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The aim of this work is to propose a new numerical approach to image restoration and
contrast enhancement based on a reaction-diffusion model (Gray—Scott model). For noise
removal, a Lattice Boltzmann technique is used. This method is usually used in fluid dy-
namics experiments. Since pixels motion can be compared to fluids motion, the presented
technique also indicates a good performance in processing noisy images. The efficiency
and performance of the proposed algorithm are verified by several numerical experiments.
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1. Introduction

The image processing is a discipline that allows analyzing, improvement, extraction or summarizing
of information obtained from an image through the application of some algorithms. It has become an
extensive field that has gone through significant development since its beginning. One can define the
digital image processing as using the techniques that allow modification of a digital image, with the aim
to improve or extract relevant information. The different techniques of image processing have become
the most effective and rapidly used methods in wide range of areas, including artistic effects, medical
visualization, industrial inspection, computer vision, etc. One of the most important fields in image
processing is image restoration. This process aims at correction of degraded images and reconstruction
of uncorrupted images from noisy or blurred ones.

The degradation of an image can be caused by different phenomena (measurement noise, camera
shake, etc). The technique of image restoration consists in working on a degraded image to obtain a
result similar to the original one.

Image restoration was one of the first techniques that attracted the attention of the research com-
munity. It seeks for correction of the distortions that occur during the emergence of a number of
degradations. Among many different types of image degradations, two main types are encountered:
spatial degradation or blurring, which is a form of reduction of bandwidth of an ideal image caused
by imperfect image formation process, and point degradation or noise, which refers to the types of
degradations where only the gray levels at the individual points are affected without introducing any
blur.

In the recent decades, many research topics have been focussed on the study of partial equations
and systems. The study of partial differential equations and systems had its origin in the eighteenth
century by Laplace (gravitational potential fields) in 1780, and Fourier (analytic theory of heat) in
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1822 as a central tool, and it is inspired by concrete models of mechanics. Later, the study of PDEs
was also spurred by other physical or chemical problems (problems of diffusion theory, electrostatic,
electricity or magnetism), biological (transport mechanisms in living cells) [1] and ecological problems,
engineering problems and applied disciplines. Furthermore, the partial differential equations appeared
as a natural tool to smooth images, and several applications in the field of image processing had been
found, namely unconventional methods of processing [2].

PDE-based methods are considered as one of the most well founded mathematical techniques in
image processing, especially in image restoration, contour detection and image denoising.

In the early 1990s, Perona and Malik proposed an unconventional noise filtering algorithm, based
on differential equations modeling an anisotropic diffusion process [3]. Over the last 20 years, this
algorithm has served as a reference since it has been widely used to perform medical image analysis, as
well as astronomical image restoration. The major challenge in image restoration is to design methods,
allowing the selective filtering of noise without affecting the interesting features of the original image.
Perona and Malik proposed a diffusion penalty when the signal gradient is large.

They claimed to modify the diffusion equation to obtain the anisotropic diffusion, replacing the
linear diffusion by a nonlinear one. The proposed approach consists in smoothing the homogeneous
regions while preserving the edges. The general form of the used equation is the following

U .
2 = div(g(|Tul V),

where they proposed two different forms of function g with a diffusion threshold k, given by

Vul? 1
o) ad () -

_
k2 iz

The scale-spaces generated by these functions are different, the first privileges high-contrast edges over
low-contrast ones, while the second privileges wide regions over smaller ones [3].

Later on, Alvarez et al. [4] had proposed a stable algorithm for image restoration based on “the
mean curvature motion” equation. The proposed model is given by the following nonlinear parabolic

g1(|Vul) = exp (—

equation

% = ¢(|G * Du|)|Du| div <|II§—Z|> ;o u(0,2,y) = ug(x,y). (1)
We denote by ug(x,y), the grey level of the image to be processed, u(t, z,y) is its smoothed version, G
is a smoothing kernel (for instance, a gaussian kernel) and g(s) is a nonincreasing function that tends
to zero when s tends to infinity. Alvarez et al. proved existence and uniqueness of the viscosity solution
of the associated parabolic equations, and they showed the numerical scheme and some experimental
results.

The new version of Perona and Malik model theory for the edge detection and image restoration,
was proposed by Catté et al. in 1992 [5]. They proposed a regularization of image gradient in order to
obtain a well-posed model, the considered model was given by the following nonlinear equation

0
a—? — div(g(|[VGy *u)Vu) =0 in (0,T) x Q,
g—z —0 in (0,T) x 69, (2)
u(0,z) = up(x) in Q.
Where the initial data ug belongs to L?(f2), g is a nonnegative decreasing function defined by
1
) = ——=
o) = . Q)

such that
g(0)=1, lim g(t)=0 and t— g(v/t) issmooth

t——+o0
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and |VG, * u| is given by

2 2
VG, xu| = ; <aﬁij *U) ,
where G,(x) = Co™z exp (_4—2372) and 7 is a linear and continuous extension of u to R?. Catté et al. [5]
proved existence, uniqueness and regularity of solutions is C'([0,77],L?(2)) N L?(0,T; H*(R)). Also,
they described briefly the proposed numerical method, where they found that experimental results on
pictures were not different from those obtained by the Perona and Malik.

In 2009, Morfu [6] showed that nonlinear diffusion processes are ruled by the Fisher equation.
This equation describes the transport mechanism in living cells, and it allows performing contrast
enhancement [7], noise filtering, though involves a blurry image [8,9].

In 2014 [10], a new processing algorithm based on anisotropic diffusion and nonlinear process was
suggested to remove the noise and enhance the image. The main idea of this method was to modify the
model of S. Morfu [8]. During the calculation of the anisotropic diffusion coefficient, a Gaussian filter
on the image gradient was applied, and the threshold parameter of gradient according to the gradient
of the image at each iteration, was chosen. The proposed model is given by:

auget, x) = div(g(|Gy * Vu|,\)Vu(t,x)) + f(u), (t,z)€ (0,T) x Q,
g—Z =9 (t,z) € (0,T) x 69, (4)
u(0, ) = up(z), x € Q,

where the nonlinearity f(u) is commonly chosen cubic (Nagumo et al., 1962; Fitzhugh, 1961). It is
defined by the following sense
f(u) = Bu(u —a)(1 —u).

One of the significant broadly utilized numerical approaches to solve finite PDE’s in image processing,
is the finite difference method (FDM) using an explicit scheme (this is due to the structure of digital
images, which are formed by a set of uniformly distributed pixels). This explicit scheme needs a
small-time step to be stable, and thus a large number of iterations is necessary. The treatment of
complex boundary conditions also presents significant difficulties in the use of FDM. Some adaptive
and semi-implicit operator splitting schemes were used, but parallelization of these methods is difficult.
Consequently, such traditional numerical methods lack efficiency and may also provoke an obvious
boundary effect.

For this purpose, we propose a new approach to image restoration and contrast enhancement, based
on the Lattice Boltzmann method (LBM).

Lattice Boltzmann method is a numerical method relatively new, compared to classical approaches
used in numerical simulation. It is derived from the kinetic theory of gases, established by Boltzmann
and which was first proposed in 1973 by Hardy et al. [11].

The Lattice Boltzmann method is widely used in the fields of fluid dynamics [12-15]. The LBM
can be regarded as the discrete format of the continuous Boltzmann equation. In other words, LBM
is a mesoscopic approach that simulates a macroscopic phenomenon governed by partial differential
equation problems [16,17]). It is characterized by its simple calculation procedure, simple and efficient
implementation of the computer code, high accuracy (It allows to model physical phenomena on a small
scale with high accuracy). Implicit computation of curvatures, simple implementation of boundary
conditions as well as its direct discretization and computational capacity [18].

Generally, the LBM compared to the other classical numerical methods, only includes two simple
phases: the first one is collision and the second one is streaming, where particles move on the lattice
according to the directional velocities.

In the framework of image analysis, myriads of works in image processing were achieved by adapting
the Lattice Boltzmann method. It is implemented to perform image segmentation, image dithering,
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image boundary detection and denoising operation. In 1999, Jawerth et al. [19] were the first to adopt
the LBM to solve the Perona and Malik equation. It was noticed that the LBM was feasible and
efficient in the study of image processing. After that, a new LBM-based active contour and level set
(LS) methods had been developed and implemented for the study of image segmentation and edge
detection [20,21|. Thereafter, Chang and Yang [22] presented a Lattice Boltzmann model for image
denoising. They found that the computational speed of LBM was much faster than that of the iterative
fixed point method.

Finally in [23], a new Lattice Boltzmann model for the Ambrosio and Tortorelli model [24], was
proposed for the study of image filtering and contour detection.

The main objective of this paper is to compare the difference in filtering effect between two models
D2Q5 (two dimensions and five discrete velocity directions), and D2Q9 (two dimensions and nine
discrete velocity directions) of the proposed system. The filtering effect difference is evaluated through
testing a set of images, featuring different degrees of contrast, edge detail, texture, etc.

By taking into account the effect of the noise type on the results, three types of noise are added
to each image which are pepper and salt noise, Gaussian noise and speckle noise, respectively. The
high level of performance of the D2Q9 model is proved by comparing and utilizing many criteria,
including the calculated error on the restored image at each time step iteration, the line profile, and
the EME/PSNR values of each result.

In this paper, a new Lattice Boltzmann method for the Gray—Scott based model applied in image
restoration and contrast enhancement, is introduced in section 2. Numerical experiments are shown
in section 3. In section 4, the obtained results and the discussions are presented and finally, a brief
conclusion is given in section 5.

2. Lattice—Boltzmann method for reaction-diffusion system

Note that since 1990, the Perona—Malik algorithm has been extensively used for medical image analysis
and restoration of astronomical images. Numerous systems have been proposed including the following
reaction-diffusion system:

% = DyAu + F(u,v),
9 ()
5 = D,Av + G(u,v),

where A represents the Laplacian, u and v are the concentrations of activator and inhibitor, while D,,
and D, are the diffusion coefficients. The functions F' and G describe the rate of production of the
activator and initiator.

In the case where F(u,v) = pu(u—a)(1—u)—v and G(u,v) = u—bv, the system corresponds to the
model of Fitzhugh—Nagumo reaction diffusion equations, which is utilized to detect edges for binary
images [25]. Further types of reaction functions F' and G can be considered, i.e. the Brusselator model
to perform texture synthesis [26,27], as well as the Oregonator model of the Belousov—Zhabotinsky
reaction to perform mathematical morphology operations [2].

In this work, we are interested in the derivation of the following nonlinear reaction-diffusion system
from the Lattice Boltzmann equation:

)
O div(a(|Vul N0)Vu) = F(u,) in (0.7) x 0,
% — dyAv = G(u,v) in (0,7) x Q, (6)
ou Ov .
a_n_%_() in (0,7 x 09,
u(0) = up, v(0) =y in Q.
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The diffusivity « is a decreasing and nonnegative function that satisfies

a(0,A(t)) =1 and 2151_1 a(s,\(t)) =0, (7)
where |Vu| = 212:1 (g—;‘i)z is the euclidian norm of gradient of u. The conditions on « are interpreted

as follows: in low gradient areas, the Perona—Malik model behaves like a heat equation, while in high
gradient areas, diffusion is stopped and edge preservation is guaranteed. In 1998, Black et al. [28]
suggested the following function:
1
a(s,A(t) = ——.
Lt 2w
The parameter A(t) was chosen as a function depending on time:

14826
V2

MAD denotes the median absolute deviation which can be calculated as:

A(t)

MAD(|Vu(t))),

MAD(|Vu(t)]) = median (|Vu(t) — median(|Vu(t)])|)

where median(|Vu(t)|) represents the median value over the image u of gradient norm. According to
Gray—Scott model, the nonlinearity functions F' and G are defined as follows:

F(u,v) = —uv? + A(1 — u),
G(u,v) = uv? — B,

where A and B are constants.

The Lattice Boltzmann method (LBM), as a numerical approach developed from the fluid kinetic
theory or the lattice gas, is one of the methods used in image processing. It is considered good enough
to solve complex boundaries and it can reduce all statistical noise in the resulting image.

In lattice gases, particles reside on nodes of a discrete lattice and move to their nearest neighbors
along links, while in image processing, the particles can be viewed as pixels. In Lattice Boltzmann
simulation, pixels move from one lattice node to another. During propagation, pixels may collide with
their neighbors (pixels) to reach a different value.

The evolution equations’ of density distribution function in Lattice boltzmann method with BGK
(Bhatnagar—Gross—Krook) approximation [12], can be expressed as:
forall 0 <7<

filw+ cidty, ¢+ dty) — fi(a,t) = ;—;(fx:c, t) = £ (1) + dh i P, (8)

gi(x + cidta, t + dta) — gi(x,t) = T—l(gi(x, t) — ggeq) (z,1)) + dt2zG. 9)
g

Where f; and g; are the density distribution functions of particles along the it direction. f;(x,t) and

gi(x,t) are the distribution functions of particles with discrete velocity ¢; at position z and time ¢. dt;

and dty are the streaming time step, 7y and 7, are the single relaxation parameters in the BGK model,

and the quantities f;(z,t) and g;(x,t) are the density distribution functions of particles at position x

and time ¢ along the " direction.

The weight coefficients w; and Zz; satisfy the following constraints,

l l
w; = Z z; = 1.
Where [ is set to be 8 for D2Q9 model and 4 for D2Q5.
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(eq)

The equilibrium density distribution functions fi(eq) and g; ' along the ith direction, are expressed

as:

1 (@, 1) = aqu(a, 1),
(eq) (10)
g; = (x,t) = av(z,t).

For D2@Q)5 Model, the discrete velocity directions are given by:
(0,0), i =0,

; = — 1 p— 1

< cos (i )T,sin @ ) c, 1=1,2,3,4,
2 2

Az

where ¢ = X7 and Az is the lattice spacing.
The weight «; is defined by:

1
o = = for i=0,1,2,3,4.

The discrete velocity directions for the D2Q9 model are defined as follows:

(070)7 i =0,
cos - 1)7T,sin (i=Dm , 1=1,2,3,4,
¢ = 2 2
, — 5 , — D
COS<(Z 2)7T+%>,sin<(Z 2)W+%>>\/§c, 1=5,6,7,8,
and the weight «; is given by
4
§7 ZZOv
1
o = 9’ 1=1,2,3,4,
1
—, 1=29,6,7,8.
367 1 ) ) )

Note that Zé:o a; =1, and
! !
Z fl = Z fi(eq)7
i:l(] i?(]
Z 9i = Z gi(eq)
=0 =0

The macroscopic quantities u and v satisfy the following properties

l l
u(z,t) = Zfi = Zfi(OQ)a
i=0 i=0

(11)

; ; (12)
’U(I’,t) = Zgz — Zgi(eq)’
=0 =0
and
l l
Z Cifi(eq) = 07 Z cicifi(eQ) = cguI,
=0 (13)

i:l(] ;
Z Cigz(CQ) = 07 Z Cicigz‘(eq) = Cg’UI,
=0 =0

where ¢ designates the speed of soun2d which depe2nds on the chosen lattice. For D2Q9 and D2@Q5
model, the square of ¢, satisfies ¢2 = % and e = 2%, respectively.
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In order to recover the equations of system

(6), two essential steps are used. First, we use the

Taylor expansion in time and space to (8), we obtain the following system

dt 1 e
Dif; + = D2f; = (fi( v fi) + wiF,
2 Trdty (14)
dto 1 (eq) _
Digi + —-D?g; = Y —gi G,
9+ 5 Dl = o (0 — i) + 2
where D; = 9y +¢; - V.
The second step is based on the so-called Chapman—FEnskog procedure
fi — fi(COI) + 5fi(1) + €2fi(2)’
eq H, 2.(2
1 — Y; +e i +e i
g g g g (15)

E?t = a@tl + 528t2,

V=cV,, F=£2F® G=2G3,

Where ¢ is a small expansion parameter, t; = é and to = E% are two macroscopic time scales and V;
is the gradient operator in the macroscopic length scale z1 = Z.

Note that the system equations (6) are recovered following the same steps. First, we reconstruct
the first equation. To do this, we sum the first formula in (15) over i and we use the first equality

in (10) to get
R

®—_0 (k>

1). (16)

l
=0

By substituting (15) into (14), and then treating the terms in order of £ and &2 separately, one obtain

(cq) Lo
DyflV = = ) 1
t . —1
d21D%ifi( Ve — 1P 4 F®,

Dy
Dk Trdiy

8t2 f'(OQ)

7

(18)

where Dy; =0y, + ¢ - V7.
By applying (17) to the left side of (18) and combining the terms including fi(l) on the left side,
one can rewrite the equation (18) as follows

(eq) R S U CO It S ) B
Onfi 7+ <1 27'f> Dyif; = dh 17+ w F. (19)
Now, we sum the equation (19) over i and we use (16), we obtain
l
1 1
Ot <1 "o, > S0 + VD = FO, (20)

i=0
The term 0y, u is equal to 0. Indeed, if we sum the equation (17) over i, we get

l
Z Dy fY = 0.
i=0
Using the definition of Dy;, it follows that
l
O, u + Z cini(CQ) =0,

i=0
and then we obtain the desired result. Next, by multiplying (17) by ¢; and summing over i, one can
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write
l

!
Z afit = —Tydty Z Dy fY.

1=0 =0
Since
l l l
=0 =0 1=0
Using formula (13) and the fact that 0y, u = 0, we obtain

l
Z c,-Dh-fi(eq) = c2Vqu.
i=0

Consequently,

l
Z Cifi(l) = —detlcgvlu. (21)
=0

Then substituting (21) into (20), we have

8t2u — Vl <dt1 Cg <Tf - %) V1u> = F(z) (22)

Therefore, multiplying (22) by &2, it follows that

ou —V (dtl c? <Tf — %) w) =F. (23)
Similarly, we obtain
1
Ov—V <dt2 ¢ <7'g — 5) Vv) =G, (24)

where the coefficient d is expressed in term of the relaxation time 7 by the following sense

The function o and the diffusion coefficient d, and the single relaxation parameters 7y and 74, are
related as follows

1
o = dtl C? <Tf - 5) (25)
and )
dy, = dty 2 (Tg — 5) . (26)
The coupled reaction-diffusion equations (6) are recovered by combining (23)—(24):
0
8—7: —div(aVu) = F(u,v),
ov
5 dyAv = G(u,v), (27)
u(0) = up, v(0) = vy,
ou_ov_
on  On
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3. Numerical experiments

In this section, we derive an efficient numerical approach to image restoration and contrast enhance-
ment. The main idea is to solve (27) using the Lattice Boltzmann model, where the overall procedure
of the proposed method is shown in Algorithm 1. Prior to the computation, it is necessary to calculate
the parameter A, and the relaxation time 7¢ which is related to o(|Vul).

To calculate Vu in the internal region of the image for D2@5 and D2Q9 models, the following

formula is used:
l

Vu(z) = ﬂﬁ > eu(x + cdt), (28)
=0

where Ax =1 and S is fixed at 6.0 and 2.0 for D2Q9 and D2@5 models, respectively. [ is set to be 8
for D2Q9 model and 4 for D2@Q5 and the vector e; = %.
Hence, the variable 7¢ is computed from equation (25) as:

(29)

where v is a constant which is set to be 2.5 and 3.0, respectively, for D2@Q5 and D2Q9 models.

It is well known that the stability of the Lattice Boltzmann method, requires the following condition:
Ty > %

Furthermore, the parameter A(t) is calculated at each iteration by

() = 1.i1/8§26

This parameter will be used in order to determine the stopping time of our algorithm, and also to
estimate the noise level in the image.

MAD(|Vu(t))). (30)

Algorithm 1 The LBM algorithm for the proposed reaction-diffusion system.

Initialization: wug, v, fi(o), 92(0)7 X0 d,, fi(eq), gi(eq), w, Z, dt1, dts, F, G.
While ||AF+D) — \(®)|

> ¢ do

1. For k=1,2,3,..., do

2. Compute Vu*) by the equation (21).

3. Calculate A\¥)| o, 7 via Eq. (25), (29) and (30).
4. Collision:

1 e -
1@t = 1Pt = = (1P @0 = 1 @) + dva PO,

7y

1 eq)®) _
o (@.t) = 9. t) = = (6@, 0) — 6"V @.0)) + dtaz G,
g

5. Streaming:

fz’(k+1)($ + cidty, t + dty) = fz'(k) (z,1),

gz(kﬂ)(w + cidta, t+ dty) = g\ (2,1).

6. Compute: u®) = > fi(k) and v* = > ggk).
7. End for: when the convergent rule is met.
End while.
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4. Results and discussions

In this section, some original images are selected (see Figure 1), and different types of noise are added
to them using Mathlab: a Gaussian noise with an average value of 0 and a variance of 0.01, salt and
pepper noise with an intensity of 0.05, or speckle noise with an average value of 0 and a variance of
0.04.

The comparison of image restoration of both D2Q5 and D2Q9 models, is ensured using several
criteria, namely the error evaluated on the restored image at each time step iteration, the line profile,
and the EME image enhancement which measures the image contrast by calculating the quantity

k1 ko
EME = >3 20l0g,, Vi L
k1k2l 1 k=1 mlnkl
where the image u(N, M) is divided into kikg blocks wy (7, 7) of sizes lils. Uppo g 20d Uy are

respectively maximum and minimum values of the image w(N, M) inside the block wy ;. A hlgher value
of EME indicates that the image is enhanced very well.

In addition, an objective criterion is used to give an idea about the quality of the filtered image.
In general, the PSNR is used in the image restoration to validate the filtering model. This criterion is
adapted as follows

1 M N
MSE = = gg —Uo(3,5)]7,

2552
PSNR = 10 loglo M—S]E,

where U is the restored image with enhancement and Uy is the original image.
In the following numerical experiments, different images to which different types of noise were

added, are processed using the D2Q9 and D2@Q5 models.

Fig. 1. Different original images.

The restoration results using D2Q5 and D2Q9 models are illustrated in Figures 2—4, 6, 10-13 as
well as the comparison in Figures 5, 9 and Table 1.

It is well known that salt-and-pepper noise is generally more difficult to remove than Gaussian and
speckle noise. Note that the processed versions of the images corrupted by this type of noise, which
were obtained by the proposed models, contain no noise points and are well enhanced.

From the result above, the restored image obtained by the D2@Q9 model is more enhanced, and
better recovered than the one processed by the D2@Q5 model, since it removes noise without removing
image structures such as textures and edges.

In order to see the difference between the two models more accurately, we show the evolution of
the error calculated for the restored images, at each time step iteration, obtained by these two latter.

We remark that the error corresponding to the restored image using D2@9 model, decreases more
quickly with time iteration than the other calculated by D2@Q5 model. Thus, a part of the noise is still
preserved on the image processed by the D2Q5 model.

If we look at the restored image corresponding to the D2@Q5 model, the presence of noise and blur
effects is noticeable. These effects are not seen in the restored image of the D2Q9 model. In order

Mathematical Modeling and Computing, Vol.9, No.2, pp. 187-202 (2022)



A new Lattice Boltzmann method for a Gray—Scott based model applied to image restoration ... 197

S p - S A L
Fig. 2. Left: Noisy image by a gaussian noise, restored image obtained by the proposed model:
Middle: D2@Q5 model. Right: D2Q9 model.

Fig. 3. Left: Noisy image by speckle noise, restored image obtained by the proposed model:
Middle: D2@Q5 model. Right: D2Q9 model.

Fig. 4. Left: Noisy image by salt and pepper noise, restored image obtained by the proposed model:
Middle: D2@Q5 model. Right: D2Q9 model.

to see the performance of the D2Q9 model, we represent a line profile for the original and restored
images. More specifically, the red curve corresponds to the original image, while the restored image
obtained using the D2Q9 model, is represented by the blue curve.

The line profile of the restored image follows simultaneously the original profile, which means that
the D2Q)9 model restores, and enhances the image contrast very well without eliminating the image
information.

In order to evaluate the image quality, in the following table we present EME and PSNR values of
each restored image using D2@Q5 and D2Q9 models.

The value of these statistical measures increases when the restored image approaches to the original
one. This result explains why the D2@Q9 model consistently has a high value of EME and PSNR
compared to the values obtained by the D2@Q5 model. Based on this result, we can say that the images
processed by D2Q9 model are as clear as those restored by D2@Q5 model.
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Fig.5. Error graph calculated for restored Saturn image by the proposed model;

X axis: time step dt, Y axis: [[A\"T1 — A7
Fig. 6. Left: Noisy image using Gaussian noise, restored image obtained by the proposed model:
Middle: D2@Q5 model. Right: D2Q9 model.

Fig. 7. Left: Noisy image by salt and pepper noise, restored image obtained by the proposed model.
Middle: D2@Q5 model. Right: D2Q9 model.

Fig. 8. Left: Noisy image by speckle noise, Restored image obtained by the proposed model:
Middle: D2@Q5 model. Right: D2Q9 model.
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Fig.9. Line profile number 250. Red: Original image. Blue: restored image by using the D2Q9 model.
X and Y axis represents respectively X and Y coordinates of pixel value of Line 250.

Fig.10. Left: Noisy image by a Gaussian noise, restored image obtained by the proposed model.
Middle: D2@Q5 model. Right: D2Q9 model.

Fig.11. Left: Noisy image by salt and pepper noise, restored image obtained by the proposed model.
Middle: D2@Q5 model. Right: D2Q9 model.

Fig. 12. Left: Noisy image by speckle noise, restored image obtained by the proposed model.
Middle: D2@Q5 model. Right: D2Q9 model.
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Fig.13. Left: Noisy image by salt and pepper noise, restored image obtained by the proposed model.
Middle: D2@Q5 model. Right: D2Q9 model.

Table 1. EME and PSNR values of both restored image by D2Q5 and D2Q9 models.

Type of models

Images EME and PSNR values D205 Model D2Q9 Model

Example 1 EME 0.82 7.39
PSNR 75.27 76.82
Example 2 EME 10.82 12.20
PSNR 71.70 72.12
Example 3 EME 11.09 12.64
PSNR 72.62 73.67

5. Conclusion

In the present work, the Lattice Boltzmann method is applied to solve a new reaction-diffusion system.
This system is adapted to image filtering and contrast enhancement. The D2@Q5 and D2Q9 models
are used to restore several images with three different types of noise. From the above evaluation, it
has been proved that D2Q9 model gives satisfactory results in image restoration and enhancement
compared to D2@Q5 model, which is less effective in processing of the corrupted images. Note that
the high performance of the D2@Q9 model will be very useful to process a large amount of image data.
Furthermore, the Lattice Boltzmann method is efficient for recovering an image to which different
types of noise have been added.
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HoBuii metoa rpatkoBux pIBHﬂHb Bonbumana gns 6asosoi mogeni
'pes—CkoTTa, 3acTtocoBaHuii ANns BigHOBJIEHHS1 300pa>keHb Ta
NOKPALLEHHS1 TXHbOIFO KOHTPAcCTy

Ama X1, Ana H. E.Y, Akens .2, Jledpaiix X.3

L Tabopamopia LAMAI gaxysvmem nayku i mexnoroeitit Ynieepcumemy Kadi Atiada,
40000 Mappaxew, Maporxo
2 Jlabopamopisa womn romepis, mepesic, mobiavrocmi ma modeosarns (IR2M),
paxysvmem nayx © mexnixu Ilepwozo ynisepcumemy Xacana 6 Cemmami,
B.P. 577, Cemmam 26000, Mapoxxo
3 Jla6opamopisa MISI, daxysvmem nayk i merrirxu,
Hepwuti ynisepcumem Xacana 6 Cemmami,

B.P. 577, Cemmam 26000, Mapoxxo

Mera miel poboTum — 3ampoNOHYBATH HOBHUI UMCENbHUN MiAXiT 0 BiIHOBJIEHHS 300pa-
JKEHHsl Ta [OKDAIIeHHs HOro KOHTPACTY Ha OCHOBI peakuiitHo-iudysiiinol momesi (Mo-
nesb I'pes—Ckotrra). st BujaseHns 1yMiB BUKOPUCTOBYETHCSI METO/IMKA I'DATKOBUX PiB-
HsHb BosibiiMana. 3a3Buvail BOHA BUKOPUCTOBYETHCS B €KCIIEPUMEHTAX 3 TiIPOIMHAMIKMA.
OCKUIBKH PyX MKCEIIB MOXKHA MTOPIBHITH 3 PYXOM DiJIMHM, IPEJICTAB/ICHA METOINKA JIe-
MOHCTPY€ XOPOIITy MPOAYKTUBHICTH Ipu 00poOITl 3amryMiieHnx 300pakenb. KdekTuBHicTb
Ta IPOJAYKTUBHICTH 3aIIPOIIOHOBAHOI'O AJITOPUTMY IIEPEBIPEHO HA KIJIBKOX YUCEIHHUX €KC-
[IEPUMEHTAX.

Knw4osi cnosa: sidnosaerts 300pasicenms, Memod 2pamrosur pishans Boavumana,
modeav I'pes—Crxomma, peaxuia—dugysia, noxpawernns konmpacmy, crema D2Q9, cxema

D2Q5.

Mathematical Modeling and Computing, Vol.9, No.2, pp. 187-202 (2022)



