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Numerous attempts have been made to enlarge the radius of convergence for Newton–
like method under the same set of conditions. It turns out that not only the radius of
convergence but the error bounds on the distances involved and the uniqueness of the
solution ball can more accurately be defined.
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1. Introduction

Let C be an open convex subset of Hilbert space B. The problem of computing solution s∗ as of
equation

F (x) = 0, (1)

where F : C → B is differentiable in the sense of Fréchet is of extreme importance, since many appli-
cations reduce to solving (1). But closed form expression for s∗ can be obtained only in special cases.
That is why the solutions methods for equations (1) are iterative (mostly).

Recently a ball convergence result was given by Măruşter in [1, 2] for Newton–like method defined
by iteration function H

ym+1 = ym − F ′(xn)
−1F (ym), m = 1, 2, . . . , k − 1, y1 = xn,

xn+1 = H(xn) = xn − F ′(xn)
−1

k∑

m=1

F (ym), n = 0, 1, . . . . (2)

This iteration can be considered as Picard—like one. Several well studied methods are special cases
of (2).

Potra and Pták [3] (PP) studied (2) when k = 2. Moreover, in the scalar case Potra and Pták
method was studied by Traub [4]. Ortega and Rheinboldt showed on infinite Euclidean space [5] that PP
is of convergence order three. Notice also that PP is a special case of a multi-point method of the same
order given in [6,7] by Ezquerro and Hernández (EH). Moreover, Hernández and Romero [8] provided
the radius of convergence for (EH) method. Furthermore, Cătinaş [9] gave a radius of convergence for
the general Picard iteration. Two-step methods for solving nonlinear problems were studied in [10,11,
14].

Finally, Măruşter [2] gave a ball convergence result for method (2). Motivated by Măruşter’s paper
we provided a ball convergence under the same conditions with benefits:

1) at least as large radius of convergence (so at least as many initial points become available),
2) tighter error or bounds on ‖xn − s∗‖ become available (so at least a few iterations are needed to

obtain certain error tolerance),
3) at least as precise information on the where about of the solution s∗ is given.

This technique was applied to other iterative methods [12, 13, 15].
The ball convergence is given in Section 2, whereas the numerical experiments in Section 3.
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2. Ball convergence

The aforementioned benefits are based on certain types of Lipschitz conditions. From now on we
assume that s∗ is a simple solution of equation (1) and F : C → B is Fréchet differentiable.

Definition 1. We say that operator F ′ satisfies the center–Lipschitz condition if there exists l0 > 0
such that

‖F ′(y)− F ′(s∗)‖ 6 l0‖y − s∗‖ (3)

for all y ∈ C.

Set C0 = C ∩ U(s∗, 1
b0l0

), where b0 will be determined later.

Definition 2. We say that operator F ′ satisfies the restricted–Lipschitz condition if there exists l > 0
such that

‖F ′(y)− F ′(x)‖ 6 l‖y − x‖ (4)

for all x, y ∈ C0.

Definition 3. We say that operator F ′ satisfies the Lipschitz condition if there exists l1 > 0 such
that

‖F ′(y)− F ′(x)‖ 6 l1‖y − x‖ (5)

for all x, y ∈ C.

Remark 1. It follows from these definitions

C0 ⊂ C (6)

that
l0 6 l1 (7)

and
l 6 l1. (8)

We shall assume from now on that
l0 6 l. (9)

Otherwise l0 can replace l in all results that follow.

An upper bound on ‖F ′(x)−1‖ was determined in [2] using (5). Indeed, assume

‖F ′(s∗)−1‖ 6 b0. (10)

Then, for v ∈ U(s∗, 1
b0l1

) we get by (5) and (10) that

‖F ′(s∗)−1(F ′(v)− F ′(s∗))‖ 6 b0l1‖v − s∗‖ < b0l1
1

b0l1
= 1

so F ′(v)−1 ∈ L(B ,B) by a lemma attributed to Banach [5, 16] linear operators and

‖F ′(v)−1‖ 6
b0

1− b0l1‖v − s∗‖ . (11)

However, notice that the weaker (3) can be used to obtain instead of (5) the tighter estimate

‖F ′(v)−1‖ 6
b0

1− b0l0‖v − s∗‖ . (12)

Let {rn}, n = 1, 2, . . . , k be a scalar sequence defined by

r1 = r̄,

rn+1 = ārn

(
1 +

rn
2r̄

)
. (13)

Then if ā > 2
3 and r̄ > 0, sequence {rn} is strictly increasing [2]. The ball convergence is based on

conditions (A).
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Suppose:
(A1) sequence {rn} is generated by (13) for ā = a =

√
3− 1, r̄ = r 6 a

b0(l+al0)
and U(s∗, rk) ⊂ C;

(A2) conditions (3), (4) and (10) hold.

Theorem 1. Suppose conditions (A) hold. Then, sequence {xn} generated by method (2) is well
defined in U(s∗, r0), remains in U(s∗, r0) and converges to the unique solution s∗ ∈ U(s∗, r0) of equa-
tion (1), where

r0 =
a

b0(l + al0)
. (14)

Moreover, the rate of convergence is at least k + 1, and for all x ∈ U(s∗, r0)

‖H(x)− s∗‖ 6

(
b0(l + al0)

a

)k
‖x− s∗‖k+1. (15)

Proof. Simply use the proof of Corollary 3.2 in [2, page 19] with l, r0 replacing l1,

r̄0 =
a

(1 + a)b0l1
(16)

in [2], respectively.
We also use (12) instead of (11) and notice that

b0
l − b0l0r0

=
b0(l + al0)

l

by the definition of r0. �

Remark 2. It follows from (7), (8), (14) and (16) that

r̄0 6 r0. (17)

The corresponding to (15) given in [2] is

‖H(x) − s∗‖ 6

(
b0(1 + a)l1)

a

)k
‖x− s∗‖k+1 (18)

for all x ∈ U(s∗, r̄0).
By completing (15) to U(s∗, r0) we see that new ratio of convergence is at least as small as the old

one since
b0(l + al0)

a
6
b0(1 + a)l1

a
.

Clearly, Theorem 1 reduces to Corollary 3.2 in [2] if l0 = l = l1.
In view of (17) the uniqueness ball has been extended from U(s∗, r̄0) to U(s∗, r0).
It turns out that we can do even better.

Proposition 3. Suppose that there exists R > r0 such that

l0R < 2. (19)

Set C1 = C ∩ U(s∗, R).
Then, the only solution of equation (1) in C1 is s∗.

Proof. Let z ∈ C1 with F (z) = 0. Define T =
∫ 1
0 F

′(s∗ + θ(z − s∗))dθ. Then, using (3) and (19), we
get in turn that

‖F ′(s∗)−1(T − F ′(s∗))‖ 6 l0

∫ 1

0
θ‖z − s∗‖dθ 6 l0R

2
< 1,

so z = s∗ by T−1 ∈ L(B ,B) and the identity 0 = F (s∗)− F (z) = T (s∗ − z). �
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Remark 3. In view of the above the benefits as stated in the introduction have been justified.
Clearly, our technique extends the results of the aforementioned methods along the same lines. The
efficiency of method (2) given in [2] is also improved, since the number of steps k after which F ′ is
re-evaluated periodically increases under our approach. Notice also that

r0
r̄0

=
1 + a

1 + a l0l
→ 1 + a =

√
3

as l0
l → 0. Hence, own technique increases the ball of convergence by almost

√
3 times.

3. Numerical examples

In this section we give some examples to confirm the theoretical results, namely that (17) is satisfied.

Example 1. Let C = U(1, 1 − p), p ∈ (0, 0.9) and B = R. Define function F on C by

F (x) = x3 − p. (20)

Since s∗ = 3
√
p and F ′(x) = 3x2, we get that b0 = 1

3 3
√
p2

, l1 = 6(2 − p), l0 = 3(2 − p + 3
√
p) and

l = 6min
(
2− p, s∗ + 1

b0l0

)
. Let p = 0.725. Then, we get s∗ ≈ 0.8984,

C = (0.7250, 1.2750), b0 ≈ 0.4130, l1 = 7.6500, l0 ≈ 6.5201,

C0 ≈ (0.7250, 1.2697), l ≈ 7.6181, r0 ≈ 0.1430, r̄0 ≈ 0.1338.

So, all conditions in Remark 1 are satisfied.

Example 2. Let C = U(0, 1) and B = R
3. Define function F on C for x = (ξ1, ξ2, ξ3)

T by

F (x) =

(
eξ1 − 1,

e− 1

2
ξ22 + ξ2, ξ3

)
. (21)

Since s∗ = (0, 0, 0)T and F ′(x) = diag{eξ1 , (e − 1)ξ2 + 1, 1}, we get that b0 = 1, l1 = e, l0 = e − 1

and l = max
(
e

1
e−1 , e− 1

)
, r0 ≈ 0.2402, r̄0 ≈ 0.1555. So, all conditions in Remark 1 are satisfied for

this example too.
Notice that our radius r0 is larger than r̄0 used in [1] as expected, since l0 < l1 and l < l1. Hence,

the benefits as claimed in the Introduction are also numerically justified.

4. Conclusion

The convergence analysis of Newton–like method is provided under classical center and restricted
Lipschitz conditions. As a result, the convergence ball and the ball of uniqueness of the solution are
enlarged, and the limits of error at the distances involved are determine more accurately. Moreover,
the results were obtained under the same set of conditions as in the previous work. Numerical results
that confirm the theoretical ones are given.
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Збiльшення радiусу збiжностi методу типу Ньютона, в якому
похiдна обчислюється через декiлька крокiв
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Зроблено спробу збiльшити радiус областi збiжностi методу типу Ньютона за тих же
умов, за яких метод вивчався ранiше. Аналiз збiжностi проведено за центральних та
обмежених умов Лiпшиця. Крiм радiусу областi збiжностi, вдалося отримати точнiшi
оцiнки похибки, а також бiльший радiус областi єдиностi розв’язку. Цi переваги є
чисельно обґрунтованими.

Ключовi слова: радiус збiжностi, метод типу Ньютона, гiльбертiв простiр.
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