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Based on a chain of BBGKI equations with a modified boundary condition that takes into
account multiparticle correlations, kinetic equations in the approximate “pairs” collisions
and in the polarization approximation, taking into account the interaction through the
third particle, obtained. The specifics of the model representation of the pair potential
of particle interaction through short-range and long-range parts were taken into account.
In the case of the short-range potential in the form of the potential of solid spheres, the
contribution of Enskog’s revised theory to the complete integration of the collision of the
kinetic equation is obtained. The collision integrals include paired quasi-equilibrium dis-
tribution functions that depend on the nonequilibrium mean values of the particle number
density and the inverse temperature. The method of collective variables Yukhnovskii is
applied for the calculation of pair quasi-equilibrium distribution function with an alloca-
tion of short-range and long-range parts in the potential of the interaction of particles. In
this case, the system with short-range interaction is considered as a frame of reference.
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1. Introduction

Studies of the role of repulsive and attractive forces between atoms, molecules of liquids and their
influence on thermodynamic, structural, and dynamic properties have a history, starting with Van
der Waals [1–26]. And this is probably not all the work in which the problem is primarily the correct
definition of the nature of forces, the construction of model capacity within the first coordination sphere
of the liquid state. Everything that happens with the nature of the interaction of particles in the first
coordination sphere of liquids is essential because, for highly correlated liquids, the contribution of
long-range attraction will not be significant. For complex fluids: molecular, polar, and magnetic, when
the orientational degrees of freedom are also necessary, the structure of the first coordination sphere will
obviously determine the nature of the forces of interaction, the emergence of certain cluster formations,
collective hydrodynamic sound, thermal modes, and nonhydrodynamic modes [27–30]. On a spatial
and temporal scale, nonequilibrium processes, which are the main within the first coordination sphere
of simple fluids, belong to the kinetic stage of the temporal evolution of transfer processes.

In the nonequilibrium theory of dense gases and liquids, the approach of kinetic equations makes it
possible to obtain the transfer equation for the hydrodynamic densities of the number of particles, their
momentum, and energy, and the expressions for the transfer coefficients as a function of the particle
parameters and external parameters [31–35]. However, constructing a kinetic theory for ordinary
potentials at high densities is significantly complicated (there are no small parameters). For dense
gases and liquids, time intervals τf — time of free run and τhyd — characteristic time of change of sizes
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which are locally stored — densities mass, momentum, and energy have the same order of magnitude.
Therefore in the process of “collision” of two particles, an important role is played by other system
particles. This means that the kinetics of dense systems must consider the collective effects that
are characteristic of the hydrodynamic approach. In other words, this means that for dense gases
and liquids, kinetics and hydrodynamics are closely related and should be considered simultaneously.
There are only a few model systems for which it is possible to introduce a proper kinetic equation (and
then in the approximation of paired collisions) and obtain formulas for the transfer coefficients. There
are only a few model systems for which it is possible to introduce a proper kinetic equation (and then
in the approximation of paired collisions) and obtain formulas for the transfer coefficients. This is a
system of solid spheres [32–34,36–41], a system with a square-well potential(SWP) [42–51] and with a
multistep potential (MSP) [52–59] as a generalization of SWP. The first model system replaces all the
real potential by the effective diameter of solid spheres. It is a sure recipe for calculating the contact
value of the pair distribution function. The latter two are unique in that they explicitly consider the
far-reaching part of the potential due to the corresponding irreversible integral of the collisions.

In other models, Enskog’s kinetic theory or its revised variant (RET) [37, 38] is mainly used as a
basis, and long-range interaction is taken into account indirectly. In particular, Rice and Allnatt [60]
added a Fokker–Planck contribution to the integral of Enskog collisions: the particles between colli-
sions on a solid core seem to undergo Brownian motion due to the far-reaching part of the potential.
Due to this approximation, the numerical calculations for shear viscosity and thermal conductivity
differ significantly [61] from the data of molecular dynamics. Based on the entropy maximization
approach with some elms, for the potential “solid spheres + smooth tail”, several kinetic theories of
the mean-field type (KTMF) have been proposed [62–64], which are parallel and indirect, and take
into account the attractive interaction. In [65], the kinetic theory of the mean-field is applied to mix-
tures, and the result is obtained within the Katz boundary. In [66], the calculations of KTMF for
the coefficients of self-diffusion, shear, and bulk viscosity are compared with the results of other indi-
rect approaches — stochastic kinetic theory and renormalized Kirkwood theory. Other works that use
semi-phenomenological methods to account for attractive interactions include [67], where an averaged
scattering cross-section for viscosity is introduced. The work [68] also proposes a kinetic theory for a
system of particles with the potential “hard spheres + truncated tail”, which combines a kinetic theory
for SWP systems and KTMF. This theory gives a good agreement between the numerical calculations
for the transfer coefficients and the results of computer simulations and experiments.

The multistage potential has some advantage over a square-well because it allows us to approximate
real interaction better. It should note that in the calculations of the transfer coefficients for argon [56],
we have to some extent seen the role of the first coordination sphere in the optimal choice of the number
of attraction walls in the multistage potential, which simulates the Lennard–Jones potential. In fact,
in these calculations, there is a problem of optimal choice of the number of repulsive and attractive
walls, which is primarily manifested in the pair function of particle distribution, the behavior of which
determines the first coordination area. In fact, due to these pairwise particle distribution functions, the
liquid argon transfer coefficients were calculated. It was shown that after the self-consistent optimal
number of attraction walls, the increase in their number did not significantly affect the calculation
results. It is obvious that within the first coordination sphere in simple, complex liquids, there are
short-acting repulsive and attractive forces, the true nature of which is connected with the internal
nuclear-electronic structure of atoms and molecules, and has a quantum-mechanical nature (regardless
of temperature) in a certain way we model one or another potential of interaction at the classical level
of description. The kinetic theory of mixtures with a multistage interaction potential is considered
in [59]. The boundary transition to a smooth continuous potential for the kinetic equation and the
balanced equation for the potential energy density is analyzed. When the limit potential is chosen in
the form of “solid spheres + smooth tail”, the kinetic equation is reduced to the equation of kinetic
variation theory (KVT). Still, the limit equation of balance for the kinetic energy density differs from
the corresponding equation KVT.
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To highlight the contribution of short-range repulsive and attracting particles within the formation
of the short order (first coordination sphere) in the theory of nonequilibrium processes, we consider
a chain of BBGKI equations for nonequilibrium distribution functions of interacting particles of a
classical system. We use the approach proposed in [69] based on the modification of the boundary
conditions for the weakening of correlations to the chain of BBGKI equations. This approach was
further developed in the works [30,55,56,70–79]. It considers both the nonequilibrium of the one-particle
distribution function and the local laws of conservation of mass, momentum and total energy, which
form the basis of the hydrodynamic description of the system’s evolution. Based on the modification
of the boundary condition of attenuation of correlations to the Liouville equation, a system of coupled
generalized equations for the nonequilibrium one-particle distribution function and the average total
energy density was obtained, which are valid for describing nonequilibrium states of both far and near
equilibrium. An important achievement of this approach is that the formulated modified boundary
condition, which takes into account local conservation laws to the chain BBGKI, made it possible for
the first time in [71] to consistently derive the kinetic equation of the revised Enskog theory [34,37,38]
for the system of solid spheres. Based on this result, we obtained a kinetic equation for a system
with a model multistep interparticle interaction potential [55] (in particular, for this kinetic equation
was proved H-theorem in [55]), as well as the kinetic equation Landau [70, 71, 80] for a system of
charged solid spheres. For the new kinetic equations obtained in this way, normal solutions were found
by the Chapman–Enskog method, which was used to perform numerical calculations of the transfer
coefficients of bulk, shear viscosities, and thermal conductivity for systems that simulate argon [56,80],
once ionized argon [74].

An important problem in applying the obtained kinetic equations with integrals of collisions in
approximations of pair collisions or polarization is the calculation of the pair quasi-equilibrium distri-
bution function g2(r1, r2|n, β; t) as functions of nonequilibrium values: of average density n(r; t) and
inverse temperature β(r; t). In the works [39,41,64], when considering the corresponding models of the
collision integral for this distribution function, we used the generalization of the virial decomposition
by the density chosen over time.

In the second section, we consider a chain of BBGKI equations with a modified boundary condition
and with the selection of short-range repulsive and attractive interactions between particles of the
classical system. In the third section, we consider a chain of BBGKI equations with a modified
boundary condition to approximate “paired ” collisions and obtain the corresponding kinetic equation.
In this section, we obtain the kinetic equation for the nonequilibrium one-particle distribution function
with the collision integral in the polarization approximation when the interaction of two particles is
taken into account through the interaction of the third particle. In the fourth section, we present
one of the ways to calculate the pair quasi-equilibrium distribution function, which is included in the
collision integrals of the corresponding kinetic equations.

2. Chain of BBGKI equations for nonequilibrium particle distribution functions of a
simple liquid

As a model of a simple fluid, we will consider a system of classical interacting particles with the
following Hamiltonian:

H =

N∑

j=1

pj

2m
+

1

2

N∑

j,l

Φ(rj , rl)

where the indices j, l number the particles with mass m with vector pulses pj and vectors with
coordinates rj simple liquid, N is the total number of particles in the volume V ;

Φ(rj, rl) = Φrep(rj, rl) + Φattr(rj , rl) = Φsr
rep(rj, rl) + Φsr

attr(rj, rl) + Φlr
attr(rj , rl), (1)

there is a pair potential for interaction between particles, consisting of a short-acting repulsive (for
example, a model of solid spheres) Φsr

rep(rj, rl), short-range attractive Φsr
attr(rj , rl) and long-range
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attractive parts Φlr
attr(rj, rl). The full short-term interaction is equal to

Φsr
tot(rj, rl) = Φsr

rep(rj , rl) + Φsr
attr(rj , rl).

The nonequilibrium state of the system is completely described by the nonequilibrium distribution
function of all particles ρ(x1, . . . , xN ; t) = ρ(xN ; t) (where the notation xN = x1, . . . , xN , xj = pjrj),
whose evolution in time is given Liouville equation

∂

∂t
ρ(xN ; t) + iLNρ(xN ; t) = 0.

with the Liouville operator

iLN =

N∑

j=1

pj

m
· ∂

∂rj
−

N∑

j,l

∂

∂rj
Φ(rj, rl)

(
∂

∂pj
− ∂

∂pl

)
.

We will describe the nonequilibrium state of the system with the help of chain of BBGKI equations
for nonequilibrium fluid particle distribution functions. To do this, we use the approach proposed
in [71, 75], where a modified chain of equations BBGKI is built, taking into account the concept
of a consistent description of kinetics and hydrodynamics of nonequilibrium processes of the system
of interacting particles in the method of nonequilibrium statistical operator Zubarev, based on the
Liouville equation with the source:

∂

∂t
ρ(xN ; t) + iLNρ(xN ; t) = −ε(ρ(xN ; t)− ̺rel(xN ; t)), (2)

which selects the delayed (ε→ +0, after thermodynamic transition) solutions of the Liouville equation
under given initial conditions:

ρ(xN ; t)t=t0 = ̺rel(x
N ; t0),

ρrel(x
Nα ; t) is the relevant (quasi-equilibrium) particle distribution function obtained according

to [71, 75] from the condition of the maximum of the Gibbs entropy functional with preserved nor-
malization conditions for the distribution and the set parameters of the abbreviated description of
the nonequilibrium state of the liquid: 〈n̂(x)〉t = f1(x; t) is the nonequilibrium one-particle particle
distribution function of liquid and 〈ε̂int(r)〉t is the nonequilibrium average energy of the interaction of
liquid particles, which has the following structure:

ρrel(x
N ; t) = exp

{
−Φ(t)−

∫
dr β(r, t)ε̂int(r)−

∫
dx a(x, t)n̂(x)

}
, (3)

where Φ(t) is the Masier–Planck functional

Φ(t) =

∫
dΓN (x) exp

{
−
∫
dr β(r, t)ε̂int(r)−

∫
dx a(x, t)n̂(x)

}
= lnZrel(t),

Zrel(t) =

∫
dΓN (x) exp

{
−
∫
dr β(r, t)ε̂int(r)−

∫
dx a(x, t)n̂(x)

}

is the statistical sum of the quasi-equilibrium distribution ρrel(x
N ; t), in which

n̂(x) =

N∑

j=1

δ(x− xj) =

N∑

j=1

δ(r − rj)δ(p − pj)

is the microscopic phase density of the number of particles and

ε̂int(r) =
1

2

N∑

j,l

Φ(rj , rl)δ(r − rj) = ε̂srrep(r) + ε̂srattr(r) + ε̂lrattr(r)

is the microscopic energy density of the interaction of particles with the selected contributions of
repulsive and attractive interactions; dΓ = (dx)N/N !, dx = dp dr. Moreover, the sum of the first
two ε̂srtot(r) form the microscopic energy density of the interaction of particles in the first coordination
sphere. The Lagrange parameters β(r, t) (inverse of the nonequilibrium temperature of the liquid),
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a(x, t) are determined from the conditions of self-agreement:

〈ε̂int(r)〉t = 〈ε̂int(r)〉trel, 〈n̂(x)〉t = 〈n̂(x)〉trel. (4)

Taking into account, the structure ρrel(x
N ; t) and the approach [71, 75], integrating the Liouville

equation with the source (2) by the corresponding coordinates and momentum of the particles, we
obtain chain of BBGKI equations with modified boundary conditions (taking into account space-time
interparticle correlations) for a simple fluid:
(
∂

∂t
+ iL(1)

)
f1(x1; t) +

∫
dx2 iL(1, 2)f2(x1, x2; t) = 0, (5)

(
∂

∂t
+ iL(1) + iL(2) + iL(1, 2)

)
f2(x1, x2; t) +

∫
dx3
(
iL(1, 3) + iL(2, 3)

)
f3(x1, x2, x3; t)

= −ε
(
f2(x1, x2; t)− g2(r1, r2|n, β; t)f1(x1; t)f2(x2; t)

)
, (6)

where ε→ +0 after the limit thermodynamic transition,

iL(j) =
pj

m
· ∂

∂rj
,

iL(j, l) = − ∂

∂rj
Φ(rj, rl) ·

(
∂

∂pj
− ∂

∂pl

)

= − ∂

∂rj

(
Φsr
rep(rj , rl) + Φsr

attr(rj , rl) + Φlr
attr(rj, rl)

)
·
(

∂

∂pj
− ∂

∂pl

)
,

there are one-part and two-part parts of the Liouville operator, g2(r1, r2|n; t) is a pair of quasi-
equilibrium coordinate functions of the distribution of fluid particles

g2(r1, r2|n, β; t) =
1

n(r1; t)n(r2; t)

∫
dΓN (x) n̂(r1) n̂(r2) ρrel(x

N ; t). (7)

The distribution functions of the three particles satisfy the following equations of the chain of equations
BBGKI, which include nonequilibrium functions of the distribution of four particles. It is important
to note that one- and two-particle nonequilibrium distribution functions determine the behavior of
hydrodynamic variables: average nonequilibrium values densities of the number of particles n(r; t),
their momentum p(r; t), kinetic energy εkin(r; t), as well as the potential energy εint(r; t):

n(r; t) =

∫
dp f1(r,p; t), p(r; t) =

∫
dp f1(r,p; t)p,

εkin(r; t) =

∫
dp

p2

2m
f1(r,p; t),

εint(r; t) =

∫
dp

∫
dp′
∫
dr′ Φ(r, r′)f2(r,p, r

′,p′; t),

which satisfy the corresponding conservation laws of the average nonequilibrium values of the number
of particles of a simple liquid n(r; t), their momentum p(r; t) and full of energy

ε(r; t) = εkin(r; t) + εint(r; t),

underlying the hydrodynamic description of nonequilibrium processes of a simple fluid. In addition,
the pair is a quasi-equilibrium coordinate distribution function g2(r, r′|n, β; t) and higher coordinate
quasi-equilibrium distribution functions g3(r, r′, r′′|n, β; t), . . . , gs(r

s|n, β; t) in the following equations
BBGKI chains describe multiparticle correlations and are functions of nonequilibrium densities n(r; t)
and temperature β(r; t). The structure of the data of correlation functions should reflect the features
of the selected model for the pair potential of particle interaction (1). One of the ways to calculate
them will be considered in the last section.

In the next section, we consider the chain of BBGKI equations in the approximation of pairwise
collisions between particles.
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3. The chain of BBGKI equations in the approximation of pairwise collisions of particles
and in the polarization approximation

In the approximation of pairwise collisions between particles, when the distribution functions of the
three particles are not taken into account, for nonequilibrium two-particle distribution functions, we
obtain [71, 75] the following equation:
(
∂

∂t
+ iL(1)+ iL(2)+ iL(1, 2)

)
f2(x1, x2; t) = −ε

(
f2(x1, x2; t)−g2(r1, r2|n, β; t)f1(x1; t)f1(x2; t)

)
. (8)

The solution of this equation (8) can be represented as

f2(x1, x2; t) = ε

∫ 0

−∞
dτ e(ε+iL̄(1,2))τg2(r1, r2|n, β; t + τ)f1(x1; t+ τ)f1(x2; t+ τ),

where
iL̄(1, 2) = iL(1) + iL(2) + iL(1, 2).

Substituting this solution into the equation (5), we obtain a non-Markov kinetic equation for nonequi-
librium one-particle simple fluid distribution function:
(
∂

∂t
+ iL(1)

)
f1(x1; t) = −

∫
dx2 iL(1, 2)ε

∫ 0

−∞
dτ e(ε+iL̄(1,2))τ g2(r1, r2|n, β; t+τ)f1(x1; t+τ)f1(x2; t+τ).

The obtained kinetic equation for the nonequilibrium one-particle particle distribution function is taken
into account also the spatial heterogeneity of the system. According to the nature of the interaction
of particles (1), the integral of the collisions in the right part is given in the form:

I(x; t) = −
∫
dx2 iL(1, 2)ε

∫ 0

−∞
dτ e(ε+iL̄(1,2))τ g2(r1, r2|n, β; t + τ)f1(x1; t+ τ)f1(x2; t + τ) (9)

= −
∫
dp2

(∫ σ

0
iLsrrep(1, 2) ε

∫ 0

−∞
dτ e(ε+iL̄

sr
rep(1,2))τ +

∫ rmin

σ
iLsrattr(1, 2) ε

∫ 0

−∞
dτe(ε+iL̄

sr
attr(1,2))τ

+

∫ ∞

rmin

iLlrattr(1, 2) ε

∫ 0

−∞
dτ e(ε+iL̄

lr
attr(1,2))τ

)
g2(r1, r2|nβ; t + τ)f1(x1; t+ τ)f1(x2; t + τ) dr2,

where the first term of the collision integral describes the repulsive short-range processes of particle
scattering, and the second represents the attractive short-range scattering processes in the approximate
pair interactions. They form the kinetics of the middle order (the first coordination sphere) in a simple
fluid. The third term in the collision integral describes the attractive long-range processes of particle
scattering. It forms a long-range order with a consistent description of the kinetics and hydrodynamics
of a simple fluid. In the future, we will choose the repulsive short-range interaction potential in the
form of a model of solid spheres:

Φsr
rep(|rjl|) = Φh.s.(|rjl|) = lim

ε→∞
Φε(|rjl|),

where

Φε(|rjl|) =

{
ε, |rjl| < σ;
0, |rjl| > σ.

σ is the diameter of a solid sphere. The potential Φh.s.(|rjl|) for solid spheres is strongly singular (in
particular, the operator Liouville iL(j, l) is poorly defined). That’s why we will consider the potential
Φε(|rjl|) and only in the final expressions we put lim

ε→∞
. Note the characteristics of the potential

Φh.s.(|rjl|), Φε(|rjl|). First, since the radius of their interaction is r0 = σ+, then the area of interaction
∆r0 → +0, and, secondly, time interaction τ0 → +0, which is due to the singular the nature of the
potential. Then, according to the approach [71,75], this part of the collision integral can be represented
in the form of the collision integral in the revised theory of Enskog:
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Isrrep(x; t) = −
∫
dp2

∫ σ

0
iLsrrep(1, 2) ε

∫ 0

−∞
dτe(ε+iL̄

sr
rep(1,2))τ g2(r1, r2|n, β; t + τ)f1(x1; t+ τ)f1(x2; t + τ)dr2

= −n
∫
dx2 T̂ (1, 2)g2(r1, r2|n, β; t)f1(xl; t)f1(x2; t), (10)

where

T̂ (1, 2) = σ2
∫
dσ̂ Θ(σ̂ · g)(σ̂ · g)

[
δ(r1 − r2 + σ+σ̂)B̂(σ)− δ(r1 + r2 − σ+σ̂)

]

is the operator of collisions of solid elastic spheres of Enskog, where

v′
1 = v1 + σ̂(σ̂ · g), v′

2 = v2 − σ̂(σ̂ · g), (11)

v1, v2 are vectors — the velocities of particles to the interaction, and v′
1, v′

2 are vectors — their
velocities after interaction with the relative velocity g = v2 − v1, B̂(σ̂)ϕ(v1,v2) = ϕ(v′

1,v
′
2) is the

speed shift operator defined ratios (11). Further, if in the second and third terms of the collision
integral (9) perform the integration in parts and take into account (10), the collision integral can be
represented as:

I(x; t) = −n
∫
dx2 T̂ (1, 2) g2(r1, r2|n, β; t) f1(xl; t) f1(x2; t)

−
∫
dp2

∫ rmin

σ
iLsrattr(1, 2) g2(r1, r2|n; t) f1(x1; t) f1(x2; t)dr2

+

∫
dp2

∫ rmin

σ
iLsrattr(1, 2)

∫ 0

−∞
dτ e(ε+iL̄

sr
attr(1,2))τ

(
∂

∂t
+ iL̄srattr(1, 2)

)

× g2(r1, r2|n, β; t + τ)f1(x1; t + τ)f1(x2; t+ τ) dr2

−
∫
dp2

∫ ∞

rmin

iLlrattr(1, 2) g2(r1, r2|n; t) f1(x1; t) f1(x2; t) dr2

+

∫
dp2

∫ ∞

rmin

iLlrattr(1, 2)

∫ 0

−∞
dτ e(ε+iL̄

lr
attr(1,2))τ

(
∂

∂t
+ iL̄lrattr(1, 2)

)

× g2(r1, r2|n, β; t + τ) f1(x1; t + τ) f1(x2; t+ τ) dr2, (12)

in which the second and fourth terms in the right part correspond to the generalized middle fields with
potentials of short-range and long-range attraction. The third and fifth terms of the collision integral
are of the second order in terms of interactions taking into account non-Markov processes (time delay).

The kinetic equation with the collision integral (12) is derived from the BBGKI chain of equations
in approaching “pair” collisions, although a significant part of the coordinates of dynamic correlations
is already taken into account in the quasi-equilibrium distribution functions g2(r1, r2|n, β; t).

For analysis of chain connections of BBGKI equations (5)–(6) in higher approximations by interpar-
ticle correlations it is convenient to apply the concept of group compositions [81–83]. Group deposits
were applied to the chain of equations of BBGKI in many works [81–89, 92] with a boundary condi-
tion corresponding to the attenuation condition correlations by Bogolyubov, in the works of Zubarev
and Novikov [83, 90, 91], which he was developed diagram method for constructing connections of the
chain of BBGKI equations. For the connection of the chain of equations (5)–(6) similarly as in the
works [83, 90, 91], and even more so in the works [81, 82, 84], let’s move from nonequilibrium of distri-
bution functions fs(x

s; t) to irreducible distribution functions Fs(x
s; t), which are introduced by the

quantities [81, 83], but in in our case with some modification:

f1(x1; t) = F1(x1; t), (13)

f2(x1, x2; t) = F2(x1, x2; t) + g2(r1, r2; t)F1(x1; t)F1(x2; t),

f3(x1, x2, x3; t) = F3(x1, x2, x3; t)

+
∑

P
F2(x1, x2; t)F1(x3; t) + g3(r1, r2, r3; t)F1(x1; t)F1(x2; t)F1(x3; t), . . . ,

in which the coordinate quasi-equilibrium distribution functions g2(r1, r2; t), g3(r1, r2, r3; t), gs(r
s; t)

are determined by the relations (7) and
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gs(r
s|n, β; t) =

1

n(r1; t) . . . n(rs; t)

∫
dΓN (x)n̂(r1) . . . n̂(rs)ρrel(x

N ; t).

The modification of group compositions (13) is that a significant part of simple correlations is taken
into account over time quasi-equilibrium functions gs(r

s; t). When gs(r
s; t) = 1 for s = 2, 3, . . . these

group clauses coincide with group clauses [81, 82, 84]. Since each line of equivalences (13) introduces
exactly one new one function Fs(r

s; t), s = 1, 2, 3, . . ., then the data of the equation can be related
relatively of irreducible separation functions and write:

F1(x1; t) = f1(x1; t), (14)

F2(x1, x2; t) = f2(x1, x2; t)− g2(r1, r2; t)f1(x1; t)f1(x2; t),

F3(x1, x2, x3; t) = f3(x1, x2, x3; t)−
∑

P
f2(x1, x2; t)f1(x3; t)

− h3(r1, r2, r3; t)f1(x1; t)f1(x2; t)f1(x3; t), . . . . (15)

Here and in (13)
∑

P denotes the sum of all different permutations the coordinate of three or more
particles,

h3(r1, r2, r3; t) = g3(r1, r2, r3; t)− g2(r1, r2; t)− g2(r1, r3; t)− g2(r2, r3; t) (16)

is a three-particle quasi-equilibrium correlation function. Now we write down the chain of equations
BBGKI (5)–(6) for irreducible distribution functions Fs(x

s; t), the first two comparison. The first
equation of the chain has the form:
(
∂

∂t
+ iL(1)

)
F1(x1; t) +

∫
dx2 iL(1, 2) g2(r1, r2; t)F1(x1; t)F1(x2; t)

+

∫
dx2 iL(1, 2)F2(x1, x2; t) = 0. (17)

Differentiating by time the expression for F2(x1, x2; t) in (14) and using the second equation of the
BBGKI chain (6) for the function f2(x1, x2; t), for F2(x1, x2; t), the following equation:
(
∂

∂t
+ iL2 + ε

)
F2(x1, x2; t) = −

(
∂

∂t
+ iL2

)
g2(r1, r2; t)F1(x1; t)F1(x2; t)

−
∫
dx3

{
iL(1, 3) + iL(2, 3)

}{
F3(x1, x2, x3; t) +

∑
P
F2(x1, x2; t)F1(x3; t)

+ g3(r1, r2, r3; t)F1(x1; t)F1(x2; t)F1(x3; t)
}
. (18)

In a similar way, you can get an equation for a three-particle of the irreducible function F3(x1, x2, x3; t)
and higher functions Fs(x

s; t) of particle distribution. Recall that the emergence of quasi-equilibrium
functions distribution g2(r1, r2; t), g3(r1, r2, r3; t) and gs(r

s; t) in the chain of equations (17), (18) due
to the fact that the boundary condition for the binding of the equation Liuville (2) is considered an
imbalance one-particle distribution functions and local security laws, which corresponds to the agreed
description of kinetics and hydrodynamics systems [69–72, 75, 78, 79]. Because in this work we will
analyze only the first two equations (17), (18), then the following we will not write down the chain.
It is necessary note that if put formally gs(r

s; t) = 1, s = 2, 3, . . . in (17), (18), then we get the
first two equations of the BBGKI chain of equations for irreducible distribution functions F1(x1; t),
F2(x1, x2; t), taken in the work [90, 91]. A characteristic feature systems of equations (17), (18) is the
first term in the right part of the equation (18), ie the term with the time derivative from the double
quasi-equilibrium distribution function g2(r1, r2; t). As we already are marked according to (7), the
quasi-equilibrium pair the distribution function is a functional of local values temperatures β(r; t) and
average particle density n(r; t). Therefore, derivatives in time from g2

(
r1, r2|β(t), n(t)

)
will apply to

β(r; t) and n(r; t), which in turn under the terms of self-agreement (4) will be to be expressed through
the average values of energy in the monitored system counting 〈Ê ′(r)〉t and 〈n̂(r)〉t, which form the
basis of the hydrodynamic description nonequilibrium state of the system.
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Now consider the system of equations (17), (18) in approximation, when the second equa-
tion (18) does not take into account three-particle irreducible distribution functions F3(x1, x2, x3; t),
h3(r1, r2, r3; t), which is analogous polarization approximation in the case of retrieval of the
Bogolyubov–Lenard–Balescu kinetic equation [31,93–95] for Coulomb plasma in the same case. Taking
into account (16), and that F3(x1, x2, x3; t) ≡ 0, and also h3(r1, r2, r3; t) ≡ 0. The equation (18) is
written as follows:(

∂

∂t
+ iL2 + ε

)
F2(x1, x2; t) =

(
∂

∂t
+ iL2

)
g2(r1, r2|n, β; t)F1(x1; t)F1(x2; t)

−
∫
dx3 iL(1, 3) {F2(x1, x2; t)F1(x3; t) + F2(x2, x3; t)F1(x1; t)}

−
∫
dx3 iL(2, 3) {F2(x1, x2; t)F1(x3; t) + F2(x1, x3; t)F1(x2; t)}

−
∫
dx3 {iL(1, 3) + iL(2, 3)} {g2(r1, r2|n, β; t) + g2(r1, r3|n, β; t) + g2(r2, r3|n, β; t)}

× F1(x1; t)F1(x2; t)F1(x3; t). (19)

Next, we introduce the operator that can be obtained by varying of the mean field collision operator
near the nonequilibrium distribution F1(x1; t):

δ

(∫
dx3 iL(1, 3)F1(x3; t)F1(x1; t)

)
=

∫
dx3 iL(1, 3)F1(x3; t) δF1(x1; t) = L(x1; t) δF1(x1; t).

Then the equation (19) using the operator L(x1; t) is represented in in the form of
(
∂

∂t
+ iL2 + L(x1, x2; t) + ε

)
F2(x1, x2; t)

= −
(
∂

∂t
+ iL2 + L(x1, x2; t)

)
g2(r1, r2|n, β; t)F1(x1; t)F1(x2; t),

where we find the formal solution for the fundamental two-particle function distribution:

F2(x1, x2; t) = −
∫ t

−∞
dt′eε(t

′−t)U(t, t′)

×
(
∂

∂t′
+ iL2 + L(x1, x2; t′)

)
g2(r1, r2|n, β; t′)F1(x1; t

′)F1(x2; t′), (20)

where U(t, t′) is an evolution operator:

U(t, t′) = exp+

(
−
∫ t

t′
dt′′
(
iL2 + L(x1, x2; t′′)

))
,

L(x1, x2; t) = L(x1; t) + L(x2; t).

As a result, we obtain the expression for the irreducible quasi-equilibrium two-particle distribution
functions F2(x1, x2; t) in generalized polarization approximation. Substitute this expression (20) into
the first equation of the chain (17), then we get:(

∂

∂t
+ iL(1)

)
F1(x1; t) +

∫
dx2 iL(1, 2) g2(r1, r2|n, β; t)F1(x1; t)F1(x2; t)

=

∫
dx2

∫ t

−∞
dt′eε(t

′−t)iL(1, 2)U(t, t′)

×
(
∂

∂t′
+ iL2 + L(x1, x2; t

′)

)
g2(r1, r2|n, β; t′)F1(x1; t′)F1(x2; t′) (21)

is a generalized kinetic equation for a nonequilibrium one-particle function distribution with the non-
Markov collision integral in the generalized polarization approximation. It should be noted that the
presence in the integral collisions (21) of the mean field collision operator L(x1, x2; t) indicates that it
takes into account the collective effects. In general, the analysis of the integral of collisions in (21) is
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a rather complex mathematical task. Obviously, for each physical model of a system of particles, or
of the nonequilibrium state, the integral of collisions in (21), or the expression for F2(x1, x2; t) (20)
can be significantly simplified. In addition, for further application of the obtained kinetic equations,
in particular, their solution by the Chapman–Enskog method and construction of the corresponding
equations of hydrodynamics, it is necessary to set the algorithm for calculating the pair coordinate
quasi-equilibrium distribution function g2(r, r

′|n, β; t).
In the next section, the method of collective variables Yukhnovskii [96–100] will be used to calculate

the pair quasi-equilibrium distribution function and higher-order distribution functions.

4. Calculation of the statistical sum of the quasi-equilibrium distribution and coordinate
functions of the distribution gs((r)

s|n, β; t) by the method of collective variables

For calculations of the even coordinate quasi-equilibrium distribution function g2(r, r
′|n, β; t) and

higher correlation functions gs((r)s|n, β; t) use the statistical sum of the quasi-equilibrium distribution:

Zrel(t) =

∫
dΓN (x) exp

{
−
∫
dr β(r, t) ε̂int(r)−

∫
dx a(x, t) n̂(x)

}
.

Correlation functions gs((r)s|n, β; t) are determined by variational derivatives on the parameter a(x, t)
of the corresponding order from the statistical sum Zrel(t):

gs((r)s|n, β; t) =
1

n(r1, t) . . . n(rs, t)

∫
dp1 . . .

∫
dps

δ

δa(p1, r1, t)
. . .

δ

δa(ps, rs, t)
lnZrel(t).

The calculation of the statistical sum of the quasi-equilibrium distribution will be performed using the
method of collective variables [96–100]. In doing so, we will take into account the nature of short-range
and long-range interactions of particles, therefore Zrel(t) is given in the form:

Zrel(t) =

∫
dΓN (x) exp

{
−
∫
dr β(r, t) ε̂srint(r)−

∫
dr β(r, t) ε̂lrint(r)−

∫
dx a(x, t) n̂(x)

}
.

Next, assuming that for the far-reaching part of the potential Φlr
attr(|rlj |) there is a Fourier image

ν(k) in the space of wave vectors k, the far-reaching part of
∫
dr β(r, t) ε̂lrint(r) will be presented in

the form of ∫
dr β(r, t) ε̂lrint(r) =

1

2V 2

∑

q

∑

k

β−q(t) ν(k) (ρ̂q+k ρ̂−k − ρ̂q) , (22)

where

ρ̂k =
N∑

j=1

e−ikrj

is the Fourier component of the particle number density. Taking into account (22), the statistical sum
of the quasi-equilibrium distribution is given in the form:

Zrel(t) =

∫
dΓN (x) exp

{
−
∫
dr β(r, t) ε̂srint(r)−

∫
dx a(x, t) n̂(x)

}

× exp

{
− 1

2V 2

∑

q

∑

k

β−q(t) ν(k) (ρ̂q+kρ̂−k − ρ̂q)

}
. (23)

Next, enter the Jacobian transition

Ĵ(ρ) = δ(ρ̂ − ρ) =
∏

k

δ(ρ̂k − ρk)

to the collective variables ρk, the statistical sum (23) is written as:

Zrel(t) = Zshrel(t)

∫
dρ 〈Ĵ(ρ)〉trel,sh exp

{
− 1

2V 2

∑

q

∑

k

β−q(t) ν(k) (ρq+kρ−k − ρq)

}
,
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where dρ =
∏

k dρk and

〈Ĵ(ρ)〉trel,sh =

∫
dΓN (x)δ(ρ̂ − ρ) ρrel,sh(xN ; t)

is the average Jacobian transition to collective variables by quasi-equilibrium distribution, which takes
into account only short-range repulsive and attractive interactions between particles

ρrel,sh(xN ; t) =
1

Zshrel(t)
exp

{
−
∫
dr β(r, t) ε̂srint(r)−

∫
dx a(x, t) n̂(x)

}
, (24)

the statistical sum of which has the following structure:

Zshrel(t) =

∫
dΓN (x) exp

{
−
∫
dr β(r, t) ε̂srint(r)−

∫
dx a(x, t) n̂(x)

}
.

Next, we apply the integral representation for the δ-function, then Ĵ(ρ) is given as

Ĵ(ρ) =

∫
dω exp

{
− iπ

∑

k

ωk(ρ̂k − ρk)
}
.

Using the cumulative schedule [98–100] for 〈Ĵ(ρ)〉trel,sh = W (ρ; t), we get:

W (ρ; t) = 〈Ĵ(ρ)〉trel,sh =

∫
dΓNρrel,sh(x

N ; t)Ĵ(ρ)

=

∫
dω exp

{
− iπ

∑

k

ωkρ̄k −
π2

2

∑

k1,k2

M2(k1,k2; t)ωk1ωk2

}
exp

{∑

n>3

Dn(ω; t)

}
, (25)

where

ρ̄k = ρk − 〈ρ̂k〉trel,sh, dω = Πkdω
r
kdω

s
k,

ωk = ωrk − iωsk, ω−k = ω∗
k,

Dn(ω; t) =
(−iπ)n

n!

∑

k1,...,kn

Mn(k1, . . . ,kn; t)ωk1 . . . ωkn .

Quasi-equilibrium cumulative averages of n-order

Mn(k1, . . . ,kn; t) = 〈ρ̂k1 . . . ρ̂kn〉t,crel,sh
calculated with the relevant distribution function with short-range interparticle interaction (24), where
the superscript c means the cumulative average. It is important to note that in (3) we have separated
the contributions from the short-term ones and long-range interactions. Short-term interactions are
taken into account in the relevant distribution (24) (which can be considered as basic), and long-range
interactions are presented through collective variables.

For further calculation, the structural function W (ρ; t) is given in the form:

W (ρ; t) =

∫
dω exp

{
− iπ

∑

k

ωkρ̄k −
π2

2

∑

k1,k2

M2(k1,k2; t)ωk1ωk2

}

×
(

1 +B +
1

2!
B2 +

1

3!
B3 + . . . +

1

n!
Bn + . . .

)
, (26)

where B =
∑

n>3Dn(ω; t). If in the schedule in a number of exponents (26), ie exp{
∑

n>3Dn(ω; t)},
save only the first term, equal to one, we obtain the Gaussian approximation for W (ρ; t):

WG(ρ; t) =

∫
dω exp

{
iπ
∑

k

ωkρ̄k −
π2

2

∑

k1,k2

M2(k1,k2; t)ωk1ωk2

}
, (27)

where the quasi-equilibrium cumulative average density–density has the form:

M2(k1,k2; t) = 〈ρ̂k1 ρ̂k2〉t,crel,sh = 〈ρ̂kρ̂−k〉trel,sh − 〈ρ̂k〉trel,sh〈ρ̂−k〉trel,sh.
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To integrate for dω in (27) it is necessary to give expression in the exponent to the quadratic
diagonal form for ωk. In this regard, you need to find your values by solving the equation:

det
∣∣M̃2(k1,k2; t)− Ẽ(k1,k2; t)

∣∣ = 0,

Ẽ(k1,k2; t) is a diagonal matrix. With this in mind, we obtain:

WG(ρ; t) =

∫
dω exp

{
− iπ

∑

k

ρ̄kωk −
π2

2

∑

k

E(k; t)ωkω−k

}
. (28)

The subintegral expression in (28) is a quadratic function ω̃k, therefore, performing integration for
dωk, for a structural function in the Gaussian approximation WG(a; t) we obtain:

WG(ρ; t) = Z(t) exp

{
−1

2

∑

k

E−1(k; t) ρ̄k ρ̄−k

}
,

where

Z(t) = exp

{
−1

2

∑

k

lnπ det Ẽ(k; t)

}
.

The structural function WG(ρ; t) in the Gaussian approximation makes it possible to calculate full
structural function (25) in higher approximations by Gaussian moments [99, 100]:

W (ρ; t) = W̄G(ρ; t) exp

{
∑

n>3

〈D̃n(ρ; t)〉G
}
,

where

W̄G(ρ; t) = Z(t) exp

{
−1

2

∑

k

E−1(k; t) ρ̄k ρ̄−k

}

and 〈D̃n(ρ; t)〉G approximate as follows:

〈D̃3(ρ; t)〉G = 〈D̄3(ρ; t)〉G,
〈D̃4(ρ; t)〉G = 〈D̄4(ρ; t)〉G,

〈D̃6(ρ; t)〉G = 〈D̄6(ρ; t)〉G −
1

2
〈D̄3(ρ; t)〉2G,

〈D̃8(ρ; t)〉G = 〈D̄8(ρ; t)〉G − 〈D̄3(ρ; t)〉G〈D̄5(ρ; t)〉G −
1

2
〈D̄4(ρ; t)〉2G,

〈D̃n(ρ; t)〉G =
1

W̄G(ρ; t)

∑

k1,...,kn

M̄n(k1, . . . ,kn; t)
1

(iπ)n
δn

δρ̄k1 . . . δρ̄kn

W̄G(ρ; t).

〈D̃n(ρ; t)〉G are renormalized n-quasi-equilibrium cumulative averages for variables ρ̄k higher orders.

Zrel(t) = Zshrel(t)

∫
dρWβ(ρ; t) W̄G(ρ; t) exp

{∑

n>3

〈D̃n(ρ; t)〉G
}
,

where

Wβ(ρ; t) = exp

(
− 1

2V 2

∑

q

∑

k

β−q(t)ν(k)
(
ρq+kρ−k − ρq

)
)
.

In the Gaussian approximation of the collective variables for Wβ(ρ; t) quasi-equilibrium distribution
function will look like this:

ZGrel(t) = Zshrel(t)

∫
(dρ)Wβ(ρ; t) W̄G(ρ; t).

In this approximation for the pair quasi-equilibrium function of particles, we obtain:

g2(r1, r2|n, β; t) =
1

n(r1, t)n(r2, t)

∫
dp1

∫
dp2

δ

δa(p1, r1, t)

δ

δa(p, r2, t)
ln

(
Zshrel(t) (29)
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× exp

{
− 1

2

∑

k

lnπ det Ẽ(k; t)

}
V (β, n; t)

)
,

where

V (β, n; t) =

∫
(dρ) exp

{
− 1

2

∑

k

E−1(k; t) ρ̄k ρ̄−k

}
exp

(
− 1

2V 2

∑

q

∑

k

β−q(t) ν(k)
(
ρq+kρ−k − ρq

))
.

To integrate the collective variables in V (β, n; t) in the first exponent under the integral we write
ρ̄k = ρk − 〈ρ̂k〉trel,sh. Then we get

− 1

2

∑

k

E−1(k; t)ρ̄kρ̄−k = −1

2

∑

k

E−1(k; t)ρkρ−k

+
∑

k

E−1(k; t)ρk〈ρ̂−k〉trel,sh −
1

2

∑

k

E−1(k; t)〈ρ̂k〉trel,sh〈ρ̂−k〉trel,sh.

Then in the second exponent under the integral, you need the first term to the quadratic form:

− 1

2V 2

∑

q

∑

k

β−q(t) ν(k)
(
ρq+kρ−k − ρq

)
= − 1

2V 2

∑

k

λ(k, t) ρk ρ−k +
1

2V 2

∑

k′

ν(k′)
∑

k

β−k(t) ρk,

where λ(k1,k2; t) there are eigenvalues from the equation:

det
∣∣B̃(k1,k2; t)− λ̃(k1,k2; t)

∣∣ = 0,

in which B(k1,k2; t) = βk1−k2(t)ν(k1).
Given the transformation data in the exponents of V (β, n; t), you can submit it as

V (β, n; t) =

∫
(dρ) exp

{
− 1

2

∑

k

G(k; t)
(
ρk −

1

2
R(k; t)

)2}

× exp

{
− 1

2

∑

k

(
E−1(k; t)〈ρ̂k〉trel,sh〈ρ̂−k〉trel,sh −

1

4
G(k; t)R2(k; t)

)}

where

G(k; t) = E−1(k; t) +
1

2V 2
λ(k, t),

R(k; t) =
1

1 + 1
2V 2λ(k, t)E(k; t)

(
〈ρ̂k〉trel,sh +

1

2V 2

∑

k′

ν(k′)βk(t)

)
.

After integration by collective variables, we finally get

V (β, n; t) = exp

{
− 1

2

∑

k

ln det G̃(k; t)

}

× exp

{
− 1

2

∑

k

(
E−1(k; t)〈ρ̂k〉trel,sh〈ρ̂−k〉trel,sh −

1

4
G(k; t)R2(k; t)

)}
.

After substituting V (β, n; t) in (29), we get:

g2(r1, r2|n, β; t) = gsh2 (r1 r2|n, β; t)− 1

n(r1, t), n(r2, t)

×
∫
dp1

∫
dp2

δ

δa(p1, r1, t)

δ

δa(p2, r2, t)

(
1

2

∑

k

lnπ det Ẽ(k; t) +
1

2

∑

k

ln det G̃(k; t)

+
1

2

∑

k

(
E−1(k; t)〈ρ̂k〉trel,sh〈ρ̂−k〉trel,sh −

1

4
G(k; t)R2(k; t)

))
,

where gsh2 (r1, r2|n, β; t) is an even quasi-equilibrium coordinate function of particle distribution with
short-range interaction. The following terms are complex in structure and are related to the func-
tional derivatives δ

δa(p1,r1,t)
δ

δa(p ,r2,t)
, acting on 〈ρ̂k〉trel,sh end M2(k1,k2; t), through which the functions

E(k; t), G(k; t) та R(k; t). The results are as follows:
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δ

δa(p2, r2, t)
〈ρ̂k〉trel,sh = 〈ρ̂k〉trel,sh〈n̂(x2)〉trel,sh − 〈ρ̂kn̂(x2)〉trel,sh,

δ

δa(p1, r1, t)

δ

δa(p2, r2, t)
〈ρ̂k〉trel,sh = 2〈ρ̂k〉trel,sh〈n̂(x1)〉trel,sh〈n̂(x2)〉trel,sh − 〈n̂(x1)〉trel,sh〈ρ̂kn̂(x2)〉trel,sh

− 〈ρ̂k〉trel,sh〈n̂(x1)n̂(x2)〉trel,sh − 〈n̂(x2)〉trel,sh〈ρ̂kn̂(x1)〉trel,sh + 〈ρ̂kn̂(x1)n̂(x2)〉trel,sh,
δ

δa(p2, r2, t)
〈ρ̂kρ̂−k〉trel,sh = 〈ρ̂kρ̂−k〉trel,sh〈n̂(x2)〉trel,sh − 〈ρ̂kρ̂−kn̂(x2)〉trel,sh,

δ

δa(p1, r1, t)

δ

δa(p2, r2, t)
〈ρ̂kρ̂−k〉trel,sh = 2〈ρ̂kρ̂−k〉trel,sh〈n̂(x1)〉trel,sh〈n̂(x2)〉trel,sh

− 〈ρ̂kρ̂−k〉trel,sh〈n̂(x1)n̂(x2)〉trel,sh − 〈n̂(x1)〉trel,sh〈ρ̂kρ̂−kn̂(x2)〉trel,sh
− 〈n̂(x2)〉trel,sh〈ρ̂kρ̂−kn̂(x1)〉trel,sh + 〈ρ̂kρ̂−kn̂(x1)n̂(x2)〉trel,sh.

After integrating by impulses
∫
dp1

∫
dp2 we get the expression for g2(r1, r2|n, β; t) through one-,

two-, three-, four-particle coordinate quasi-equilibrium distribution functions for particles with short-
range interaction. In addition, g2(r1, r2|n, β; t) also depends on the long-range part of the interaction
ν(k) due to certain renormalizations G(k; t), and is also a function of the local inverse temperature
β(r; t). Thus, we obtain the expression for the quasi-equilibrium pair coordinate function of the particle
distribution in the Gaussian approximation WG(ρ; t) (chaotic phase type approximation). Higher
approximations will be related to quasi-equilibrium renormalized cumulatives 〈D̃n(ρ; t)〉G, which will
also be expressed in terms of one-, two-, three-, four- and higher-order particle coordinate quasi-
equilibrium distribution functions for particles with short-range interaction. And so we come to the
problem of calculating one-, two-, three-, four- and higher-order particle coordinate quasi-equilibrium
distribution functions for particles with short-range interaction.

5. Conclusions

Within the concept of the coordinated description of kinetic and hydrodynamic processes, generalized
kinetic equations are obtained for the nonequilibrium one-particle distribution function in the approx-
imation of “paired” collisions and in the polarization approximation when the interaction through the
third particle is taken into account. In this case, the contributions from the short-range and long-range
nature of the interaction of particles are distinguished in the collision integrals. The resulting collision
integrals include a quasi-equilibrium coordinate distribution function g2(r1, r2|n, β; t) as a function
of nonequilibrium densities of the number of particles n(r; t) and inverse temperature β(r; t) and de-
scribes multiparticle correlations. g2(r1, r2|n, β; t) is of independent interest, as it may be related
to the corresponding dynamic structural factor quasi-balanced state of the system. The calculation
of g2(r1, r2|n, β; t) is one of the important problems [39, 41, 64]. In this paper, the calculation of
g2(r1, r2|n, β; t) is applied to the method of collective Yukhnovskii variables, with the allocation of
the frame of reference, which is a system of particles with a short-range nature of the interaction.
In addition, it is important to note that it is promising to use the Ornstein–Zernike equation, which
depends on the time [101–104] to calculate g2(r1, r2|n, β; t).

In the following, we consider in detail the kinetic equation for a nonequilibrium one-particle dis-
tribution function with collision integral in the pair collision integral with a pair quasi-equilibrium
coordinate distribution function in the Gaussian approximation (chaotic phases) in the Yukhnovskii
method of collective variables.
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До кiнетичної теорiї густих газiв та рiдин. Розрахунок
квазiрiвноважних функцiй розподiлу частинок методом

колективних змiнних

Токарчук М. В.

Iнститут фiзики конденсованих систем НАН України,
вул. Свєнцiцького, 1, 79011, Львiв, Україна

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. Бандери 12, 79013, Львiв, Україна

На основi ланцюжка рiвнянь ББГКI з модифiкованою граничною умовою, що врахо-
вує багаточастинковi кореляцiї, отримано кiнетичнi рiвняння у наближеннi “парних”
зiткнень та поляризацiйному наближеннi, тобто з врахуванням взаємодiї через третю
частинку. При цьому враховувалась специфiка модельного подання парного потен-
цiалу взаємодiї частинок через короткосяжну та далекосяжну частини. У випадку
короткосяжного потенцiалу у виглядi потенцiалу твердих сфер отримано вклад ревi-
зованої теорiї Енскога у повний iнтеграл зiткнення кiнетичного рiвняння. В iнтеграли
зiткнень входять парнi квазiрiвноважнi функцiї розподiлу, якi залежать вiд нерiвно-
важних середнiх значень густини кiлькостi частинок та оберненої температури. За-
стосовано метод колективних змiнних Юхновського для розрахунку парної квазiрiв-
новажної функцiї розподiлу з видiленням короткосяжної та далекосяжної частин у
потенцiалi взаємодiї частинок. При цьому система iз короткодiючою взаємодiєю роз-
глядається як система вiдлiку.

Ключовi слова: кiнетичнi рiвняння, нерiвноважний статистичний оператор,
функцiя розподiлу, проста рiдина.
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