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In this paper we are interested in the approximation of the integral

Io(f,w) = /O TRt et Jo(wt) dt

for fairly large w values. This singular integral comes from the Hankel transformation of
order 0, f(x) is a function with which the integral is convergent.

For fairly large values of w, the classical quadrature methods are not appropriate, on the
other side, these methods are applicable for relatively small values of w. Moreover, all
quadrature methods are reduced to the evaluation of the function to be integrated into
the nodes of the subdivision of the integration interval, hence the obligation to evaluate the
exponential function and the Bessel function at rather large nodes of the interval |0, 4+o0].
The idea is to have the value of I(f,w) with great precision for large w without having to
improve the numerical method of calculation of the integrals, just by studying the behavior
of the function Iy(f,w) and extrapolating it.

We will use two approaches to extrapolation of Iy(f,w). The first one is the Padé approx-
imant of Ip(f,w) and the second one is the rational interpolation.

Keywords: singular integral, Hankel transform, Gauss—Laguerre, extrapolation, Padé
approximation, rational interpolation.
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1. Introduction

Hankel transform, which appears when applying Fourier transform to problems with cylindrical sym-
metry, has various applications in Mathematical Physics. As an example, in Fluid Mechanics at low
Reynolds number, it occurs when calculating the Green function of Stokes equations for the creeping
flow near either a solid plane boundary [1] or a porous slab [2,3]. This Green function is then used for
calculating Stokes flows either with the method of fundamental solution [4] or the boundary integral
method [3,5]. In more recent work, we have studied the behaviour of a freely moving solid spherical
particle in a shear flow near rough wall [6]. The roughness is periodic and of small amplitude compared
with the sphere radius. The force and torque exerted on the particle are expanded for small roughness
as:

F = FO 4+ ), (1a)

C=cCcO4cw, (1b)

This work is dedicated to the memory of our professor Francois Feuillebois.
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The order (0) terms (f‘(o), 6(0)), representing the force and torque exerted on the spherical particle near
smooth wall, were obtained from an analytical solution in bispherical coordinates [7]. The order (1)
terms, showing the influence of roughness, were expressed as sums of integrals in the following form:

L(fow) = /O T @) e g (wa) da, @)

where J,, denotes the Bessel function of order n, w = 27T/i is a positive constant in which L is
the roughness wavelength normalized by the sphere radius, and f is assumed to be bounded. For
small w < 2.5, viz. large wavelength, the integral may be calculated numerically by Gauss—Laguerre
method [8]. On the other hand, for fast oscillations when w > 2.5, this method does not provide
satisfactory results. This may be observed with the simple example case of f =1 and n =0 in Figs. 1
and 2, where the exact result for the integral,

1
V14 w2

is compared with results of Gauss—Laguerre integration.

I(«)axact (17 w) —

(3)

Ip(1,w) and Gauss—Laguerre (GL) quadrature, w € [0, 2.5] 9 x10712 [Io(1,w) — GL(w)|, w € [0,2.5]
1 T T T T T T T T
- Io(l,w)
09 T — GL(w) | 1 10 -
0.8 [ b gk
0.7 r b
6k
0.6 [ 4
4k
05 b
a9l
04 r i
0
03 \ \ \ \ \ \ \ \
0 0.5 1 1.5 2 2.5 0 0.5 1 15 2 25
w w
a b

Fig.1. (a) Overlapping of Iy(1,w) and GL(w): Gauss-Laguerre method’s;
(b) The error |Ip(1,w) — GL(w)| for w € [0,2.5].

, Jo(1,w) and Gauss Laguerre (GL) quadrature, w € [0, 100] A method developed by [9] to treat such

- L(Lw problems in the numerical calculation of the in-

o8 — GL(w) | | tegrals Io(f,w) and I;(f,w) will be recalled in
Section 2.1.

In this paper, we present two different ex-
trapolation techniques to calculate numerically
the integral I,,(f,w). The first one, using Padé
approximant, will be the subject of Section 3,
and the second one, using rational interpolation,
will be discussed in Section 4. Both approaches
give results with a high accuracy and are simple
to implement.

0.6 1 4

0.4

0.2

-0.2 : :
0 10 20 30 40 50 60 70 80 90 100
w

Fig. 2. Iy(1,w) and GL(w): Gauss-Laguerre method’s
over [0,100] with f = 1.
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High accurate method to calculate a singular integral related to Hankel transform 243

2. Preliminary

In this paragraph, we are going to describe what was done for the calculation of this integral and we
will recall some of its properties to demonstrate some results that will be used.

2.1. Feuillebois approach

In [9], the Feuillebois approach concerns the computation of the integral involving the Bessel function
of order 0, Ip(f,w) and order 1, I;(f,w).
There is considered the integral form of Bessel function of order 0,

Jo(x) = ! /1 ! cos(xt) dt
O T 1 V1 —¢2

that injected into the expression of Iy(f,w)

1
n(f0) = [ jf% d, (4)

go(t) = —/ f(z)e ™™ cos(zwt) d.
0
Consider the following function
holt) = m(1 + w*t2) go t).
The integral Iy(f,w) becomes

1
Dif) = 1 [ (=2 hol)

14 w?2t2’

By using asymptotic expansion, the integral Io(f,w) can be expressed in the following form:

wea=2(f <[ )

where ¢ is a number such that: 1 < e™! < |w.
So the decomposition of Iy(f,w) as a sum of two integrals S; and So

Io(f,w) = 2(S1 + S2)
with
- arctan(we) /2
S1 :/ fily)dy and S :/ f2(0)de,
0 a

resin(e)
f1 and fy are regular functions

an2(wy)\ "2 an(w sin
=1 (1) (M) w0 = S

The standard Gauss—Legendre formulae can be used to calculate numerically the integrals S; and Ss.
Fig.3 contains two superimposed curves Iy(1,w) and that calculated by the Feuillebois method
Ireu(w), over the interval [5,500] and the error curve.
The same approach is applied for the evaluation of I;(f,w), considering the integral form of Bessel
function 1,

Tz =2 /_ 11(1 )12 s (1) dt.

s
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Fig. 3. (a) I(1,w) and the Feuillebois method (Irey(w)) applicated to f =1 over [5,500];

IO(lxw)_IFeu(w)
Io(l,w :

(b) The normalized approximation error

Then the expression for I1(f,w) is written:

1
N = [ (=80
where ~

g1(t) = ; /0 f(z) z e ™ cos(wat) d.

_1dJdo (wz)
w dz

h(f,0) = =~ Tolf,0) + = Io(f',).

Using derivative property for the Bessel functions Jj(wz) = , we obtain:

In the rest of this section, we will try to characterize I(f,w) for the different classes of functions
f with the aim to develop the methods of calculating Iy(f,w).

2.2. Link with hypergeometric functions

The relation between Bessel functions and the hypergeometric functions is well known, particularly
with the hypergeometric Gauss function

oy @)
oF1(a,b,c;x) kzzo ©n x®,
where (a)r =ala+1)---(a+k—1), (a)g = 1.
For all @ > 0, let’s look for the link between Iy(z®,w) = fooo x%e" " Jo(wz) dx and the hypergeometric
Gauss function.
We have

Vz,w € [0, +oo[, a%Jy(wz) = i (=D (8)2" pire

n=0

which gives
n

<%)> " 22ty

Io(azo‘,w):/ Ze_x
0 n=0
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High accurate method to calculate a singular integral related to Hankel transform 245

We can interchange [ and ) inside the convergence domain of a power series |z| < R (it is uniformly
convergent on |z| < R), and since the radius of convergence of the power series of the Bessel function
is R = +o00 then

o
(D" w2 [, o
Iy(z%, w) = (—) e Tt dy

nz::o (n1)? \2 0
[ee]

- 2 12
= 2 n(n!)

since the gamma function is I'(t) = [;° #'~'e " dx.

Due to the property of I,
L($+3)T(5+1) a 1 a
T a — 9 2 2 2 Fl= - = 1.1: — 2 )
0($7w) P(%) 2471 2+272+7a w
Using this formula, the function Io(f, ) is defined, where f(t) = t* with the mathematical code that
we used for the calculation of Iy(¢?, )

In[1]:

glk_]:=22k (Gammalk/2 +1/2] » Gammalk/2 +1] / Gamma[1/2])
1n[2]:= u[k_, x_ ]:=9g[k] » Hypergeometric2F1[k/2+1/2,k/2+1,1, -x*2]

In([3]:= u[3, x ]

3 (2-3x2)
(1+x2)7/?

Oout [3]

Theorem 1. For all k in N, the expression

(14 )2 F W) = (1 + wz)’f“/z/ the=tJo(wt) dt
0

is a polynomial in R|w] of degree at most k.

Proof. By recurrence on k.
Fork=0and k=1

(1 +w2)1/2/ e tJo(wt)dt =1 and (1 +w2)3/2/ te ' Jy(wt)dt = 1.
0 0

The property is true for k = 0 and for k£ = 1.
Suppose the property is true to order k — 1,

Io(tk,w):/ z*e ™ Jo(we) d
0

- / the=t Jo(t) dt
0

LS

e
:_w’fﬂ/o Rl (T (1) + tIY (1)) dt
1 (o] (o]
== (/0 th=temt g (1) dt—i—/o the=t/w J(1) dt>, (5)
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since Jy(t) is a solution of the differential equation ty”(t) + ¢/(t) + ty(t) = 0. Now
00 0o oo 1 [
/ the=t/w g0 (t) dt = [tke—t/wJ(’)(t)} - k/ th=te=t/w g () dt + — / the=t/w 7 () dt
0 0 0 w Jo

/ the=t/w g0 (t) dt = [tke—t/wJo(t)ro —k:/ th=Le™tw Jo(t) dt+l/ the=tw Jo(t) dt
0 0 0 w Jo

= —k:wk/ 2 le ™ Jo(we) do + wk/ *e ™ Jo(wz) dz
0 0

=t (kR w) + Dot w))

then

o 1
/0 the /@ JU(t) dt = —k(wWF (= (k — 1) Io(t* 2, w) + Io(t* 1, w)) + ;wk(—klo(tk_l,w) + Ip(t*,w))

— k1 (k;(k ) Io(t2, w) — 2k Do (tF L, w) + Io(tk,w)> .

Replacing in the expression (5), we will have

k _ k-1 k—2 k—1
Io(th,w) = = (WF (= (b = DI (2, @) + Tt w))
+ b (k= 1) To(tF72,w) — 2k To(¢51, w) + To(£*, w))).
Finally,
-1
kN _ 27 (k2 B k-1

Io(t,w) = 75 ((k = DDt 2,0) + (1 - 20 1o (7))
and since (1 +w?)¥=2+1/215(t*=2, w) and (1 4 w?)F~1+1/2[5(#*=1, w) are polynomials of degree at most
k —2 and k — 1 respectively, (1 4+ w?)Ft1/21)(t%, w) is a polynomial of degree at most k. |

Corollary 1. If f(x) = P(xz)e %", where P(x) is a polynomial of degree k and a €] — 1, +00[, then
k+1/2
(1 + %za) Iy(f,w) is a polynomial of degree at most k.

Proof. Just make the variable change u = (1 + a)t in the integral [ f(t)e™"Jo(wt) dt. n

2.3. Case of the functions from L2(]0, +oo[,e™?)

Let f(x) be a function of L?(]0, +oo[,e™®), space L? of |0, +oo| attached to the weight function e~* is
Hilbert space where Hilbert basis is Laguerre polynomials sequence (L, )50

f(z) = Z cnLn ().
n=0

A polynomial approximation of f(z) is Py(x) = 22;0 ¢nLy(z) then an approximation of I(f,w) is
I(Py,w) that leads to the following convergence result

Theorem 2. If f(z) be a function of L*(]0, +o0[,e~?) and Py (z) is the truncated Laguerre expansion
to the order N of f then
A}im [()(PN,(,U) = Io(f,w).
—00

Proof.
In(f,w) — In(Pn,w) = /0 (f = Pn)(z) e " Jy(wz) du.
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Where b, is the coefficient of Laguerre polynomial expansion of the function Jy(wz), one can deduce
that

Io(f,w) — Io(Pyn,w) = (f = Px, Jo(w®))e—s = > cnbp.

n=N
Schwartz inequality gives
oo o0
Io(f,0) — o(Pu.)l < 3 Jeal2 S0 [bal?,
n=N+1 n=N+1

which tends to 0 as IV tends to the infinity given that two series > |c,|? and Y, |b,|? are convergent.
According to Theorem 1, (1 +w2)N +1/2 Iy(Pn,w) is a polynomial of degree at most N, consequently,
it can be recovered exactly by a polynomial interpolation at N 4 1 points {wy: k=0,...,N}.
This result can be exploited as follows: for different values of N, the expression (1 +
W) NH2 [0 (Py,w) will be calculated by interpolating it in N 4 1 small values wj, and Theorem 2
allows us to conclude that Iy(f,w) ~ Ip(Pn,w) for large N. [

Theorem 3. Let f be a function of L*([0,+o0o[,e™%), then

lim Iy(f,w)=0.

w——+00

Proof. The integral Io(f,w) is nothing else than the scalar product (f,.Jo(we)) in Hilbert space
L3(]0, +00[,e?), Schwartz inequality gives

2

Io(f W) = \ [ e i@t as

g/ e_xf2(:n)d3:/ e J2 (we) d.
0 0

Let (wyn) be a sequence such that liril W, = 400, we put fn(z) = JZ(wn).
n——+00

Then Vz € [0, +o0], ll)r_{_l J(wz) =0= ll)r_il_l fn = 0, furthermore Vx € [0, +oo[, 0 < JZ(z) <

n

l=VneNandz >0, 0< f, <1 then according to the dominated convergence theorem

+o0o +o0o
lim e " fulx)de = / e lim f,(z)dz =0. [
0

n—-+0o00 0 n—-+0o00

3. Extrapolation by Padé approximation

It is well known that the rational approximation is a very powerful tool for the approximation of the
functions reason it is used in the implementation of algorithms for calculating elementary functions [10].

We will extend the use of this approximation to the function Iy(f,w) evaluation.

Padé approximation is a tool that is often used to construct extrapolation methods. This is what
we shall use to extrapolate a sequence of approximants as introduced in Theorem 2 for the integral
Iy(f,w) to speed up convergence.

Moreover, Padé approximants tend to zero at infinity when the degree of the denominator is greater
than the degree of the numerator. And according to Theorem 3, Iy(f,w) tend to zeros when w at infinity
then we will have the function and its approximants with the same behavior at infinity. One more
reason why we use these approximants to extrapolate Iy(f,w).

3.1. Padé Approximation

We introduce Padé approximations as presented in [11].

Mathematical Modeling and Computing, Vol.9, No.2, pp.241-261 (2022)
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Definition 1. Let f(z) be a formal power series

f(z) = Z izt
i=0

Padé approximation problem of order (n,m) consists of determining two polynomials

p(z) = Z a;7t deg(p) <n and q(z) = Z bzt deg(q) < m,
=0 i=0

such that

The linearized problem

(2”) (f: bizi> - (2:; aizi> — 0 ()

=0

is equivalent to
(o]

Z (i ci_kbk> 2t — Zn: a;zt =0 (z"+m+1)
k=0 i=0

with the convention ¢; = 0 if i < 0, we obtain:

co O e O b() ag
o e - 0 b | | @ (©)
Cn  Cp—1 Cn—m bm Qn,
and
Cn+1 Cn, ot Cp—m4+1 b() 0
Cn+2 Cn+l "' Cn—m+2 by . 0 (7)
Ch4m Cn4m—-1 " Cn bim 0

The system (7) is solved by fixing arbitrarily by to obtain the denominator coefficients that we inject
into (6) to obtain the numerator coefficients.
The pair (p(z),q(z)) is the solution of the problem (n,m).

In its irreducible form the rational fraction g(z) is called the order (n,m) Padé approximation of

f(z), denoted by [n/m]y.
In his thesis (1892) H. Padé (1822-1901) arranged the approximants [n/m]¢ in the table, called

Padé table.
[0/0] [0/1] [0/2]
[1/0] [1/1] [1/2]
[2/0] [2/1] [2/2]
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Axiom 1. If the homogeneous system (7) is of maximal rank, the approximant [n/m]s is said to be

normal and is written in the form:

—1
2"Sy 2™ n—-m+1 " Sp
Cn—m+1 Cn—m+2 ot Cp4l
Cn Cn+1 o Cndom
nfmls(2) = L 1
Chn—m+1 Cn—m+4+2 - Cn4l
Cn Cn+1 o Cpdm

with
k
:Z:cl-zZ for k>0 and S,=0 for k<DO.
There are several recursive algorithms that are inexpensive in number of arithmetic operations,
that are easy to implement and calculate the elements of this table recursively.
3.2. Application to the evaluation of the function I(f,w)

The data that will be used to calculate the Padé approximants for w large are the coefficients of the
formal power series of Iy(f,w) in a neighborhood of a certain relatively small wy,

w) =Y enlw —wo)”. (8)
n=0

We propose two different techniques for calculating the series coefficients.

3.2.1. By the power series of Jy(x)

Consider the expression (4) of Iy(f,w).
The n-th derivative of go(u) at wug is

N 00 Y on
) =2 [T e (TG )

™

=— / 2" f(z) e cos™ (zug) d
0

™

> n —X ™
:—/0 2" f(z)e cos(a:u0+n§>d:n

™

which amounts to calculating the integrals

/ ¥ f(x) e cos(zug)dr  and / 22 f (1) e sin(zug ) dx
0 0

or

/ ac"f(x) ex(—l—i—iuo)dw
0

which gives the formal power series of Iy(f,w) in a neighborhood of wy

0" go(wt) dt n
To(f, ) an/ < oo ) @~ w0)
w=wo

n=0

= Zn'/ 90 wot \/t_tdt(w—wo)"
n=0

= Z cn(w —wp)"”,
n=0
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where

1t gl (wot)

n!J 4 1 —¢2
Let gé") (wot) = > 1>0 @k Tk (t) be Chebyshev series of the function ¢ gé") (wot) then the coefficient

¢, can be written as

dt.

Cp —

QT

n!2n’

The calculation of ¢, by Gauss—Chebyshev quadrature method and Gauss—Laguerre method consists
of calculating the following quantities

N
1 o0 _ T
Cn = S E tg/ 2" f(z) e " cos (xwotk + n§) dx

N 'Zthwlf xp) cos (a:lwotk+n2>
k=1 I=1
2k

where t; = cos (WT{') wy are the weights of Gauss—Laguerre quadrature method and x; are the roots

Cp =

of Lg\z) (x) which is the generalized Laguerre polynomial of degree M. Since the numbers ¢} are small
and wy, are large, while the cosines are bounded by 1, the weights have moderate magnitude.
We have
(M +n+1)x (M + n)lx; M+n (M +n)!
wy = = and < > =—"

C MM DL, @))2 MM+ 1)L, ()2 Minl

n

which gives
N M
M+n 1 thay 7T
v ( " >m 2> — g (@) cos <5’3lw0tk + n§> .

3.2.2. By calculation of the successive derivatives of Bessel functions

Successive derivatives of Bessel functions can be computed recursively thanks to the recursion relation
verified by Bessel functions derivatives, which are

Jo(x) = = Ji(x),

1
J(z) = 3 (Jpo1 — Jpy1) for m=1,2,....

Axiom 2. For all n € N, the derivative of order 2n and order 2n + 1 is given by
T = P g4 P gy O Dy 4 4 O Jopga, = 0,1,
JE — Py P g C(Q")J%H +ot C,(f")JgnH, n=12...

where the coefficients C'( ") are calculated by C( ) — L C’fl) _ % and
Cézn) _ 10(2n—1) C(2n 1) Cé2n+1) _ %Cém)
C]%zni _ ((j]%l li) C(2n 1)) k=1,...,n—1, Cini; B %(C(Z))_ C}gz_nl)), h=1... m,
Ch = 20 ) Cn—l—l — C

so can be arranged in the following recursive scheme:
Cél) C0(2) 083) C0(4) 0(5) CO(G)
C}l) C£2) 0(3) C£4) 0(5) Cfﬁ)
0(3) C§4) 0(5) Céﬁ)
C§5) 03(6)
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Using MAPLE there are calculated the first coefficients C’i(j )
1 -3 -3 5 5 35

2 4 8 8 16 64

=1 =5 =15 21

L1 =5
2 4 2 16 32 64

=1 1 3 =7
8 16 16 64
=1 1

32 64

Axiom 3. Let w be a positive real number, we put

I = / 2 f(x) e 2T, (we) da
0
the n-th derivative of Iy(f,w) is

d2n+1 IO )

W(faw) = —C8" g1 — OV ngrs — - — CF I o —

— C,r(LG)IQn_i_l’Qn_i_l; n = 0, 1, ceey
d2nIO
dw2n

(fw) = —C8" Vg — CP" Vippy — - — C;g%_l)fzn,zk -
- Cy(?n_l)fgn,gn; n = 1,2,....

Proof. Taking into consideration the conditions on f, we can do a derivation under the integral sign,
d" I _ 1)
) == [ @) e ) do

The approach consists of calculating Taylor series of Iy(f,w) at the order n+m for w in neighborhood

of wy by approximating I, ;(wp). This development will be used to calculate Padé approximation
[n/m]r(w) as the estimate of Iy(f,w),

n+m 1 deO e n+m i .
Zk'd 7 (f,wo)(w — wo)* + o(w — wo) chk(w—wo) + o(w — wp)" ™. n
k=0

3.3. Numerical illustration

Example 1. Consider the case where f =1, it is well known that the exact value of Iy(1,w) is

o 1
Iy(l,w) = e *J(wr)dr = ——.
o) = [ e lar) o = g

After calculation by Gauss—Laguerre quadrature method of the following integrals
o
/ e*e % J,(1.52)de, k=0,1,...,16 e n=0,1,...,16,
0

we were able to obtain the Taylor series expansion of Ip(1,w) in a neighborhood of wy = 1.5 up to
order 16 as follows

Io(1,w) = 5.54700196225229 - 10~ — 2.56015475180875 - 1071 X + 9.1902991090571 - 10~ 2 X2
— 1.8178613622311 - 1072X3 — 6.525656172111 - 1073 X* + 9.896050019246 - 10~3 X
— 6.700335613180 - 1073X5 + 3.133197553474 - 1073 X" — 9.074844484962812 - 10~ X8
— 6.580263217565992 - 107° XY + 3.090072324144975 - 10~ X 10
— 2.538657762042806 - 10~ X! 4 1.374176851918851 - 10~ X 12
— 4.986447053828060 - 107> X 12 4+ 5.122662622074508 - 1076 x4
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+9.749061814785698 - 109X '® — 1.019560218693597 - 105X 16
+0(X)",
where X = (w — 1.5), that will be used for calculating the following Padé approximation:

0.554700196225229 + 1.7682291741338456 X + 2.495106085209317X 2
+2.013852912601038 X3 + 1.0020120103338053 X * + 0.30690119261384924 X 5
+0.05352423164033492X° + 0.004097718669029887 X 7

7/9|1(w) =
[ / ]I( ) 1 + 3.649258938593925 X + 6.016709346873545X 2 + 5.83562875765282X 3
+3.6342763755021776 X * + 1.486052551099337X° + 0.38923641509797025X 6
+0.059670806993630324 X 7 + 0.004097718992997817X 8 — 2.1686226449190713 - 10~ 11 X9
0.1 T T T T 6 <107 T T T T T T
= = Padé [7/9](w) Error: |Io(1l,w) — [7/9](w
009 e | or: |To(1,w) — [7/9](w)l]
0.08 H - r
0.07 1
Al
0.06 | J
005 | - 3t
0.04 | J
oL
003 | -
002 | -
n
001 | J
00 160 2(;0 360 4(;0 5(;0 630 70:1 3(;0 900 1000 00 1(;0 2(;0 3(;0 460 581? 660 760 s(;o 9(;0 1000
w
a b

Fig. 4. (a) Overlapping of Iy(1,w) and [7/9](w); (b) The absolute Error: |Iy(1,w) — [7/9](w)].

The figure 4 contains two superimposed curves, Iy(1,w) and [7/9];(w), on the interval [10,1000]
and the error curve.
By calculating the integrals

o
/mke_x,]n(wo:z:)dx, k=0,1,...,16 and n=0,1,---,16
0

with wy = 1.5, we are able to estimate the integrals Ip(1,w) for all w €]1.5,1000].

The Taylor series coefficients of Ip(1,w) that we use are not accurate. They are the results of
numerical calculation of integrals. In reality, instead of computing Padé approximants by ZZI&” cx(w—
wo)*, they are calculated using 750" & (w — wo)* where ¢; ~ ;.

In [12,13] the following Theorem 4, shows that the error order of the coefficients remains the same
when we compare the calculated Padé approximants by the exact coefficients and those computed by

the approximate coefficients.
Theorem 4. Ifc; = ¢ + O(h) then
|[n/m];(w) — [n/m]r(w)| = O(h),

where
n—+m

I(w) = Z Ep(w — wo) + o(w — wp)™ ™.
k=0

The accuracy of ¢; by ¢ will not be lost with the use of Padé approximation. In other words,
the difference between Padé approximants with the perturbed coefficients and those with the exact
coefficients is of the same order as the difference between the perturbed and exact coeflicients. Provided
that Padé approximants can be calculated because the perturbation on the coefficients could cause the
system (7) to have a bad conditioning which means a strong perturbation of the denominator, while
it is still that the approximation [n/m]r is still good, see [12].
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In the previous example, we could estimate up to w = 1000 using development near wg = 100. Can
we go beyond w > 10007

We know that Taylor series is a good approximation in a small neighborhood of wy and Padé
approximant has a larger convergence reason, but not enough large. There is a threshold where even
this method fails due to rounding errors.

Given this remark, we can say that the utility and performance of this method lies in the fact
that if numerical computation methods of integrals achieve their limit for a threshold wg. For w > wy
the computation methods of the integrals are faulty then this method is an alternative to exceed this

threshold.

Remark 1. We initially had to calculate the integral Iy(f,w) which contains Bessel function Jy(wt).
For the calculation of derivative of Io(f,w), we need to calculate integrals I, j, = [ xFe=® Ji,(wx) dz for
k =1,...,n containing Bessel functions Ji(wz). This gives the impression that we have complicated
more the calculation instead of simplifying it. But the initial calculation I(w) we want to perform is
for w rather large by the computation of integrals intervening in the derivatives of Iy(f,w) are quite
small w.

3.4. Another approach

We know that Padé approximation reproduces the rational fractions set. In other words, if f is a
rational fraction of degree m/n then for all i > m and j > n, Padé approximants [i/j]; are identical

to f.

Considering this remark and Theorem 1, it would be wise not to apply Padé approximation directly
to Iy(f,w) but to the function v1 + w?Iy(f,w). Given that if f is a polynomial, V1 + w?I(f,w) will
be a rational fraction that Padé approximation will be able to finding and therefore the approximation
of Ip(f,w) by this approach will be exact on all the polynomials.

Let us return to the previous example, Taylor series expansion of /1 + w?Iy(f,w) in the neighbor-
hood of wy = 1.5 calculated by the product of Taylor series of v/1 + w? and that of Iy(1,w) computed
using the results of Proposition 3:

V14 w2Ih(1,w) = 0.9999999999999998 — 1.1102230246251565 - 101X
+ 8.326672684688674 - 10716 X% — 2.0122792321330962 - 10~ 10 X3
+6.730727086790012 - 10710 X* 4 3.157196726277789 - 1010 X°
— 7.042977312465837 - 10710 X0 + 2.3765711620882257 - 10~ 16 X7
+4.7271214720367993 - 10~ 17 X® — 1.1439688172437679 - 1010 x?
— 3.913969842672671 - 10717 XY — 1.303753112413819 - 1010 x!!
— 1.6149191359171589 - 10~ 16X '2 + 1.5806312422123048 - 10716 X3
— 1.216305430939285 - 1071 X' — 1.3667046010537587 - 1010 x'1°
— 2.1785687403380605 - 10~ 18X 10 + o(X).

Note that all the coefficients other than the constant coefficient are zero with an error of the 10716
order so we have found the exact value of I(1,w) with an error of the 10716 order.

Remark 2. If the function f(z) is written as f(z) = g(z) e™*" with a > —1 then instead of applying
Padé approximation to 1+ w?Iy(f,w), we can apply it to /1 + (aw)?Iy(f,w) where a = H—La and
the approach will be exact on the spaces of the functions:
Vo=P(x)e ™, a>-—1,
where P(z) is a polynomial.
In fact, according to Corollary 1 /1 + (aw)?Iy(Pe ", w), where P is a polynomial and a > —1 is

a rational fraction that Padé approximation is able to find exactly.
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4. Extrapolation by rational interpolation

Extrapolation by rational interpolation is another alternative that allows Iy(f,w) to be approached for
fairly wide w knowing Iy(f,w) for relatively small values of w. Since by Theorem 3, Iy(f,w) tends to
zero at infinity, a polynomial approximation is not appropriate since all polynomials are unbounded
at infinity. Approximation by a rational function of type (n,m) with n < m will be much better since
these functions will tend to zero at infinity.

Moreover considering Theorem 1, which shows that v/1 + w?I;(f,w) is a rational fraction, then the
use of rational fractions to extrapolate the value of I(f,w) is justified.

The steps to follow are the next: we will calculate Iy(f,w;), for i = 0,..., N for relatively small
values of w; using Gauss—Laguerre method or the method described in [9]. We can do this calculation
with accurate precision. Then we will interpolate 1+ w?Iy(f,w) by a rational fraction ry,,(w) =

IME:’; such that 7, (w;) = /1 + w?Io(f,w;), i =0,...,m +n where m +n = N,

dmn
1
I W) = —/—————=Tmn(W),

w > max wj.
(2

4.1. Rational interpolation

We present the rational interpolation as in [14].

Let f(z) be a function known at abscissae xg < 29 < -+ < zy. We call rational fraction of order
(m,n) denoted 7,y () the rational fraction rp,, (z) = % as degree of numerator is less than or equal
to m and that of denominator is less than or equal to n such that rp,,(z;) = f(z;), i =0,...,m+n
and m+n < N.

When the abscissae z; are distinct two by two, the divided differences of f(x) at the abscissae

xo, ... ,Zy are defined by the following recurrence relation: [x;]f = f(x;), for i =0,..., N and
Tiyeoo s Tiak1|f — [Tia1, .o  Tivk|f
[wia-uawi—l—k]f:[l i+ ] [H— H—]
Ti — Ti+k
and if z;1 < x; =xj41 = ... = Tjp < Tirka1, les divided differences are defined by
d'f

[xi,...,xi_i_l]f:w(lﬂi), lzl,,k

Let B;(z) be Newton basis polynomials: By =1 and B;(x) = B;—1(z)(x — zj—1).

Let be (m,n) € N? such as m +n < N, the rational interpolation problem of order (m,n) amounts
to looking for two polynomials pp,,(z) = > " a;iBi(z) and gmn(z) = Y1 biBi(x) of respective
degree m and n such that

(me,n_pm,n)(xi) 207 ZZanm"i_n
Condition that we can express it by
(me,n - pm,n)(x) = Bm+n+1v(x)7
where v is a function defined on an open set containing the z;.
Which is expressed by

[‘T07"'7xi](fQM,n) = [‘T()a"' 7xi]pn,m7 i:07"'7m7 (9)
[zo, ..., zi](fgmn) =0, i=m+1,...,m+n. (10)
Leibniz formula. Let f(x) and g(x) be two known functions at abscissa z; for i = 0,..., N, then
the divided differences of the product (fg)(z) are
k
i xi k] (F9) =D _[win- s wid) flwigs, - igalg.
=0
Let’s put ¢;j = [z, -+ , ;] f for i < j and agree to write ¢;; = 0 for j < 1.
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These notations and the Leibniz formula allow writing the expressions (9) and (10) in the form

n n
Z[mo,...,a:j]qm,n[xj,...,xi]f:ijcji =a;, 1=0,...,m (11)
j=0 7=0
n n
Z[mo,...,:Ej]qm,n[xj,...,xi]f:ijcji:0, t=m+1,...,m+n. (12)
j=0 7=0
We solve the homogeneous linear system (13)
Com+1 Clym+l **° Cnm+l bo 0
Com+2  Clm+2 “°° Cnmt2 b1 _ 0 (13)
Com+n Clm4+n *°° Cnmin b, 0
and replace coefficients b; by the solution of the previous system to evaluate the coefficients a;
c,1 €11 ' Cpi bo ag
Co2 Cl2 "'t Cp2 by I (14)
Com Cim “°° Cnm by, Am

the pair (pm n, gm.n) is called solution of the problem (m,n).
In its irreducible form the rational fraction r,, = ZM is called Newton Padé approximation at

points (x;,y;), 1 =0,...,n+m. ’

4.2. Numerical lllustration

Example 2. Take the example where f = 23, the exact value of Io(f,w) is:
6 — 9w?

IQ(f,O.)) = /0 xse—mjo(wl') dr = m

We calculated the value of V1 + w?I(f,w) at points w; = i%; i=0,...,10 with a precision of 10716,
The corresponding systems (13) and (14) are:

—0.0113356182420733 0.002083029929847342 —0.001235127117018606 0.001269709812597944
0.0010397308318536 —0.000216946556299759 0.000154616096071708 —0.000204353143207220
—0.0000793441970716 0.000018191795767885 —0.000014815492212148 0.000022922831963725
5.1828452389633052E-6  —1.277839978930783310E-6  1.153929382141188132E-6  —1.994054632801597481E-6
—2.9588148539742620E-7  7.727005699093842339E-8  —7.586131462729672394E-8  1.424451871105651460E-7
1.4999246055318725E-8  —4.103435708948302369E-9  4.320088831857492375E-9  —8.659932798402398111E-9
—0.001376532756853854 0 0 ZO 0
0.000361473620565857 —0.000573258044485283 0 bl 0
—0.000051534263449056 0.000132432449681166 —0.000278963711860471 b? | o
5.197901894377090178E-6  —0.000016881584153208 0.000057403186778018 53 =l o |’
—4.113303315730958593E-7  1.541632280394015873E-6  —6.604035617248117009E-6 b‘* 0
2.697941646519983783E-8  —1.115590375153198834E-7  5.499963913689502434E-7 bz 0

6 0 0 0

—2.7826163360674363 —0.1835918579276362 0 0

0.6427314807560272  0.0739680228482402  —0.1921847382448180 0

—0.0986780211108042 —0.0151219933160009 0.0067591636660140  —0.004198110118182618

bo

0 0 0 Zl ao

0 0 0 b2 | a

0 0 0 bz | as

0 0 0 by as

be
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We solved the first system after fixing by = 1, then we replaced the solution obtained in the second
system. The rational interpolant r3¢(w) obtained is

6 — 20.0000000000000007 B1(w) — 9.00000000000000057 B2(w) + 1.3E-17B3(w)

14 93.780758353232065B1(w) + 862.68602347203175 Ba(w) + 1027.6543209876544 Bs(w)
+323.98765432098767By(w) + 33.333333333333335B5(w) + 1.0000000000000001 Bg(w)

_ 6 — 9uw?
14 3w2 4 3wt + Wb’

T3,6(W) =

By rational interpolation, we found again the exact value of Io(z3,w).

Remark 3. Rational interpolation is able to reproduce the value of Iy(f,w) when f is a polynomial
function. It is obvious that the more the values of Iy(f,w) at the interpolation points are computed
with great precision, more Ip(f,w) is found with great precision.

Example 3. In this example, we consider the function f(z) = x?sin(x), we do not know the exact

22 sin(z) e~ Jo(wa), w = 30 value of Iy(f,w). The function to inte-
T T T grate f(z)e " Jy(wz) presents oscillations
and decreases rapidly towards 0 as can be
seen in Fig. 5. It is about to integrate this
002 I i kind of functions on [0, +oo] for the differ-
ent values of w.

J\n For large w, the oscillations of the func-
tion f(z)e *Jyp(wz) are very small, to see
the effects of these oscillations on the value
of the integral I(f,w), we have to perform
the calculation with high accuracy.

0.06

0.04

-0.02

-0.04

006 L R The stopping test will be taken on the

R relative error when the difference between

Fig. 5. The graph of function 2?2 sin(x) e =% Jy(30x) two approximants is less than a fixed tol-
over [0, 10]. erance.

1. By Padé approximation:

the power series expansion of Iy(f,w) in the neighborhood of 100 calculated using the results of
the Section 4 is:

S(w) = 10710 (—8.9999987750000952875 + 4.4999988975001238737 - 10~ X
— 1.3499994487500867116 - 102X 2 + 3.1499979787504335581 - 1074 X3
— 6.2999939362517342322 - 1075 X% + 1.1339984234255896389 - 107 X°
— 1.8899963213267689167 - 10~ X 4+ 2.9699921171298013451 - 1011 X7
— 4.4549842342620033619 - 10~ 3 X® 4 6.4349702202780078426 - 10~ 17 X*
—9.0089463965116172487 - 10~ 17 X0 4 1.2284907412178836054 - 10~ ¥ X1
—1.6379845687007672081 - 100X ?) |

where X = (w — 100),

10710(—8.9999987750000952875 — 1.9799983912574046926 - 101 X
—1.0999976926096351538 - 1073 X2 4 1.5877737314850609655 - 1021 X 3)

1+ 7.1999979675080121990 - 10~2X + 2.2222209825687163937 - 1073X?2 ~

+3.8111079222604691833 - 10~°X 3 + 3.9222178029078275217- 1077 X*

+2.4222187510981534838 - 102X + 8.3110965047839775848 - 10~ 12X 6
+1.2222196584551487595 - 10~ 14X7

3/71(w) =
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—8.9999987750000952875 - 1010 — 1.9636342369141050301 - 10~ 11 X
—1.0799970405840839856 - 1013 X2

1+ 0.0718181557131840884.X + 0.0022109074904918605X 2
+0.0000378181405489568 X 2 + 3.8818124624979933921 - 107 X4
+2.3909046075457080652 - 102X + 8.1817993775939180636 - 10~ 12X 6
+1.1999967117600924513 - 10714 X7 + 4.3303161476595500476 - 1032 X8
—1.4434428464760682279 - 10734X 9

2/9]1(w) =

-8 -15
o 0 : : S - : PR L ; ;
= = Padé [3/7](w) | [3/7](w)—[2/9]<w)|
[3/7](@)

—— Padé [2/9](w) 4r ’ [

-05 35

3k 1

25 1

9 b i

15 [ 1

1k i

0.5

25 w w \ \ ‘ ‘ ‘ ‘ ‘ ‘ 0 h,hmlﬂllm [ ORI lm] ! ‘ ‘ ‘ ‘

40 60 80 100 120 140 160 180 200 220 240 200 300 400 500 600 700 800 900 1000
w w

a b
Fig. 6. (a) The Padé approximants [3/7](w) and [2/9](w) superposed;

[3/7)(w)—[2/9)(w)
[3/7(w) :

(b) The normalized relative error

Given that the normalized relative error ‘W‘ < 4.5-1071 as shown in the figure6 is

very small, we can decide that Io(f,w) ~ [2/9]7(w).

Table 1. Estimation of Ip(f,300) and Io(f,500) by the sequence of Padé approximation ([1/n]1)y.

n | [1/n]r(300) n | [1/n]r(500)

1 3.8571427321429632946 - 10~ 10 1 4.8461537664202498399 - 10~ 10
2 3.1034483195599147956 - 10~ 11 2 2.7835052132265919293 - 1011
3 3.5724323120431271660 - 10~2° 3 1.9607843166329273292 - 10~ 12
4 —3.404791924122667584 - 10712 || 4 —1.246364769305868199 - 10~ 13
5 —3.703703697479901767 - 10712 || 5 —2.879999999372094199 - 10~ 13
6 —3.703703697480057885- 10712 || 6 —2.879999999372796699 - 10~ 13
7 —3.703703697480061071 - 10712 || 7 —2.879999999372813425 - 1013
8 —3.703703697480054647 - 10712 || 8 —2.879999999372745574 - 10713
9 —3.703703697480067578 - 10712 || 9 —2.879999999373020097 - 1013
10 | —3.703703697480041577 - 1012 || 10 | —2.879999999371911553 - 1013

2. By rational interpolation:
The data to be interpolated are given by the table 2.
The rational interpolants 747,759 and r7 13 are

—12801.1109960405344 + 6587.51374583276525 w — 65.9492500687815791 w?
—6.08022793792171594 - 10~ 3w? + 7.78845289295888383 - 10~ H0w?

—4.3838831790378849598 - 10? + 1.9395672958284531074 - 10%w ’

—9.9640318148317067608 - 103w? + 99.773277506404582625 w?
—5.7505458110699951969 - 10~ 4w + 1.4223456726257934167 - 103w®

—7.3194597180736612478 - 10%w® + 7.3276944523222563912 w”

ra7(w) =
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Table 2. The interpolation data (w;, Io(f,w;)).

i | wi | Io(2?sin(z),w;) i | w | Io(2?sin(x),w;)
1 52 —2.367145660847615621 - 103
2 57 —1.495779824667872412 - 108 19 | 142 | —1.558837242221159135- 10~ 10
3 62 —9.823893867087002936 - 10~° 20 | 147 | —1.311160396833317617- 1010
4 | 67 | —6.666044408976445536-107° || 21 | 152 | —1.109237539054592803 - 10~ 10
5 | 72 | —4.651358431400013164- 102 || 22 | 157 | —9.435050687845589383 - 10~ 1
6 | 77 | —3.324977535413527886- 1072 || 23 | 162 | —8.066171064699103363- 10!
7 82 —2.427577573770022920 - 10~° 24 | 167 | —6.928833831006382060 - 101!
8 87 —1.805702266491429080 - 10~° 25 | 172 | —5.978610604912353987 - 10~ 1!
9 |92 | —1.365536428080646926- 1072 || 26 | 177 | —5.180553602000757216- 10~
10 | 97 | —1.048054269066695896- 1079 || 27 | 182 | —4.506979307387018237- 10!
11 | 102 | —8.151576263444116048 - 10719 || 28 | 187 | —3.935813145499952867 - 10!
12 | 107 | —6.416874949034220817- 10710 || 29 | 192 | —3.449342834398048321 - 10~ 11
13 | 112 | —5.106841259720135773- 10710 || 30 | 197 | —3.033272129440746786- 10~ 11
14 | 117 | —4.105000072854733818 - 10710 || 31 | 202 | —2.675997224517686465- 10~ 1!
15 | 122 | —3.329993067538656782- 10719 || 32 | 207 | —2.368049514234511567- 10!
16 | 127 | —2.724105242070831996- 10~19 || 33 | 212 | —2.101663597024152677- 10!
17 | 132 | —2.245809082831983374- 10710 || 34 | 217 | —1.870440241517230513- 10~ 11
18 | 137 | —1.864831759229707714-10710 || 35 | 222 | —1.669081850811516161 - 10~ 11
—36.922974666133073819 - 107 + 36.719894684322817323 - 10%w
—9.7592250877782842419 - 105w? + 9.9187861901106921519 - 103w?
—34.577455822338253003 w* — 12.875242914303055989 - 10~ 15w
ra9(w) = —4.0771543453518027019 - 105 + 5.5843500761934390426 - 108w’
—5.5534349097166618986 - 107w? + 1.4759588732103918332 - 10%w?
—1.5001046437997136563 - 10%w? + 4.1025579704396603913 - 107w®
—4.0799882982931623064 - 10°w® + 1.0843583430883748905 - 10°w”
—1.10208735445742656732 - 103w® + 3.8419395358168302805 w?
—6.1780876874580232449 - 101V + 7.5903175833249574003 - 10%w
—3.2581668527941485652 - 103w? + 7.0134345325262674211 - 10%w?
—8.5127909385503465429 - 10%w* + 5.9473426837625185631 - 10%w®
v 13(w) —2.2410525087374838636 w® + 3.5399710224764226372 - 10~ 3w7
7.13(w) =

6.0884090773555800580 - 107 + 9.3440256675331218087 - 10*%w
—1.1479482111186115503 - 10*%w? + 4.9275637783993947706 - 103w3
—1.0606923261700306505 - 107w* + 6.8646706206197633344 - 10°w®
—8.4336951984591605116 - 108wS + 3.6201857309466624452 - 107w”
—7.7927050896958013612 - 105w + 9.4586565983986156465 - 103w?

—6.6081585375172516709 - 101w!® + 0.2490058343042467263 w'!
—3.9333011360861424396 - 10~ 4w'? + 8.5229359953197712895 - 10~ 20w 13

Fig.8 shows that, the relative errors ||ry7 —rsgf < 4.5 - 10723 and lrs0 — 73] < 1.4 - 1026
<107 and <1071

also decreases, we can take r713(w) as an approximation of Iy(f,w) with an error of the order of
10" based on the normalized relative error that is significant.

r4,7—"5,9 T5,9—T7,13
T

decrease, also in Fig.9 the normalized relative error ‘ =
9,
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Fig. 7. Rational Interpolation r4 7(w), r5,9(w) and r7 13(w) on the data interval and outside data interval.
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Fig. 8. Relative errors of rational interpolants: |r4 7(w) — r5.9(w)| and |rs 9(w) — r7.13(w)|.

x10711 x10-13
6 T T T 5 T T T
ra,7(w)=7s5.9(w) r5,9(w)—77,13(w)
rq,7(w) T rsow)
L |
05 1
) ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
w w
a b
Fig. 9. Normalized relative errors of rational interpolants %&5’)9@) and %{;;M .
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5. Conclusion

In the introduction, we explained the need to evaluate the integral
o
j/ ft) et p(wt) dt
0

with fairly wide values of w. This evaluation can not be done by classical quadrature methods even
the most powerful among them, that of Gauss—Laguerre. We did not look for improving the existing
quadrature methods but to exploit it to estimate the value of this integral considered as a function of
the variable w with a large values of w. Thus, we have exploited the method developed by Feuillebois
to evaluate this integral with relatively small values of w that we used in Padé approximation or the
rational interpolation. The use of this data effectively relies on a result that we have demonstrated in
this paper. The extrapolation that we have proposed is an alternative to surpass the limits wg of the
other methods of computation of this integral for w > wy.
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BucokoTouHuini metos 064YNCNEHHSI CUHTYNSAAPHOrO IHTerpana,
noB’'si3aHoro 3 neperBopeHHsM aHkens

Accyni P13, Byrra6 C.2, Anym X.2, Jlamzyn K.3, @eitn6ya @.4, Yayi M.3

YTabopamopia LGEMS, Hauionaisvha wWroaa npukiadnus nayx,
Vwisepcumem 16w 3oxpa, Azadip, Mapoxko
2 Hayxosa epyna MANTA, xadedpa mamemamury ma Komn 0mepruxr Hoyx
Vwisepcumem Myaas Iemaina, Mexnec, Mapoxro
3Kagedpa pisuxu, Ynisepcumem Mynas Icmaina, Mexnec, Mapoxxo
4LIMSI-CNRS, Opce, Ppaniyisn

VY ni#t poboTi HAC IKABUTDH AIPOKCUMAIlisd iHTerpaJia

Io(f,w) = / " pt) et dowt) dt

JJIE IOCUTH BEJIMKUX 3HAYeHb w. Lleil cuHTy IsipHUil iHTerpaJl MOXOAUTh Bif| IepeTBOPEHHS
Tankens nopsaky 0, f(z) € dyukuieio, 3 gKoi0 iHTErpas € 361:KHIM.

Uit 1OCUTDh BEUKUX 3HAYEHDb W KJIACUIHI KBaJIPATYPHI METOJN HENPUIATHI, a 3 iHIIOTO
OOKY, I1i MeTO i1 3aCTOCOBHI JIJIsT BI/THOCHO MaJInX 3HAYEHb W. Bi/IbIe TOTo, yCi KBaIpaTypHi
MEeTO/IN 3BOJATLC 0 OIHKKA (DYHKIII, IO IHTErPYEThCA y By3Jax PO3OUTTS iHTEPBAJIY
iHTerpyBaHHs, 3BiJICM BUIJIMBAE€ HEOOXIHICTH OIIHIOBATH €KCIIOHEHIAJbHY (PYHKIO Ta
dynkuio Beccens y mocuthb Besmkux By3sJax inrepsady |0, 400l

Inest mossirae B ToMy, o6 Matn 3HaveHHst [o(f,w) 3 BEJUKOIO TOYHICTIO IJIsl BEJIMKUX W
6e3 HeoOXiTHOCTI B/IOCKOHAIIOBATH INCETLHUI METO T OOIICIEHHS iHTerpaJiiB, IPOCTO BUB-
varoun nosemiky dynkuil I(f,w) Ta excrpamnosondn ii.

Bukopucrosyerbes JBa 1mijgxoau 10 ekerpanosdanil Io( f,w). Tlepmuii 3 Hux — 11e anpokcu-
mania age Ip(f,w), a apyruit — panioHajbHa IHTEPIOJIAII.

Kntouosi cnoBa: cuneyaaphudl inmezpan, nepemeopenna Lankeas, Tayce—Jlazeppa, exc-
mpanoasyis, anpokcumayis Ilad’e, payionasvoHa THMEPNOAAYLA.
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