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Building-up of plaque narrows arteries, decreasing blood flow to the heart, causing chest
pain, shortness of breath, or other coronary artery disease signs and symptoms. Imple-
menting Navier–Stokes equations in a cylindrical coordinate system and assuming axial
symmetry under laminar flow conditions, the study has been conducted on the two as-
pects of blood flow dynamics viz., velocity profile and volumetric flow rate of blood around
curved stenosis with a variation of curvature of the artery and the stenosis thickness. The
blood flow behavior taking different values for the viscosity coefficient has been also stud-
ied.
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1. Introduction

Stenosis in an artery generally occurs due to the accumulation of cholesterol-laden plaque in its walls
resulting in a narrowing of the passage of blood as well as a loss of elasticity that leads to stroke
and heart attack. In the regions where the blood flow is disturbed and at low wall shear stress,
narrowing of the lumen may occur. Enhanced flow disturbances are established once plaque develops
and encroaches the lumen [1]. One of the major causes of human deaths worldwide is the cardiovascular
disease: ischemia, atherosclerosis, and angina pectoris. Stroke is the second most common cause of
death that follows heart disease. The major cause of stroke is the blockage of blood vessels or plaque
rupture [2, 3].

Some researchers studied the blood flow characteristics considering it as a Newtonian fluid flowing
at a high shear rate through an artery of large diameter with mild stenosis [2, 4–6]. Padmanabhan
and Jayaraman [7] obtained an analytical solution to a mathematically modeled problem of blood flow
in a curved stenosed artery by using system of toroidal coordinate and perturbation theory. They
discussed the impedance and shear stress in the wall and observed in a uniform curved tube the point
of maximum shear changes over from the inner bend to the outer bend. Moreover, stenotic surface
provides an additional curvature and the point of maximum shear varies with the cross section. The
effect of stenosis was such that most of the flow characteristics depend on the axial distance and the
secondary streamlines at every cross section become different. Chakravarty [8] observed that blood
as a suspension behaves like a non-Newtonian fluid at low shear rates in relatively smaller arteries.
Although stenotic deposits are in irregular shapes, cosine-type or smooth regular shapes are generally
found to be considered in three-dimensional modeling of blood flow in arteries.

Dash et al. [9] derived an approximate analytic solution to the problem of blood flow through a
small curvature catheterized artery in mild stenosis with a double series perturbation analysis. They
observed the effect of stenosis on the flow to be dominant over that of the curvature. When a catheter
was inserted into an artery, it brought a considerable change in the flow pattern. Due to the catheter,
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the secondary streamlines divided each half of the cross-sectional plane into two parts forming two
loops. They also observed that, in the presence of curvature and stenosis, and depending on the value
of catheter size ranging from 0.1 mm to 0.4 mm, the pressure drop increased by a factor ranging from
1.6 to 5.16 for the Reynolds number, Re = 50 and from 1.56 to 5.03 for Re = 10 for some appropriately
chosen parameters. Schilt et al. [10] performed some experiments to reveal the effect of time varying
curvature on flow velocity profile in a curved tube model of coronary arteries. They devised an in vitro
flow model consisted of a flexible curved tube through which fluid flow under steady imposed pressure
gradient. The dynamic curvature was given by the varying radius of curvature of the tube using stepper
motor and carriage. In their experiments, the skewing of the axial velocity profile depended on the
instantaneous dynamic vessel movement. The greater skewing occured when carriage moved obliquely
to the main direction of flow than when the carriage moved perpendicularly. Depending upon the
actual movement of the tube, the velocity profile along the axis was found to be more or less skewed
toward the outer wall.

Nosovitsky et al. [11] used computational fluid dynamic techniques to determine the distribution
of velocity and wall shear stress (WSS) in both steady and phasic-flow models of a curved coronary
artery with different degrees of stenosis. They observed, without stenosis and with 25% stenosis,
that WSS and velocity became higher at the outer wall than at the inner wall. For higher degree of
stenosis, laminar flow separation occurred, and inner wall exposed to shear stress that both spatially
and temporally varied in a great deal. Santamarina et al. [12] studied the flow of blood through curved
tube with time variant radius of curvature. They observed that the overall behavior of flow entering a
curved tube with dynamically varying curvature was not much different from that of a static curved
tube. The velocity profile were skewed towards the inner wall of curvature, although two tube diameters
of the velocity profile were skewed toward the outer wall and a secondary velocity was established.

Yao et al. [13] developed a computational model of three-dimensional blood flow in curved arteries
with elliptic stenosis. The study also demonstrated the significant appearance of secondary flow.
Furthermore, the secondary flow in a curved artery was found to bring about elevated shear stress on
the vessel wall. Moreover, high WSS, high velocity skewing and secondary flow for stenosis occurred
at a curved section. So, even a mild stenosis that occurs at high curved section can produce worse
effects than a more acute stenosis that occurred on a straight artery. Liu [14] studied the influence
of stenosis on the pulsatile blood flow pattern in curved arteries with stenosis at inner wall using
computer simulations. The results demonstrated that when the severity of a stenosis at the inner wall
of a curved artery reached a certain level, the flow pattern in the downstream of the artery showed
a dramatic change as compared to that of a curved artery with no stenosis. The work reported an
analysis of a flow separation area at the inner wall of the post stenosis region in curved arteries with a
stenosis. They also found that the secondary flow becomes stronger and the pattern varies irregularly
in the downstream curved stenotic arteries due to the presence of a stenosis. The distribution of the
velocity fields in the curvature plane and the negative axial velocity revealed the separation of the flow
at the inner wall of the post-stenosis region and at the outer wall in the middle of downstream.

Mathematical methods and modeling techniques find their ample applications in different branches
of science, such as geophysics [15–18], environment [19], physics [20,21], electronics [22], in particular,
in mathematical biology, especially in the study of epidemiology and body fluid [2,5,6,23–25]. In this
contribution, we study the blood flow dynamics by analyzing the velocity and volumetric flow rate
of blood through a curved artery with mild stenosis incorporating the curvature as proposed in. In
physics and engineering, and in particular, in fluid dynamics, the volumetric flow rate (also known as
volume flow rate, rate of fluid flow, or volume velocity) is the volume of fluid which passes per unit
time; usually it is represented by the symbol Q. The SI unit is cubic meter per second (m3 s−1) [5].
λκ is dynamic curvature and µ is the coefficient of viscosity. Units of λκ and µ are mm−1 s and
grammm−1 s−1 respectively.
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2. Methods

When there is no stenosis or there is a pair of axi-symmetric stenosis, the motion is assumed to be
symmetrical about the axis of z in a cylindrical polar coordinates (r, θ, z). Let the three velocity
components and pressure of the blood at the point (x, y, z) with Cartesian spatial coordinates at
time t in a cylindrical artery be u(x, y, z, t), v(x, y, z, t), w(x, y, z, t) and p(x, y, z, t) respectively. The
continuity equation in differential form assuming constant density and steady-state flow is [4]:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (1)

The continuity equation in cylindrical coordinate system is in the form [5]:
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where vr is the radial velocity, vz is the velocity along z-direction; the equation assumes that the
angular velocity vθ = 0. The Navier–Stokes (N-S) equations of motion in cylindrical coordinate system
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Fig. 1. Sketch of a section of a cylindrical artery
with stenosis.

Due to axi-symmetric flow, vθ = 0, and vr, vz

and p are also independent of θ. The viscosity µ
and density ρ of the blood are both assumed to be
constants. Considering steady flow, the velocity
component parallel to the axis, vr = 0. So, we
consider vz = v. Now, the equations (2)–(4) give

−P (z)
r

µ
=

∂

∂r

(
r
∂v

∂r

)
, (5)

where P (z) = −∂p
∂z . With the boundary condition

as

v = 0 at r = R(z), for − z0 6 z 6 z0,

v = 0 at r = R0, for |z| > z0, (6)

and the shape function R(z) for the radial structure of the surface of cylindrical pipe as shown in Fig. 1
is given by the cosine function [5]:

R

R0
= 1− δ

2R0

(
1 + cos

πz

z0

)
. (7)

Integrating (5) with respect to r taking z as constant, and employing the boundary condition (6), we
get

v =
P

4µ
(R2 − r2). (8)

This shows that the velocity is maximum along the axis and zero at the surface of the artery. As v is
a function of r and z, the volumetric flow rate through the cylindrical tube can be found as [18]:

Q =
πP (z)

8µ
R4(z).

Since Q is independent of z, this equation gives P (z) as a function of z. This shows that pressure
gradient varies inversely as the fourth power of the surface distance of the stenosis from the axis of the
artery, and thus pressure gradient is minimum at the middle and maximum at the ends of the stenosis.
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2.1. Velocity of blood flow in curvature model

R0

R

δ
−z0 z

Fig. 2. Sketch of a section of a curved cylindrical
artery with stenosis.

In Pokhrel et al. [6], the proposed curvature model
is:

−P (z) =
µ

r

∂

∂r

(
r
∂v

∂r
+ λκ v2

)
, (9)

where λκ is the dynamic curvature of artery with
stenosis as in Fig. 2. So, the equation (9) can be
arranged as:
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Equation (10) is integrated with respect to r to
obtain
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where D(z) is the constant of integration with respect to r. Applying the boundary conditions as
∂v/∂r = 0, and v = PR2/4µ at r = 0 along z-axis in (11) yields
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Substituting this expression for D(z) in (11) and using v from (8), we get
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where E(z) is a constant of integration. Now the boundary condition v = 0 at r = R gives
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This is the expression for the velocity distribution function for blood flow in a curved artery.

2.2. Velocity at the surface and on the axis

At the surface of the artery, r = R. Then, from (13), the velocity on the surface is zero, i.e., v(R) = 0
as shown in Fig. 3. On contrary, for r = 0 (i.e., on the z-axis), (13) gives the maximum velocity:

v = vmax =
PR2

4µ
− 3λκP 2

64µ2
R4.
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Fig. 3. Velocity profile of blood in artery with mild stenosis of different radius for zero
curvature (λκ = 0 mm−1 s).

2.3. Volumetric flow rate in curved artery

The volumetric flow rate through the curved artery is:

Q =

∫ R(z)

0
2πrv dr =

πP

8µ
R4 − πλκP 2

8µ2
R6

6
. (14)

When there is no curvature (i.e., λκ = 0), then the expression for the volumetric flow rate becomes

Q =
πP

8µ
R4, (15)

which is reduced to that discussed in Pokhrel et al. [6].

3. Results and discussion

This section includes simulation results and discussion on velocity and volumetric flow rate of blood.

3.1. Velocity profile of blood flow through a stenotic artery without curvature

Velocity profile exhibits the magnitude of velocity and characteristics of the flow like direction. Figure
3 shows the velocity profiles of blood on coronary artery with different radii of stenosis in case there is
no curvature (i.e., λκ = 0). Pressure gradient is initially taken to be 20.15 mm of Hg [5]. Since pressure
gradient acting on a fluid body will accelerate the fluid, it is a dynamic force field while computing
velocity profiles and volumetric flow rates.

For different radius R of stenosis, the coefficient of viscosity is also different. As R decreases, µ de-
creases, and as R increases, µ increases [5]. µ takes the value of 0.19, 0.09, 0.03 and 0.009 gmmm−1 s−1

for R = 3, 2.5, 2 and 1.5 mm respectively. The velocity profile diagram shows that as the height δ of
stenosis increases (i.e., effective radius of artery R decreases), the blood flow velocity increases. In a
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stream-line flow of a liquid, according to equation of continuity, av is always constant, where a is the
area of cross-section and v is the velocity of the fluid flow. When blood flowing in larger cross section
enters into narrower cross section, the velocity of fluid increases. The values of R differ for Fig. 3
and are constant for Figs. 4–7, where ‘r’ is the radii variable in (13). Although δ is not used in our
computations directly, R and δ are complementary to each other. When δ increases, R decreases, and
vice versa. The maximum velocity is 1260 mm/s (126 cm/s) with R = 1.5 mm and the least velocity
is of 238 mm/s (23.8 cm/s) for R = 3 mm. It is evident that velocity is maximum along the axis and
zero on the wall. The model simply allows us to sketch velocity profile and volumetric flow rates at
different curvature of artery for designated stenotic radii.

3.2. Velocity profile on stenosis with curvature

Figure 4 depicts the velocity profiles for different curvature of artery with stenosis of 3 mm radii.
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Fig. 4. Velocity profile of blood flow in artery with mild stenosis with arterial radius
3 mm for different curvature.
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Since we are considering the artery on outer wall
of the heart (pulmonary artery), the curvature
becomes dynamic and changes with time. The
velocity profile shows that as the curvature λκ
of artery gradually increases, the blood flow ve-
locity also increases. The maximum velocity is
1250 mm/s (125 cm/s) in the largest curvature
of artery (λκ = 0.035 mm−1 s) and the least ve-
locity is 620 mm/s (62 cm/s) with the smallest
curvature (λκ = 0.02 mm−1 s). Velocity is again
maximum along the axis and zero on the wall.
The observation of velocity profiles on a 3 mm
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radius stenosis is for two cases: no-curvature (λκ = 0 mm−1 s) and different degrees of curvature
(λκ = 0.02, 0.025, 0.03, 0.035 mm−1 s) is evident in Fig. 5. Centripetal acceleration is inversely pro-
portional to the radius of curvature and directly proportional to the curvature. Higher the curvature,
more will be the centripetal acceleration, faster will be the fluid flow. So blood flow in case of zero
curvature (λκ = 0 mm−1 s) is least and of the highest curvature (λκ = 0.035 mm−1 s) is highest.

3.3. Volumetric rate of blood flow on stenosis without curvature
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Fig. 6. Volumetric flow rate coefficient of viscosity µ
for zero curvature (λκ = 0 mm−1 s).

Figure 6 illustrates that the volumetric flow rate
of blood in a normal artery (λκ = 0) with
mild stenosis for different values of coefficient
of viscosity µ. As R decreases, µ decreases,
and as R increases, µ increases [4]. For the
least value of µ = 0.035 grammm−1 s−1, the
flow rate is highest and for the maximal value of
µ = 0.33 grammm−1 s−1, the flow rate is least.
Less viscous the fluid becomes, more rapidly
it can flow. Mean flow rate is 9124 mm3/s
(≈9.124 ml/s). As more the stenosis widens, the
effect of µ is evident. Larger the values of µ, less
steeper the curves become. But for narrower
artery due to stenosis, the effects of µ tend to diminish and curves come closer and closer. When R
reduces to zero, the artery is absolutely blocked due to stenosis, and there is no flow at all.

3.4. Volumetric flow rate on stenosis with curvature

Figure 7 depicts the volumetric flow rate of blood in a curved artery with mild stenosis for dif-
ferent values of curvature λκ and fixed value of coefficient of viscosity µ = 0.06 grammm−1 s−1.
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Fig. 7. Volumetric flow rate for different λκ values in
curved artery (µ = 0.06 gram mm−1 s−1).

The velocity profile for curved artery shows that
more is the curvature, higher will be the veloc-
ity. For least value of λκ = 0.02 mm−1 s, the
flow rate is least and for greatest value of λκ =
0.035 mm−1 s, the flow rate is maximum. Mean
flow rate is 135182 mm3/s (≈ 135.182207 ml/s).
As more the stenosis widens, the effect of λκ is
evident. More is the value of λκ, more steeper
will be the curve. But for narrower steno-
sis, the effect of λκ diminishes and the curve
comes closer and closer. The artery is abso-
lutely blocked at R = 0 and there is no flow at
all. The observation of volumetric flow rates on
a 3 mm radius stenotic artery for two cases: no-curvature (λκ = 0 mm−1 s) and different degrees of
curvature (λκ = 0.02, 0.025, 0.03, 0.035 mm−1 s) are evident. The coefficient of viscosity is assumed to
be constant (µ = 0.06 grammm−1 s−1) in all cases. Centripetal acceleration is inversely proportional to
the radius of curvature and directly proportional to the curvature. Higher the curvature, more will be
the centripetal acceleration, faster the fluid flow and faster will be the flow discharge. Thus, volumetric
flow rate in case of zero curvature (λκ = 0 mm−1 s) is least and of peak curvature (λκ = 0.035 mm−1 s)
is maximum.
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4. Conclusions

We have presented the model for blood flow in a mildly stenosed artery with curvature. We have used
the boundary conditions to find the velocity distribution on the surface and along the direction of
the z-axis. We compared the velocity distribution on the cylindrical-shaped curved artery with and
without curvatures. We computed and analyzed the volumetric rate of blood flow on the curved artery
with mild stenosis with curvature. We also compared the results with and without curvature on an
artery. The present mathematical modeling of blood flow in a stenosed artery with the combined effect
of curvature and viscosity unveils the peculiar properties of blood flow dynamics. There is a significant
effect of curvature on the blood flow velocity and volumetric flow rate. It is observed that in the absence
of curvature and depending on the effective radii of the artery due to stenosis ranging from 1.5 mm to
3 mm, the flow velocity decreases from 1260 mm/s to 238 mm/s. With the fixed 3 mm radius of stenosis
and increasing factor of curvature from 0.02 mm−1 s to 0.035 mm−1 s, the flow velocity increases from
620 mm/s to 1250 mm/s. Meanwhile, for an artery with stenosis of 3 mm effective radius depending on
the factor of coefficient of viscosity µ ranging from 0.035 grammm−1 s−1 to 0.33 grammm−1 s−1, the
flow rate decreases from 1.814 × 104 mm3/s to 1912 mm3/s and for the factor of curvature λκ ranging
from 0.02 mm−1 s to 0.035 mm−1 s, the flow rate increases from 9.521×104 mm3/s to 1.745×105 mm3/s.
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Аналiз кровотоку через викривлену артерiю з легким стенозом

Кафле Дж.1, Гайре Х. П.1, Похрел П. Р.2, Каттель П.3

1Центральна кафедра математики, Унiверситет Трiбхуван, Кiртiпур, Катманду, Непал
2Кафедра математики, Кампус RR, Унiверситет Трiбхуван, Катманду, Непал

3Кафедра математики, Багатопрофiльний кампус Трi-Чандра,
Унiверситет Трiбхуван, Катманду, Непал

Утворення бляшок звужує артерiї, зменшуючи приплив кровi до серця, викликаючи
бiль у грудях, задишку або iншi ознаки та симптоми iшемiчної хвороби серця. Ре-
алiзуючи рiвняння Нав’є—Стокса в цилiндричнiй системi координат i припускаючи
осьову симетрiю потоку за умов ламiнарного потоку, проведено дослiдження двох
аспектiв динамiки кровотоку, а саме: профiлю швидкостi та об’ємної швидкостi кро-
вотоку навколо викривленого стенозу зi змiною кривизни артерiї та товщини стенозу.
Також дослiджено поведiнку кровотоку для рiзних значеннь коефiцiєнта в’язкостi.

Ключовi слова: стеноз артерiй, в’язкiсть кровi, вплив кривизни на кровотiк,
профiль швидкостi, об’ємна швидкiсть потоку.
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