [16]. The special points of the Cauchy function e*(p,r,p) are the
branching points p = —v? < 0 and the point p = co.
Let us define the real-valued functions:

Co(Ar,a™1B) = ia18.a(AT) + in~!sinh 73 Kig-154(A1),
Do(A\r,a™1p) = 7 sinha 78 Kio-15o(A7).

For r = 0, the asymptotic equations are known [16]:

7 %q1(B,7) T %a(B,7) R
Ca(r,ﬁ)—i‘r(lﬂm‘y Da(r,ﬁ)—i‘r(lﬂm‘w F(z)—/o e t*7tdt, Rez >0,

BB —an@Br Lo T B (Br) + aga(B,1)]
ID(1 +148)|? I ID(1+ i)

g1(B8,7) =T1(B) cos (6 lng> + I'y(5) sin (6 lng) ,
g2(B,7r) = T'a(B) cos <5lng> —T'1(B) sin <5lng) ,

where T';(3) are real gamma functions in the expansion of gamma functions of the complex argument
in terms of the real and imaginary parts.
For modified Bessel functions, we have

Iz//,a(z) =WV -a)lya(z) + 2 lt1,0+1(2)

Cu(r,B) =

)

Zufafl

For r =~ 0, L,,a( ) & malzlja( )%(Vzvar)w

T ! !

I o(ir) = exp [(1/ — a)ﬂ Ja(r); Kyalir) = — 5 oxp [—(u + a)?] [Jo,a(r) — iN, o (r)].

The asymptotics of Bessel functions for great argument values are as follows:

2 2
Jua(r) = \/;T_(OHF%) Cos <7" - %V - %) ) Nya(r) = \/;r_(‘wé) sin <r — %V - %) )

2 _(a W T 2 (o438 T
Iu+1,a+1(7")=\/;7’ (o+3 )Sln (7’—7—2>, Nu+1,a+1(7’)=—\/;7‘ ( +2)cos <T_7_Z)'

Let us introduce the following variables:

d
a11(>\R b) = (and +511> a(Ar,0)

r=R

dlig o (AR P dK;3.0 (AR )
= al )\ [% + * sinh b %} Bl [ iBa(AR) +im™ Lsinh b Kw’a()\R)]
sinh 7Tb
= a11(/\R) +1 a11(/\R)

(8)

d
Xa 21(AR,b) = <04%1% + 5%1) Do (A, b)
r=R

1 dKig.o (AR 1.
=al\ [— sinh b %} + By tsinh b Kig o (AR)
T
d inh 7wb
=77 Slnh 7Tb |:0411Ad KZB O!()\R) + ﬁllK'lB a()\R) Oc 11(>\R) Slnﬂ_ﬂ— s
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dl;z.o(AR)
dr

dK;30(AR)

a 11(/\R) = a11>\ dr

+ BhLipa(AR), X2,(AR) = aj A

Q;

+ 811 Kip.a(AR).

If we pass to the Bessel functions of a real argument J,, (AR, b) and N, (AR, b), then, given their
properties [14, 17| we obtain:

Xan1(AR,b) = <0411V R +511> Jua(AR,b) = a} RN i1 a11(AR, D), b=a"'5;

V—«
a 11(/\R b) = <a11 R + 5111> N,W(/\R, b) — ahR/\2Ny+17a+1(AR, b).

Let us determine the functions
dlig o(AR)

Upta1(AR,b) = Xoh 1 (AR, b) — i X251 (AR, b) = X111 (AR) = a1, A o + Bl 1i.a(AR)
_ (ail% n 5111> La(AR.D) + ol RNy aa(ARD): v = 0™
U, a V) = sinhbm) ™ X20,0) = (a4 6L ) KO = SR ORD)
r=R
UV —Q
— (O‘hT + /3%1> Ko (AR) + aj;RN*K,11 041 (AR) . (9)

Satisfying the condition (7), we obtain the algebraic system of equations for determining the coef-
ficients A1, As, Bs:
(AZ - Al)[u,a()‘p) + B2Ku,oe()‘p) = O,
1

(A2 — AT, (Ap) + B2 Ky, (Ap) = TRt

Given the relation
Lo KL a(Ap) = I, o (Ap) Kpa(Ap) = —(Ap) 2 FD),

we obtain
(Ay — Ay) = —2**K, o(\p), B2 = \"I,,(\p). (10)
Satisfying the boundary condition for r = R, we obtain:
A2Uua11(/\R) +B?Uua11()‘R) =0, (11)
L AR, A AR, A U AR) Ky o (A
A2:>\2a uall( p)_/\2aKy,a(/\P):)\2a uall( p) - Vall( ) y ( p)
Uua 11 ()‘R) Uua 11 (/\R)
Ul2 AR U AR
_ )20 via,11 ( )[Va()\p):_B2 v (AR) A1:B2K”’a()\p)+z42.

Uula 11 ()‘R) Ul/a 11 ()\R)’ Iv,a(/\P)

A AR
Here Al = )\204 (Uua 11()‘R)) \Iluoa 11()‘R7 Ap)’ (Ul/a 11()‘R)) 1\(2#,11(()\7«)))7

(AR, A1) = Uga 11 (AR) Ky o (A1) — Uu a; 11 (AR) Lo (Ar).

Vall

Then the function €% (p, r, p), due to the symmetry with respect to the diagonal r = p, has the form

/\204 IV,OZ(/\T) ua II(AR /\P) 0<r< p< R7
en(p,rp) = UL O\R.D) (12)
vl (AR D) | 1, 0 (A\p) W uau(/\R Ar), 0<p<r<R.
The roots p, = —(B2 + v?) of the transcendental equation UV1 a:11(AR,b) = 0 are simple poles of

en(p,7,p).
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Consider the transcendental equation
V-«
(O‘hT + 5111> I,o(AR,b) — aj; N RI, 41 011 (AR, b) = 0

where p = — (8% + v ) (8% +~2)e™, b(B) = a~1B form a discrete spectrum, {b, }°;

Let us denote: W} .11 (AR, Ar,b) = 7~ !(sinh ) x Wl* .\ (AR, Ar,b).

Here \I/V a:11(AR, A, b) is the eigenfunction of the problem that satisfies Eq. (2) and homogeneous
boundary conditions. We use it to construct a solution of the problem that satisfies the inhomogeneous
condition at the outer surface of the cylinder, i.e., reflects the effect of the drying agent.

The original of the fundamental function

Zﬁ/\%‘dﬁ
(ch;lll)2 + (Xcly?ll)z
- /0 BN, (1, 8) Va(p, B) Uu(B) dB; (13)
25/\205
(Xé;lll()\Raﬁ))z + (Xé?ll()‘Rv 5))2'

By the generalized convolution theorem

Ea(tvrv P) - /0 (52—1—7 )t\IIVa 11()‘R AT, b)\yua 11()‘R7 Ap, b)

Qa(B) =

Y

(t7 T, IO) = Z e_(5721+'y2)t Va(b"T) Voc(bgp)
n=1 [ Va(bnr)||i

where ||V, (b,7)||? is the squared norm of its own function, b,, are roots of the function UV a1l (AR, D).

7T —ma
Vall(Z/\R Z/\,O) 2 \Ill/all()‘Ra /\,0),

Va(r, B) = a11(/\R Ar, B) = a11(/\R B)Deo(Ar, B) — a11(/\R B)Ca(Ar, B), (14)
ua ll(Z)‘R ZAT) = _g _ﬂ—w{\I’ua 11()‘R7 /\7")

Here Vo (r, B) = W}.q, (AR, Ar, B) is eigenfunction (spectral function) of the problem (6), Q4(f) is a
spectral density.

Returning in Eq. (13) to the original, we obtain a solution Tpgy, (¢, 7) of the homogeneous parabolic
Cauchy problem (2)—(3):

R
Toan(t, 1) = / ealt, T, p) g(p) P> 2dp
0

o) 5 R
_ / eI (7, B) / 9(0) Valp, )0 p** LdpQu(B)dB, o =a%  (15)

0
From Eq. (15) for t = 0, we obtain the integral image:
0 R
o) = [ ValrB) [ alo)Valo B o p a0 (5) d. (16)

From Eq. (16), it follows that the function e,(t,r, p) defined by Eq. (13) is a delta-shaped sequence
with respect to t for t — 0+.
The integral image (16) defines a direct

R
Hy g(r)] = /O o(r) Va(r, B) 0 122~ dr = §(B) (17)

and inverse
H; [5(r)] = /0 §(8) Va1, 8) 2 (8) dB = g(r) (18)

Kontorovich-Lebedev transform over the interval [0, R].
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Given the theorem on the basic identity of the integral transform [16] of a differential operator By,
i.e., if the function g(r) is such that the function f(r) = By, [g(R)] is continuous on the set (0, R) and
the boundary conditions hold:

tim 2 (S0, 0) = o) G2 ) =0, (ahg+ah o) —omt). ()
then for any A\ € (0,00), the following equality holds:
Ho [0 Bo o)) = ~89(8) + 7). (20)
Therefore, based on the relation (17), it follows:
H, [a2Ba l9(r)]] = -2 /ORg(r) Va(r, B) o r?* tdr + Si:;liZZBTa(R, 7). (21)

From the properties of the eigenfunction V,,(r, 8), it follows that

(ol 22

n—g =0, (@®Ba+ B)Va(r. ) = 0.

r=R

+ Bl Valr, 6))

From Eq. (21), taking into account Eq. (19), we obtain
R
Ho [@*Balg(r)]] = @ [ Balglv)] Valr, &) o dr
0

Rr ,d?g dg 12 9 2 2a-1
:/0 [7‘ 2z T Qo+ = Arig(r) + o g(r)} Va(r, B)r=*""dr

R

R
= a2 T2 [ (1) Valr, ) — g) Va(r B)] |+ /0 g(r) a*o Bq [Va(r, B)) r**~"dr

= R* [ (r) Va(r, B) — g(r) Vi (7, B)]

0
- ﬁ2Ha lg(r)],

r=R

where H,[g(r)] is defined by Eq. (17); gr = Tur(R,t) is the temperature of the drying agent.
Then from Eq. (21), we obtain:

dRr dRr

a—hVa(R, B) = al, (X311 (AR, b)Da(AR, b) — X351 (AR, b)Co (AR, )]
sinh b

= 9R [C;*a(/\R7 b)Da(ARv b) - D;‘a(/\R7 b)Ca()‘Rv b)] = WTaR' (22)

The equations of heat conduction and boundary conditions have the following form:

or d
oo T F )T =0 T(rB)| _y=98), (eng +6u|T()|  =Tur(r).
or dr =R
As a result of Eq. (21), we obtain
oT - sinhwd - _
5+ B2+ T = —aa Ler(™); T(:B)],_o = 9(8)- (23)
The solution of the Cauchy problem (23) is the function
F(r. ) = e )58 + / o~ (B4R [Sln;lzzb (a0 + " an cos u,%t)] d. (24)
0 g n=1
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Let us apply the integral operator H—l (18) to T(T, B), we obtain the solution of the problem (24):
Tt / / / ~FENEDY, (1, B) Valp, B) Qa(B) dB[64-(7)g(p)| op®* L dp dr

/ / (B9t TSm;jbnmvawma(ﬁ)dﬁdr (25)

From Egs. (17)—(18) and Steklov’s theorem, any vector-function f(r) = B, [g(r)] being contin-
uous on (0, R) and satisfying zero boundary conditions can be decomposed in terms of a system of
eigenfunctions V,,(r, B; )‘;‘;1 into an absolutely and uniformly convergent Fourier series.

It is known that one eigenvector-function V,,(r, ;) corresponds to each eigenvalue §; and the system
of spectral functions V,(r, @);‘;1 is complete and closed. The squared norm of the eigenfunction
Va7, Bj)|1? = fo (r, Bj)] 12 o 21,

Thus, given Eq. (17) the inverse integral operator (18) can be written down as follows
-1
Zg Bi)Var, B5) (IValr, B) 7)™ = g(r),

and the function

Galt,rp) = /0 T e FIY, (1, B) Va (s B) Qa(8) dB, (26)

by taking into account the initial temperature state of the body, according to the theory of surpluses
can be represented as calculated integral in the form:

—(B3++? tV 7‘5)) (Iovﬁ]) 2
llr) = Ze M Va7

where

Va(r,B;) = WL (AR, Ar, ;) = S0

[ a11(/\R Bj)Da(Ar, Bj) — all()‘R B5)Ca(Ar, B;)] ;
as well as the Green’s function generated by the thermal regime at the boundary r = R

* sinh 7
Wa (t T) / (B2+Fy2)tvoc(7’w8) 71)\2a5

Z (g2 sinh w8 Va(r, ;) oa’.
TA2 ‘|Va(raﬁj)||2

Qa(B)dB, b=a"'p, (27)

Then the solution will take the form:
t R t
7(tr) = [ [ Galt = ) (D) o™ Ndpdr + [ Walt - Tulr)dr. (29)
o Jo 0

Here 6. (t) is a delta-function concentrated at the point 0+.
According to Eq. (28), taking into account the properties of delta-function and Eq. (17), we obtain:

T(t.r) = /0 e~ THNG(B) V(1. ) 2 (5) dB+ / / eI ) Va(r, 6) Q2a(8) 6.

Let us denote f(f e_(62+72)(t_7)% Tor(7) dT = Tyae(t, B). We transit to improper integrals

T(t,r) = /°° ~EH N G(8) Vi (. ) Qu(8) d + /0°°TM<T 8) V(. B) Qu (8) dB.

0
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Taking into account Egs. (26), (27), we obtain

e—(ﬁ2+7 % Va(r, ﬁ]) oal.
Z AT +Z S AT

Determine the effect of initial conditions and temperature of the drying agent on the drying process.
Given Eq. (16), the initial condition (g(r) = 2520 gjor?) is chosen. Then

1 (R .
=L ['Y o
(s

[Xa 11(AR, B) (77_1 sinh 73 Kig,a()\r)) Xa 2. (OR,B) ( iBa(AT) +1 ( Lsinh 78 Kig,a()\r)))] dr.
Given the expressions for the Bessel functions

La(Ap) = M) *L,(Ap),  K,a(Ap) = (Ap) K, (Ap),

let us determine

g(B) = {Xa (AR, B)r ' sinh 73 / Z (gjor’™ 1) Kig(Ar) dr — X221 (AR, B)

2
/ Z (g70r 7 Y) Lg(\r) dr — X2 (AR, B)r~ " sinh 73 / Z (gj0r7™71) Kip () dr }
Jj=

1 AR 2
- { PR 0) - X om o) s | DA (gt Kiplar)

a2

AR 2
all (AR, B) / Z/\ (at)) (9 ord teT 1)15(7") dr};

Tyo(T, B) = €~ (B2 +7%) < Uaii(AR)m ™ sinhwf A~ Zggo Nta

iB—1 . . . . . AR)2
% {2J+QF(ZZBB)()\R)]+Q i B (]—1-05 Zﬁ;l—zﬁ; ]+a2z6+2’( f) >

-, 2 (AR
+a+a7+(zﬁlm(m)]+a+lﬁ B (Haﬂﬁ 1+ i; Lrotibe? QR ))}

2

1 j+a+i j+a+i i+a+iB+2 . AR)2
~Xaiu (AR B) % Zgﬂo)\ﬁ-a{21*3(]+a+15)1“(1+26) (ARY 01 (H phiS, JRadtifi? 4 gy A >}>
7=0

Here 1F5 ((a1); (b1)k, (b2)k; 2) = 220—0%7; are generalized hypergeometric function, where

(a1)r = W, (b)) = M s (b)) =1+1ip; z = ()‘R) are Pochhammer’s polynomials [18]. Let
us write these functions.
Let us write the first of these functions

Q=115 (W; 1 —ip; Wj (Af)2>
(M)% (FtaiB)(ite Zﬁﬁ_l)((m)2)2
(1—;’5)(%)1! + (1—iB)(1—iB+1) (J+a 25+2)(]+a—2iﬁ+2+1)2!

(£E02) (HE 1) (et 4) (O°) +
(1_15)(1_264_1)(1_[5_’_2)(J+a;lﬁ+2)(J+a;lﬁ+2 +1)(j+@;iﬂ+2 +2)3| DR

=1+

_|_

. . . . 2
(a1)y = w§ (1), =1—iB, (b2)), = J+a_2w+—2; 2= DR
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The second function:

. . i . . 2
() = BE5E (B =136, (b), = L2, o = O,

By = 1 F) <j+a2+w; 1 4 i, itatif2, (Af)2>

(J’+a+26) OR?

(]+a+15)(]‘+a2+i5+1)((A§)2)2

(1+i5)(M) T (15iB) (1iB+1) (LT LET2) (FFad B2 1]
(J+(¥2+l/3)(J+(¥2+26+1)(J+(¥+26+2)(()\f)2)3

(1+iﬁ)(1+iﬁ+1)(1+iﬁ+2)(j+a+w+2)(J+a+lﬁ+2+1)(j+a+2w+2 +2)3! +

-1+

The third function [18]:

(al)kZW% (bl)k:%7 (bo), =1+1i8; 2= ( 4) )
. . . . 2
By = | F <a+a2+zﬁ; Iradift? 1o g A )
jtati 2 j+atiB\ [ jtati 2)2
14 .(J+.2+ B)Mf) L .(J+2+.B)(J.+2+ B_i_l)((kf) )
(PR (1 pig)ny | (LR (TRediBER 1) (1446) (14iB+1)-2!
jt+a+ti jt+a+ti jt+a+ti 23
()t (g ) (002)
(J+a+21ﬁ+2)(J+a226+2+1)(J+a+21,8+2 +2)(1+iﬁ)(1+iﬁ+1)(1+iﬁ+2)-3!

Comparing the expressions for ®, and ®3, we see that ® = $3. Consider the expressions of the first
three coefficients of each of these generalized hypergeometric functions. Let us determine the real and
imaginary parts in them. Consider the function

Oy =1 I (J'*C;‘iﬁ; 1 —ip; Lraiois, —“?2) =15 (ay + ai; by + biisby + bli) = 1+ Ay +Ap+ Az +....

Introduce the denotations:

o ,
(a)e =252 () =1-iB, (b)), = Troge2, » = DAL

1
o ] . _ L _ Jjta+2
alzjga ai:_ga b1_17 bi__57 b2_]2 ) bZ g
Here
A ftecip (AR)Q 4 A
= —2 4 _ — Z
1 (1_26)J+a i6+2 11+ 11
where _ o o
A = {a1(b1ba—bibh)+al (b1bh+bib2) } (AR)2 i {all(ble—b;bé)—al(b1‘b§+b;b2)} (AR)2 .
[(62 sz)(bQ b12)] 4 11 [(b%+b212)(b§+b222)] 4
(Haﬂﬁ)(ﬁaﬂBH)((AR)Z)Z
A2 = 2 2 A12 + A12Z

(1—iB)(1—if+1)( THag P42 (Ite za+z+1)
R
4

(G112 402) (b2 + D202

+ {[(b1 + 1) (b2 + 1) — b{b%] af — [(b1 + 1)bh + by (bs + 1)] a1 } )

{[(b1+1)(b2+1)—~bi by as +aj [(br +1)bh +b] (b2+1)] } (AR)?
[((b141)24bi2) ((b2+1)2+b32) ]2 4

Al =

i _ {1 (ba+1) 03 b |af —[(br1+1)bh +b5 (b2+1)]a1 } (AR)?
2= [((b1+1)2+b2) ((b2+1)2+b5% ) ]2 1

(Ag + AZQZ) = (All + Ailli)(Alg + Azigi) = (A11A12 — AillAzig) + (AllAzig + A12Ai11)2‘;
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. ) . . ] . 2,3
Ay — (J+(¥2715)(J+t:t2.fll3_i_‘1)(3+a2*15 4._2)(@51%) ) ‘
(1—@'5)(1—2‘[3—1—1)(1—@'5-1—2)(J+a3’6+2)(J+a326+2+1)(7+a;’6+2 +2)3!
= Ay Ao(Arz + Alsi) = Ay Ao { (b1 +2) (b + 2) — bibb] ay + af [(br + 2)bh + b (b2 +2)] }
(R)?

+ {[(b1 +2) (b2 +2) — bS] ab — [(b1 + 2)bh + b (b +2)] a1 } ) [((b1+2)2+b%2)€(b2+2)2+b§2)]3!;

+ ...

(A3 + A4i) = (Ayg + AL3) (Arg + Algi) (Az + Algi)
= [(A11Aiz — AL ATp) Arg — (A ALy + A12A7;) Al
+ (A Are — A7y Al) Al — (A1 Aly + A Afy) Ars] .
For the functions ®5, ®3, the representation of the coefficients A;, As, As ... remain the same:

by =1 (L'Oéﬂﬂ; 14145; ]‘7"'0‘22‘6"'2, —()‘f)2> =15 (al + ali; by + bli; by + bbi; (Mf)Q)

14 (Ay 4+ ALd) + (Ag + Abi) + (A3 + A%i) + ...,

o =80 @i =B p =1, b =48, b= L2 L0
O3 = | F) ( Jradif, rotife? o 3 (R ) Fy (a1 + adi; by + bii; by + bhi)
8.

_ jta i _ B. _ jta+2 i _ _ i
air =5, a1 =73; bl_ 2 bl_ ) b2_17 b2_5

Thus, recurrent relations are obtained for real and imaginary parts of generalized hypergeometric
functions of complex arguments, what allows us to determine the temperature distribution depending
on the parameters of the structure of wood and other porous materials.

Determine the solution T, (f5):

_ T inh -
TwalT) = /0 e—(62+'y2)(7'—t) [Sj)\;;_b (040 + Z Qy, COS VZt)] dt

n=1

_(B2+ 2)7_ Sinhﬂ'b T (62+ 2)t > 2
=e R — e\ (ao + Z QU COS I/nt> dt
n=1

A2 0
sinh7h | 1~ (824+%)r = [(Bz—i-'yz)CosV%T—i—u,%sinV%T]—e*(ﬁ2+w2)7(52+72)
T A [ ) a0+ om (LT eE ey : (29)
n=1

The solution of the Cauchy problem is the function

T(1,B) = e—(62+w2)r§(5) _|_/ e~ (B2 +7?)(7=1) [SIH)l\lzzb (ao + Z oy, COS u,%t)] dt
0 ™

n=1

— (BT 3(B) _|_Tm( )
2

_ e—(62+72)7< LU (AR)m sinh A0 3 g
=0

iB—1 . . . . o . . . 2
X {%TE(ZBB)()\R)]JFO& 161F2 <J+0c2 zB; 1—i8, Jjta 2@6—1—2; ()\i%) >

’Lﬁ 1F . . 3 . . )\R 2
+a+(1525) (/\R)y+a+zﬁ Fy (]-i—o;-zﬁ; 1 _1_257 ]+a-;z6+2; ( 4) > }

2 AR)I+a+iB ) o 519 OR2
— Xain (AR, ) g AU 2 ZgJO{2zﬁ(y(+aliﬁ)r(1+i6)1F2 (ﬁoéﬂﬁ; Lrotife? 1 +i; ( 4) > }>
7=0
) cos v2t412 sin I/2t]—e*(52+w2)7—(52+,y2)

sinh 7b (824427 [(B2+7?) Rty sinvg
ey ot ZO‘" G T ' (30)

7.[.)\204
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Apply to the function T(T, ) the integral operator H, (7, 3). We obtain a solution of the problem.
For non-stationary case we have

% (g24y2usinhmBVo(r, B) Q(r, B) dB _ 1, (A1)

/OO e—(52+72)tva(7~7 B) Va(p, B) Q(r, B)dB = e(r, p,q)

0
A2 { Iya M)ty i (AR, Ap),

N Uql}xll()‘R) [q,a()‘/)) ;,*a;ll()‘R7 AT),

0<r<p<R,
0<p<r<R.

4. Numerical analysis

Based on the formulas obtained in this and our previous work [13] for determining the temperature,
moisture content at any point of the radius of wooden cylindrical beam taking into account the moving
boundaries of the moisture evaporation zone at any time of drying depending on the effect of thermal
diffusion, initial values of temperature and moisture, thermophysical characteristics of the material
and parameters of the drying agent on the temperature of phase transitions, a software program is
designed, the work of which is demonstrated for solving a specific application problem of wood drying.

To implement the numerical experiment, the characteristics of the thermophysical properties of
wood were used. The dependence of the hydro conductivity of wood on temperature and moisture was
derived on the basis of experimental data [19].

Numerical simulation of drying of a sample of a cylindrical pine timber beam of a circular cross-
section of the temperature Ty with a 50% moisture content was carried out. The following basic
parameters of the problem were accepted: ambient temperature Tp, which is determined by the tem-
perature of the steam-air mixture measured by a dry bulb thermometer. The drying process lasted
until the temperature of the beam reached the ambient temperature 77 = 289 K. Drying agent velocity
v = 2m/s; saturated vapor density p, = 0.013188 kg/m?; air density p,o = 1.29 kg/m>. Physical
parameters of wood: the radius of cross-section of a beam R = 0.25 m; density 500 kg/m; moisture
0.7 kg /kg; porosity IT = 0.672. Thermal parameters of wood: initial temperature Ty = 290 K, thermal
conductivity coefficient A = 0.14 W/(mK).

Computer simulation of the drying of a cylindrical beam was carried out for soft (= 300K) and
hard regimes (=~ 370 K), which were determined by the control functions of temperature and moisture
of the steam-air mixture, which is fed into the drying chamber.
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Fig. 3. Temperature distributions on the surface and
inside the cylindrical beam at a drying agent temper-

ature of 302 K (soft regime).
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Fig. 4. Temperature distributions on the surface and
inside the cylindrical beam at a drying agent temper-
ature of 370 K (hard regime).

Mathematical Modeling and Computing, Vol.9, No.2, pp.399-415 (2022)



412 Gayvas B. I., Dmytruk V. A.

In Figs. 3-5, the temperature distributions in the structural elements of the cylindrical beam are
presented. Figure 3 characterizes the change in temperature in the wooden beam during drying at 300K;
and so does Fig4 at 370 K, respectively. Here, the curve 1 corresponds to a unit value of dimensionless
radius 7 = 1, i.e., it shows the temperature on the surface of the cylinder; curve 2: 7 = 0.8; curve 3:
7 = 0.6; curve 4: 7 = 0.4; curve 5: ¥ = 0.2; curve 6 corresponds to zero value of dimensionless radius:
7 = 0. In Fig.5, the temperature distributions on the surface and inside the cylindrical beam in the
period of stabilization of the drying rate 79 in the hard regime are shown. Figure 6 shows the moisture
distributions of the material along the radius of the cylinder for different drying times in the same
mode. Figure7 demonstrates the dependence of the thickness of the dried zone on the drying time.
L Analyzing the graphical dependences (Figs. 3,4),

o we can see that in the process of drying cylindri-
cal wood with the specified initial parameters, three
characteristic stages are observed: heating, stabi-
lization, and cooling. During the first period 7
(heating period) we observe intense heating of wood,
and this has little effect on the change in the amount
of moisture in the material (Fig.6). Then (12) we
observe the stabilization of the drying rate (Fig. 5)
with a noticeable loss of moisture content in depth
in beam layers (Fig.6), when the external heat ex-
change controls the drying rate. The temperature
of the inner layers of the wood remains almost un-
Fig.5. Temperature distributions on the surface changed, and moisture is removed at maximum rate
and inside the cylindrical beam during the period evenly and in proportion to the drying time. This
of stabilization of the drying rate 7> in the hard is due to the absorption by wood layers of a large

regime. amount of heat during internal evaporation. This
stage ends when the critical moisture content point is attained (Fig.6) and the drying process pro-
ceeds to the stage of removal the bound moisture and this stage continues until equilibrium moisture
is reached when the wood temperature reaches its maximum value Ti,.x. The duration of this period
takes the majority of the total drying time (70%).
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Fig. 6. Distributions of moisture content along the Fig.7. Dependence of thickness of the dried area
radius of the cylinder for different drying times 75 in zone on time of drying.
hard drying regime.

During the third stage 73, the heat supply is stopped. But the wood remains in the drying medium
to remove the bound moisture and to reach the required final level of moisture in the internal structure
of the wood (= 0.05) (Fig.6). This is a period of reduced drying rate, when drying is controlled only
by internal mass transfer. At this time it is necessary to provide maximum ventilation.
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For a given type of wood, we observe a high rate of moisture transfer for all drying regimes (Fig. 5).
The intensity of moisture removal is proportional to the temperature of the drying agent. However,
we should note that for the first period of drying, we observe a slowdown in the release of moisture
for all values of the temperature of the drying agent, and in the soft mode of its removal is completely
absent (curves T, = 300, 330).

It should be noted that the temperature distributions in the cross-sectional layers of wood for the
two considered drying regimes differ qualitatively and quantitatively. The temperature of the outer
layer of the cylindrical beam during the entire drying period is much higher than the temperature
of the middle layers, and, here, the maximum residual pressure is maintained until the end of 7. A
temperature gradient appears, which causes the flow of moisture to move towards low temperatures,
and its place is filled by steam.

At hot drying modes during the second period of stabilization we observe a significant difference
in the values of the temperature of wood layers in depth, sometimes up to 10 K (Fig. 5, measurement
time 0.579, layers # = 0.2, 0.4, 0.6). Just at this time we observe the maximum values of internal
residual pressures in these layers. In mild regime, an increase in the temperature of the central part of
the beam is observed at the time 2/3 15 and a corresponding decrease in moisture content in its core
layers (Fig. 6, time curve 0.772). From the third period 73, the rate of moisture removal decreases until
the state of equilibrium moisture content.

5. Conclusions

The mathematical model for drying the long porous timber beam of a circular cross-section under the
action of a convective-heat nonstationary flow of the drying agent in the 3-stage temperature regime is
formulated. The solution of temperature distribution in the cross-section of the beam during drying at
an arbitrary time of drying at any coordinate point of the radius, thermomechanical characteristics of
the material, and the parameters of the drying agent has been constructed. The solution is constructed
in modified Bessel functions. The relationships between the drying time and the average parameters
of porous cylindrical wood and the drying agent parameters are determined. Numerical analysis is
carried out. The proposed model is verified by theoretical and numerical results.
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Docnig>xeHHs npouecy CywiHHS NOPUCTOI AepeBUHN
unniHgpu4Hoi chopmu

Iaiteace B. 1.1, Imutpyk B. A.2

L Inemumym npuxaadnuc npobaem mexariry i mamemamusy im. . C. ITidcmpueava HAH Yrpainu,
eyn. Hayxosa, 3-6, 79060, Jlveis, Ykpaina
2 Haygonanrvnuti ynisepcumem “JIvsiscora noaimerwira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

V mpejcraBieHOMY JOCJIJIZKEHH] 1TOOY/I0BAHO MaTeMaTHYHY MOJIEJNb CYIIiHHSA IIOPUCTO-
ro 6pyca KpyIJioro mepepisy Mmij Jii€l0 KOHBEKTHUBHO-TEIJIOBOTO HECTAIlIOHAPHOTO ITOTO-
Ky CymmibHOroO arerTa. [Ipu po3B’s3yBanHi 3a7a4i KaiJsgapHO-TIOPUCTY CTPYKTYpPy Opyca
OIIMCAHO ¥ TepMIHAX KBa310JHOPIAHOTO cepeaoBUINa 3 ePeKTUBHUMEA KoedillieHTaMu, aKi
BHOpaHi Tak, Mob Po3B’sI30K B OJHOPIIHOMY CEpPEIOBHUIII 30iraBcs 3 PO3B’SI3KOM y ITOPHUC-
TOMY CepeJIoBuUIli. BIyInB MOpUCTOI CTPYKTYPU BPaxOBaHO ILJIAXOM BBEJEHHS B PIBHIHHSA
Credana—Makcsesuia epekTuBHUX OiHapHUX KoedilieHTiB B3aemo/il. ITpobiema B3aeMHO-
o po3Mnoiay (a3 BUPIleHa 3 BUKOPUCTAHHIM IPUHITUITY JIOKAJIHHOI (pa30BOI piBHOBArM.
IpuBeneni BiacTuBoCcTi MaTepiaiy (TEIIOEMHICTH, I'yCTUHA, TEILJIOIPOBIIHICTL) BBAXKA-
0ThC DYHKIISIMU TOPUCTOCTI MaTepialy, a TAaKOXK I'YCTHHHM Ta TEILIOEMHOCTI KOMITOHEH-
TiB Tija. OTPUMAHO PO3B’SI3KH JJIsi BUSHAYEHHSI TEMIIEPATYPHU, BOJOIOCTI, IYCTUHU IIapH i
TUCKY TIapu B Opyci B JOBILIbHUI MOMEHT YacCy CYNIiHHS B Oy/Ib-gKiit KOOPAUHATHIN TOUII
paJiiyca, TEpPMOMEXAHIYHUX XapaKTEePUCTUK MaTepiajly 1 mapaMeTpiB CyNIMIbHOIO areHTa.

Knrouosi cnoBa: naocka 3adaua menaonposionocmi, yusindpustut 6pyc, CywusbHul
azenm, nopucme cepedosuuie, K6a3100HOPIOHE HAOAUNCENNHA, THMELPANDHE NEPEMBOPEH-
Ha, Pynxuil Beccean nepuozo ma dpyeozo pody, nepemeopenna Konwmoposuvwa—/Jlebedesa,
meopema Cmexnosa, pynryis I'pina, pyroma mesrca.
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