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In this paper, we propose a new model of spatio-temporal dynamics concerning the
tritrophic reaction-diffusion system by introducing Phytoplankton and Zooplankton. We
recall that the phytoplankton and zooplankton species are the basis of the marine food
chain. There is prey in each marine tritrophic system. The main objective of this work
is to control this species’s biomass to ensure the system’s sustainability. To achieve this,
we determine an optimal control that minimizes the biomass of super predators. In this
paper, we study the existence and stability of the interior equilibrium point. Then, we
move to give the characterization of optimal control.

Keywords: spatio-temporal dynamics, reaction-diffusion system, optimal control, maxi-
maizing, stability.
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1. Introduction

Since the relationship of different biological species is widespread in nature, many scholars have done a
lot of works on the dynamic behavior of the prey-predator model; researchers have studied this field for
many years since the pioneering work done by Lotka and Volterra. The authors present the well-known
Lotka—Volterra predator—prey model. It is established that the response function is the key element
of predator-prey models. The ratio-dependent functional response was first proposed by Leslie and
Gower in 1973 [1,2]. The authors explain that a predator’s number is described by prey density, as
well as by the ratio of predator density to prey density. This model is also known as the Holling—Tanner
predator—prey model [3]. The dynamics (local and global stability, limit cycles) and pattern solutions
of Holling—Tanner predator—prey model have already been investigated [4-7]. Such factors as delay and
randomness are also considered in the recent literature [8,9]. The fuzzy approach is also considered to
construct the predator—prey model [10,11]. Besides, the Holling-Tanner—type predator—prey models
are attractive for their results for modeling the real ecological interactions between prey and predator
species.

Some biological species can release toxic substances that can affect the growth of other species [12—
15]. In [16], Chattopadhyay studied the local and global stability of the interior equilibrium of a
two-species competitive system with toxic substances. In [17], Kar and Chaudhuri considered a two-
species competing model with harvesting effect and toxic substances. In addition, reaction—diffusion
models arise in a variety of real-world problems, such as in physical [18|, chemical [19] and biologi-
cal [20] applications. In [20], Zhang and Zhao proposed a diffusive predator—prey model with the toxic
substance.

In these work, the authors have treated models concerning marine species in predator and/or
competition with respect to time. And in others, they worked out the spatial diffusion for the general
models.

The novelty of this paper is in the presenting a tritrophic model concerning marine species well
specified, namely:

— at the primary level, there are the phytoplankton (of which microalgae are a part);
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— the zooplankton (which belongs to the animals) constitute the secondary level and consume the
phytoplankton;
— anchovies or sardines represent the tertiary level.

And, moreover, we consider the space-time diffusion in the model that we propose.

2. Formulation of the mathematical model

In this section, we give the formulation of the diffusive biological model. The proposed tritrophic
model concerns prey (planctonic) organism, predators and super predator species, denoted by b, p and
v, respectively. We assume that the three populations inhabit in a heterogeneous environment, so
they move from one region to another, their biomasses depend not only on time 7" but also on spatial
location, which is more realistic.

We denote by b(7, ) the biomass of population b at time 7" and the spatial position x.

The first equation describes the evolution of the biomass concerning planctonic organism.

The number of encounters between plant and prey is both proportional to b and p and, therefore,
proportional to the product bp.

The number of encounters between prey and predators is both proportional to p and v and, therefore,
proportional to the product pv.

The following system is considered to model the evolution of the biomasses of the three populations:

ob(T,xz) b

87’1" = Elb <1 — E) — ,Blbp, V(T,x) S [O,Tf] X Q,

op(T

wTw) _ D1 Ap(T, ) + e2p <1 - i) — Bapv + Bobp, V(T,z) € [0,Ty] x Q,
or Ky

QUT2) _ py (T, ) + 23V <1 - i) + Bapv, V(T ) € [0,Ty] x Q, M)
or K3

ob(T,xz) Op(T,x) Ov(Tx)
o~ an  on 0, Vn € Q,

L b(0,2) =byp >0, p(0,2)=po>0, v(0,z)=v9>0, VaeQ,

where A = g—; + g—; represents the usual Laplacian operator, € is a fixed and bounded domain in R?
with smooth boundary 92, n is the outward unit normal vector on the boundary, the time ¢ belongs
to a finite interval [0,T%], while z varies in Q. Here the homogeneous Neumann boundary condition
implies that the above system is self-contained and there is no migration across the boundary.

All parameters are positive; €1, €9 and €3 denote the intrinsic growth rates of plants population,
prey and predator, respectively; D1 and Dy are diffusion coefficients; K1, Ko and K3 are the carrying
capacity of the plant’s environment, the prey’s environment and predator’s environment, respectively.
01 coefficient interaction between biomass of plant and prey, 82 and B3 coefficient interaction between
prey and predator. To simplify the system (1), we introduce the changes of variables:

b p
t=e1, B=—, P=-—

€14, K17 K27

D D K
dl:_17 d2:_27 bOZIBO 27

€1 &1 €1

K. K K.
blzﬁl 2. b2:52 3 bg:ﬁs 2

€1 €1 €1
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The system (1) becomes:

aBéi’x) — B(1- B)—bBP, v(t,z) € 0, Ty] x &,

O] gy aP(2) + 2P (1~ P) 0PV 4+ 0BP,  Y(1,2) € 0,77] < 0,
1

avé()t{ ) _ AV 1)+ ?V (1=V)+b3PV, V(t,x) € [0,Tf] x Q, .
1

OB(t,z) OP(t,z) 0OV(t,x) _

o on  ap e
B(0,z) = Bo >0, P(0,2)=P >0, V(0,2)=V>0, YreQ.

3. Existence and stability of equilibrium points

In this section, we will study the stability of the equilibrium states of the system (2).

3.1. Existence and boundary of solutions

The population B, P and V should remain non-negative and bounded.

To prove the existence of a global strong solution, we use the following notation: W12([0, T]; H(£2))
is the space of all absolutely continuous functions.

Let:

LT, 2) = L([0, T); H2(2)) 1 L(0,T); H(2)).

—y = (y1,y2,y3) = (B, P,V) is solution of the system (5), with y° = (v9,49,43) = (Bo, Po, Vo).

— A is the linear operator defined as follow:

{ A: D(A) C HQ) — H(Q),
Ay = (07d1Ay27d2Ay3) S D(A),Vy € D(A)7

with the domain of A is defined for all y = (y1,y2,y3) in D(A) by

D(A) = {y € (H2(Q))3788—lj71 = 88—27/72 = 8@_@;3 =0,a.e. € 89}.

Theorem 1. Let {2 be a bounded domain from R?, with the boundary of class C*T®, a > 0, and
smooth enough y) > 0 on 2 (for i = 1,2,3), the system (2) has a unique (global) strong solution
y € WL2([0,T); H(£2)) such that

(y1,y2,y3) € L(T, £2) N L™=(Q).

In addition 1, y2,y3 are non negative.
Furthermore, there exists C* > 0 for all t € [0, T}

% oy Il + Il + Il < €% fori =123 3)
Proof. Let
fily(®) = (1 —y1) — biyiye,
fa(y(t)) = i—fm(l — y2) — bayoys + boyry2, t € (0,17, (4)
Fo(w(t) = Zus(1 — ys) — bsways.
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We consider f(y(t)) = (fi(y(t)), f2(y(t)), f3(y(t))), then we can rewrite our system in the space
H ({2) under the form
W — Ayt F(®), te 0T
y(0) = »°.
As the operator A is dissipating and self adjoint and generates a Cy semi group of contractions on

H(0), since | y; |[< N for i = 1,2,3, where N is a constant that represents the total population.
Indeed, suppose vy (t) and yj(t) be two functions, then we get:

11y (@) = Arr ) = llya (1 —y1) — biyaya — (yi (1 — y7) — bryiye)||
= [ly1(1 —y1) —yi (1 — 1) — baya(ya — y7) |l
< (1= biSupsegoryly2l) llyr — w1l
< Mallyr — i,

()

where M; = (1 — blsupte[QTf]\yg]).
Repeating the same procedure as in Eq. (4) above, we have:

[f2(v2(8)) = fa(wz (D) < Maly2 — 5,

[ f3(y3()) — fs(ys @I < Msllys — w3l

where M;(i = 1,2,3) are the corresponding Lipschitz constant for the functions f;() for i = 1,2, 3.

Thus function f = (fi, f2, f3) becomes lipshitz continuous in y = (y1,y2,y3) uniformly with
respect to ¢ € [0,7%], then the problem (1) admits a unique strong solution y = (y1,v2,¥3) €
Wh2([0,T]; H(£2)). Indeed, if we denote

M= maX{Hf2”L°°(Q) ; ngLw(Q)} ’

and {P(t),t > 0} is the Cpy — semi-group generated by the operator

x: D(x) € L*(Q) — L*(Q),

where xyy = d1Ays and D(y) = {yg c H*(Q), %—ynz =0, a.e. 8&'2}.

It is obvious that function Ya(t, z) = y2 — ||yl (q) satisfies the Cauchy problem

oY,

E(t’x) =AY, + f3 — HngLw(Q) :

The corresponding strong solution is
¢
at) = PO = Il=i@) + | Pt = 9)(Ra(o()ds.

Since ¥ — (|49l L) < 0 and fo(y(t)) < 0, it follows that Ya(t,z) < 0, V(t,2) € Q. Moreover the
function Wa(t,2) = ya + |49l 1 () satisfies the Cauchy problem

%(f,ﬂj) = dlAYg =+ f2(y(t)), te [O,Tf],

W2 (0,2) = 48 + 193] Lo (o) -
The strong solution is
t
Wi(t) = P(t) (93 + 93]l () +/0 P(t — s)(fa(y(s)) + M) ds.
Since Y3 + ||yl Lo () = 0 and fa(y(t)) = 0, it follows that Wa(t,x) > 0, V(t,z) € Q. Then

’yQ(tVr)’ < ”ngLw(Q)a v(th') €Q,
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d, similar]
and, similarly lyi(t,2)| < Hy?HLw(Q)v V(t,z) € Q@ for i=1,3.

Thus we have proved that y; € L>®(Q)(V(t,x) € Q) for i = 1,2, 3. To show the positivity of yo, we set
Yo = y; — Yy with
ya (t,a) = sup{ya(t, ), 0},

Yo (t,l‘) = sup{—yg(t,w),O}.

One multiplies % = M Ays + Z—;yg(l — y2) — bayays + boy1y2 by y, , integrates over 2 then

—é%(é%?@@m>=LMW%@@%M+EL%YO—%WJMw
~b [ Pty do o+ [ o Pt de

which involves
1d

s ([ Pee)ds) = b [ ) eorde+ b [ ns)20.0) do
2dt Q Q Q
As y3 < |ys] < N and y1 < |y1| < N, then —boys > —balys| = —ba N and boyy < boly1| < boN, we have
1d
3 ([ 0Pta)de) = —bo | Nz Ptayde st [ Mgt do.
Gronwall’s inequality conduits to
/(yz_)2(t,a:) dx < et(-b2tbo)N / (yz_)z(O,a:) dx.
Q Q
Then _
One deduces that ys(t,z) > 0, V(¢t,z) € Q. In addition, system
0
A y1(1 —y1) — biy1ye,

ot (6)

0 3 £3
—éyt = A3Ay3 + —y3(1 — y3) — b3yays3
€2

can be written as

0
% = MAYy + F (y1,y3)
0
% = A3Ay3 + G (y2,y3) -

It is easy to see that F(y1,y3) and G(y1,y3) are continuously differentiable satisfying F(0,y3) = 0
and G(y2,0) = 0, for all y;,y3 > 0. Since initial data of system (6) are nonnegative, we deduce
the positivity of y; and ys (see [21]). One deduces that y;(¢t,xz) > 0, y2(¢t,x) > 0 and ys(t,z) > 0,
V(t,z) € Q. By the second equation of (6) we get:

t 2 t t 8y3
// dsdaz—l—)\g/ /|Ay3|2d8d$—2/\3/ /—Aygdsdzn
0 JQ 0 JQ 0 Ja 0Os
t €3 2
=/ / (—yg(l—yg)—b3y2y3> dsdz,
0 JO \&2

9ys
Os

via Green’s formula we have
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t 15,
//ﬂAygdm:/ (=1Vus? + V43 P) da,
0 Ja Os Q

then

I

9ys

2 t
chds+A§/‘/ﬁayg%Mds+2A§/yvmﬁdx—2A§/|v@ﬂﬂm
Os 0 Ja Q Q

t c 2
= / / (—3y3(1 —y3) — b3y2y3> dx ds.
0 Ja \€2

Since y§ € H?(Q) and ||y;|| e (@) for i =1,2,3 are bounded independently, it yields that

ys € L (0,T; H'(Q))

and the inequality in (3) holds for i = 3. The remaining cases can be treated similarly. ]

Theorem 2.

1. For all positive functions By, Py and V{y given, the system (1) admits a global and regular solution.

2. The domain RT x R™ x RT is positively invariant.

3. Any solution of the problem (1) whith initial condition is in RT x RT x RT, converges to the set
defined by

A=[0,1] x [0,1] x {o,?m;;].
1

Proof. Let us first consider the second equation of the problem (1), we obtain:

0B

< _

5 S B(1 - B),
0B

E — 07 t > 07

B(z,0) = Bo(z) < Bo1 = max By().
Q

Bo 7 is the solution of

By the principle of comparison, we have B(z,t) < Bi(t) < 1. By(t) = Bori—Boe

the following problem:
dB1
— =B (1-B
dt 1 ( 1) Y

Bl(O) = By < 1.

Following the first equation of problem (1), we have:

oP €9

“ < d;AP+22P(1- P),
ot dy + o ( )
oP

5, =0 >0,

P(z,0) = Po(z) < P = max By(z).
Q

Poy

By the principle of comparison, we have P(z,t) < Pi(t) < 1. Pi(t) = Fortea/e (=P

of the following problem:

— is the solution

From second equation of system (1) and as P(t,z) < 1, we get
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WV AV + BV = V) 4+ PV < AV 4V <5—2(1 —V)+ b3> ,
ot €1 €1

oV

5, =0 t>0,

V(z,0) = Vo(z) < Vor = max Vo(z).

According to the principle of comparison, we have V(t,z) < Vi < 1 where
\%
Vor + e~ (£(1 = Vor) + b)

is a solution of the following differential equation:
dV1 €3
— = =(1-W bs | Vi
9 <€1( 1) + 3> 15

‘/1(()) - Vbl < 17

Which gives the result.
*Solution remains in the invariant region:
Following the same way of argument as in 2, we have for any initial condition of the system (1)

(Bo(l’),Po(ZE),‘/E](QZ‘))
0<B< 507 SO(O) = m_aXBo(ﬂf),
Q
0<P<S, S51(0)= mgxPo(ac),
0<V < Sy, S52(0) = max Vo(z).

Thus, we can say that the domain R*™ x RT x RT is positively invariant and the solutions of the
system (1) are bounded By(x) > 1 and Py(x) > 1. On the other hand, from [22,23| we have:

lim So(t) < 1,

t——+o0

lim Sl(t) < 1,

t——+o0

lim Sg(t) <1+ bs.

t——+o0

The solution is convergent. ]

4. Equilibrium points

The equilibrium points are defined by resolving the system:
B.(1—-B.) —b0B.P. =0,

AP, + 2P, (1— P.) — byP.V, + by B.P. = 0, 0
€1
dy AV, + i—?’ve (1— V) +bsP.V, = 0.
1

Theorem 3.

i) Ey = (0,0,0),

ii) By = (1,0,0), B2 = (0,1,0), E5 = (0,0,1),

jﬁ) E, = (Bo,Po,O), Es = (07P1,V1)7 Eg = (170’1)7
with

_ 61/82 + bg _ 81/62(1 + bl) _ Eg(bg — 62) _ 82(28362 + bobg — Egbg)
0 £1/e2 + boby ’ 0 e1/e2 + boby ’ ! €389 + bobs’ ! ba(e3e2 + babs)

Mathematical Modeling and Computing, Vol.9, No. 3, pp. 647-662 (2022)



654 Baala Y., Agmour I., Rachik M.

Proof. The other fixed points are determined by the following system:
(1-B)—0P=0,

€1
1—-P)— —=bV=0
( ) E22 ) (8)

1-V)+ ZLogP =0.
€3

The first system equation (8):

pr_ G2t e2bobs — e3b1bobs(e2 — 1)
€39 + €%b2b3

The second system equation (8):
pr _ E3babs(e2 —e1)
£3€9 + €%b2b3 ’

The third system equation (8):
VE— e2b3(e3 +€1)

€32 + €%b2b3 '

In the following we study the local stability of trivial points. ]
The Jacobian matrix associated with an equilibrium point (B, P, V') is given by

1-2B—bP ~b1B 0
J(B,P,V) = bo P 220 )V 4B —by P
2V
0 bV 22 4 b3P

4.1. Analysis stability

Theorem 4. The system admits the following equilibrium points:

i) the trivial equilibrium point Ey = (0,0,0);

ii) the axial equilibrium point Ey = (1,0,0), E2 = (0,1,0) and E3 = (0,0, 1);

iii) the interior equilibrium point E, = (By, Py,0), E5 = (0, P;,V1) and Eg = (1,0,1).
with

El/Eg—l—bo B 81/62(14-[)1) p— 63(52—62) V, = €9 (28362—1-[)21)3—6352)
b2 (6362 + b2b3)

0~ e1/e2 + boby’ 0~ e1/e2 + boby YT e3ep + boby”

Proof. Let us determine the eigenvalues of the Jacobian matrix associated with each equilibrium Fj,

i=0,1,2.

1 0 O -1 - 0 1-b61 O 0
JE)=|0 2 0 |, JE)=| 0 2+b 0 |, J(BE)= bp -2 b ,
& g g
00 = 0 0o =2 0 0 2+
1-2By—01 P —b1 By 0
1 0 0
J(E;)=(0 Z-b 0 |; J(Ey)= bo P 220 LBy —hPy |,
0 by -2
0 0 Yt
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1-bP, 0 0
J(Es5) = boPr 222 _py —by Py ,
: 2V 1e:
0 b3Vi e L !
—1—-b —by 0
J(Eg) = bo i—f — 266—12 + b —bo
0 0 3+ b
e The ecigenvalues of the matrix J(Ep) are
M=1>0, d=2>0, \=2>0.
€1 &1
So, the point Ey = (0,0,0) is an unstable point.
e The ecigenvalues of the matrix J(E;) are
M=—-1<0, =250 Mn=2>0
€1 €1
So, E1 = (1,0,0) is a saddle point.
e The ecigenvalues of the matrix J(Es) are
Me=l-by, M=-2<0 A=234b3>0
&1 &1
So, Ey = (0,1,0) is a saddle point.
e The ecigenvalues of the matrix J(FE3) are
A =1, )\226—2—1)2, )\3:—6—2<0.
€1 &1

So, E5 = (0,1,0) is a saddle point.
e The eigenvalues of the matrix J(E,) are

M = = (— Va2 — 2ad — 4b1 Bobo Py + d2 + a + d) < 0,

| =D =

Ao =5 (Va2 — 2ad — 4by Bobo Py + d2 + a + d) > 0,

e
)\3:—3+b3P0>0
€1

Witha:1—230—b1P0,dzi—f—yz(%-FboBQ,f:Z—T-FbgP().

So, E4 = (By, Py, 0) is a saddle point.
e The ecigenvalues of the matrix J(Fs) are

/\1:1—b1P1<0,

AQZ%(—\/c2—2cf+4de+f2+c+f) <0,
Agz%(\/c2—2cf+4de+f2—|—c+f) >0

Witha:1—b1P1,b:bopl,625—2—2P—1€2—b2V1,d:—b2P1,ezbgvl,fze—?’—mg;fg+bgpl.

€1 €1 €1

So, E5 = (0, P, V1) is a saddle point.
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e The ecigenvalues of the matrix J(FEs) are

M= 4 by >0,
€1
1
do = 5(=Va? —2ad — dbibo + @ +a+d) <0,

/\3:%(\/a2—2ad—4b1bo+d2+a—|—d) >0

witha=—1—by,d=2—22 4 by, e =—by, f =+
So, Eg = (1,0,1) is a saddle point.

|
4.2. Interior equilibrium
The other fixed points are determined by the following system:
(1-B)—0P=0,
&1 €1
1—P)——bV+—=bB =0,
( ) £9 2 £9 0 (9)

1-V)+ ZLbgp =0.
€3

The first system equation (9):

_ 61/€3b253 +€2/€1 + by — by (62/61 + by — bg)

B*
61/63b253 + 62/61 + bs

The second system equation (9)

. g2/€1 + by — bo
"~ e1/e3babs +ea/er + by

The third system equation (9)

62/61 + bo) (El/Egbgbg + 82/61 + bg) — (62/61 + by — bg) (62/61 + bobl)

. (
V* =
(61/€3b2b3 + 62/61 + b2) by

Theorem 5. Ifthe condition ay > 0 is satisfied, then the system (2) has a unique positive equilibrium
point E* = (B*, P*, V*).

Proof. The Jacobian matrix associated with an equilibrium point E*(B*, P*, V*) is given by

1—2B* — b P* —by B* 0
J(E*) = 0 220 pyV* 4 by B* —by P :
0 b3V* i—? — —2‘283 + bgP*

det(J(E*) — /\) = (J11 — /\) ()\2 — /\(J22 + J33) + JooJ33 + b3b3V*P*) ,
with Jip = 1= 2B* — b1 P*, Jyy = 2 — 22222 — ) V* 4+ bgB*, Jag = & — 2258 4 by P*,

We see that the characteristic equatiorf 1of J(E*) has an eigenvalue. Value A\ = Jy; is negative. So,
in order to determine the stability of the E*, we discuss the roots of the following equation A%+ a\+ b,
with a = —(J22 + Jgg) and b = JyoJ33z + b3bsV* P*.

By Routh—Hurwitz criterion, if ¢ > 0 and b > 0, the eigenvalue is negative.

We see that the first eigenvalue, if a and b are negative, E* is stable; otherwise, £* and is a saddle

point. ]
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5. The existence of the optimal control

Therefore, we adopted our mathematical model by introducing a control u(z,t) in the third equation
of system (10) as a control measure to combat the spread of predators,

0B(t,x) B
— = e1B <1 K1> pS1BP, V(t,x) € (0,400) x Q,
M - DlAP(t,:E) = €2P (1 - £> - ﬁgp‘/, \V/(t,ﬂj‘) S (0, +OO) X Q,
ot K,
% — DAV (t,x) = 3V <1 — KL> + B3PV —u(z,t)V, V(t,z) € (0,400) x Q, (10)
3
0B 0P 0V
8_77_8_77_8_77_0’ on 0,
B(0,x) =By >0, P0,x)=PFP >0, V(0,z)=Vy,>0.

The objective of our work is to minimize the predator population and the cost of implementing the
control by using possible minimal control variables w,

T
J(X, ) :p/ /ng(t,x) drdt + 2l ) (11)
0

In the objective functional, the quantity p represents the weight constant of shark fishing, n is the weight
constants for mechanisms on shark fishing control. The terms gHuH%Q (@) are the costs associated to
the mechanisms on shark fishing control. The square of the controls variables reflects the severity of
the side effects of the mechanisms on shark fishing. Our objective is to find control functions such that

J((B*, P*,V*);u*) =min {J((B, P,V);u),u € Uyq} .
Subject to system (10), where the control set is defined as
Usg = {u e (L=(Q)2/0 < u < u™™* ae. (t,z) € Q} .

For biological reasons, the following are assumed to hold: B(0,z) = B® > 0, P(0,2) = P° > 0, and
V(0,z) =V°>0.

Theorem 6. Under the hypotheses of theorem 2, the optimal control problem (10) admits an optimal
solution (X*,u).

Proof. From Theorem 2, we know that, u, X;, X, and X3 are bounded uniformly in L*>°(Q),J is
finite. Let (u™) € Uyq be a minimizing sequence such that

lim J (X", u")) = inf J(X,u),

n—o u€Uyq

where (X7, X7, X%) is the solution of system (10) corresponding to the control u” for n = 1,2,....
That is

( 0X7 Xp

atl = X7 ( - ﬁ) - X7 XY,

oXy Xy

2 = DIAXY 4 eoXP (1 - 22 ) — BoXPXE + Bo X] XY,

ot Koy
X7 Xy

0X5 _ DoAXY +e3XP (1 — 22 ) + B X0 XP — u" X7, (12)
ot K3

OXy _0Xgy _0xy _
o om  anp 7

Condition initail.
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Using the estimate (2) and H'(Q) is compactly embedded in L?(€2), so we deduce that X7 (¢) is
compact in L?(2). Let us show that {X]'(¢),n > 1} is equicontinuous in C ([0, T]: L*(£2)). As % is
bounded in L?(Q), this implies that for all s,t € [0,7]

[ o2 ayde— [ (772 (0o
Q

Q

< Kt — 5|

The Ascoli-Arzela theorem (see [24]) implies that X} is compact in C ([0,7]: L*(2)). Hence, selecting
further sequences, if necessary, we have X" — X7 in L?(2), uniformly with respect to .

Similarly, we have for X' — X in L?(Q) for i = 2,3 uniformly with respect to ¢. From the
boundedness of AX" in L?(Q), which implies it is weakly convergent in L?(Q) on a subsequence
denoted again Ay;’ then for all distribution ¢

/ OAXIdx = / X Apde — / XiApdr = / PAX7 dx.

Q Q Q Q

Which implies that AX] — AX* weakly in L*(Q), i =1,2,3,4. In addition, the estimates leads to
X" X
86; - 85; weakly in L*(Q), i =1,2,3

X! — X} weakly in L? (0,T; F?(Q)), i =1,2,3

X" — X weakly star in L (0,T; F1(Q)), i =1,2,3.
We now show that X' X7 — XX~ fori=1,2,3 and j = 1,2, 3 strongly in L?(Q), we write
XPXT - X7 X: = (XP - X)) X7+ X[ (X] - X7),
and we make use of the convergences X — X strongly in L*(Q),i=1,2,3, X — X; strongly
in L?(Q), j = 1,2,3 and of the boundedness of X7, X7 in L*®(Q), then X7'XT — XX} strongly
in L?(Q). We use 0 < 8" and 0 < %, and of the boundedness of 3*, 3" in L>(Q), we deduce that
ﬁ,"XZ-"X;‘ — ﬁ,*XZ-*X;»‘ fori=1,2,3 and j =1,2,3.

Since u™ is bounded, we can assume that u™ — u* weakly in L?(Q) on a subsequence denoted
again u™. Since U,q is a closed and convex set in L?(Q), it is weakly closed, so u* € U,q. We now
show that

u" XY — u* X3 weakly in L2(Q),
writing

"Xy —ut X3 = (X5 — X3)u" + (v —u") X3,

and making use of the convergences X§ — X3 strongly in L?(Q) and u" — u* weakly in L?(Q),
one obtains that u” X% — u* X} weakly in L?(Q).

By taking n — oo in (12), we obtain that y* is a solution of (...) corresponding to u* € Upg.
Therefore

T
* * * 77 *
J(X U ) = p/o /QXg(t,l‘) dx dt + EHU H%?(Q)
T n 2
< igl})lnf <p/0 /QXg (t,x)dzdt + §Hu ”L2(Q)>

T
— 1; n My, n2
_nh_{glo <p/0 /QX?) (t, ) dﬂ?dt—l—EHU ||L2(Q)>

= inf J(u).

u€Ugyq

This shows that J attains its minimum at (X*, u*), we deduce that (X*,u*) verifies problem (12) and
minimizes the object if functional (11). The proof is complete. ]
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6. Necessary optimality conditions

In order to establish the main result of this section (optimality conditions), let (X*,u*) be an optimal
pair and u® = u* + eu € Ugq(e > 0), be a control function such that u € L2(0,T; L?(2)) and u € Ugg.
Denote by X¢ = (X, X5,X35) = (X1, X2, X3)(v®) and X* = (X7, X5, X3) = (X1, X2, X3)(u*) the
solution of (12) corresponding to u$ and u*, respectively. Put X7 = X' +ezf fori = 1,2,3. Subtracting
system (12) corresponding u* from the system corresponding to u® we get

( 826 Zs
atl = &‘12,"1€ <1 — F11> — BlezS — ﬁlZ%X%,
075 z5
8t2 = D1Az5 + 925 <1 - é) — o X325 — Poz5 X5 — PoX{ 25 — Bozi X5, (13)
0728 5
;3 = Dol + 325 <1 - 2—2) + B35 X3+ B3 X525 — uXi — utes,

with the homogeneous Neumann boundary conditions

027 0z5 0z
2(0,2) =0, z€Q for i=1,23. (15)
Now we show that X7 are bounded in L?(Q) uniformly with respect to ¢ and that y5 in L?*(Q). To
this end, denote 2° = (X§, X5, X3)

21 — P1X5 —B X7 0 0
Fe = PoXz 2o — B2 X5 + Po X —02X3 . G=1] o0
0 Bs X3 z3p + B3 X5 — u X3
Then (13) can be written in the form
0z°
5 = Azf + F°2° + Gu, te[0,T],
25(0) = 0.
If (S(t),t > 0) is the semi-group generated by A, then the solution of this problem is given by
t t
25(t) = / S(t—s)F°(s)z°(s) ds + / S(t —s)(Gu(s)) ds. (16)
0 0

Since the elements of the matrix F* are bounded uniformly with respect to e, by Gronwall’s inequality
we are led to

1 X5 2 < K7
for some constant K* > 0 (i = 1,...,5). Then || X} — XZ-*HL2(Q) =c HX?”B(Q)' Thus X; — X in
L*(Q),i=1,2,3. Let

215 — P X3 -5 X7 0 0
F= BoXT Zop — o X3 + Bo X7 —B2 X5 and G = 0
0 B3 X3 23y + B3 X5 — u” X3

Then system (13)—(15) can be written as

% — Az + F2+Gu tel0,T),
2(0) =0

and its solution is given by
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z(t) = /0 S(t—s)F(s)z(s)ds +/0 S(t — s)(Gu(s)) ds, (17)

By (16) and (17) one deduces that
t

25(t) — 2(t) = /0 [S(t —s)F°(s) (2° — 2z) +z(s) (F*(s) — F(s))] ds.

Since all the elements of the matrix I tend to the corresponding elements of the matrix F in L?(Q),
and making use of Gronwall’s inequality, we conclude X — X7 in L*(Q) as € — 0, for i = 1,...,5.
This can be summarized by the following result.

Proposition 4. The mapping y: Uyq — WH2(0,T; H(Q)) with X; € L(T,Q) is Gateaux differen-
tiable with respect to u*. For u € Uy, v/'(u*)u = z is the unique solution in W12(0,T; H(f)) with
X; € L(T,9Q) of the following equation

0
a—j =Az+ Fz+ Gu, te[0,T],
z(0,z) = 0.
Moreover let R = (11, r2,73) the adjoint variable, we can write the dual system associated to the system
OR

——; ~AR—FR=D'DX", te[0.7T]

R(T,z) = D*DX*(T,x),

where v* is the optimal control, X* = (X7, X3, X3) is the corresponding optimal state and D is the
matrix defined by

0
D=0
0

o O O

0
0
1

Lemma 1. Under hypotheses of theorem (2), if (X*,u*) is an optimal pair, then the dual system
(14) admits a unique strong solution R € W12(0,T; H(2)) with p; € L(T,Q) fori=1,...,3.

Proof. The lemma can be proved by making the change of variable s = T — t and the change of

functions ¢;(s,x) = r;(T — s,z) = ri(t,x), (t,x) € Q, i =1,...,3 and applying the same method like

in the proof of theorem (2). [
In the following result, we give the first order necessary conditions.

Theorem 7. Let (u*) be an optimal control of (13) and let X* € W12(0,T; H(2)) with X} € L(T,)

for i = 1,2, 3 be the optimal state, that is X* is the solution to (13) with the control (u*). Then, there

exists a unique solution R € W42(0,T; H(Q)) with r; € L(T,) of the linear system

_%_]: — AR - FR=D*DX*, tcl0,T],
R(T,z) = D*DX*(T,x).

expression of the variational inequality leads to

X*
u* = min <umax,max <0, 3 7‘3)) .
n

Proof. Suppose (u*) is an optimal control and X* = (X7, X5, X3) = (X1, X2, X3)(u*) are the
corresponding state variables. Consider u® = u* + eh € U,q and corresponding state solution X¢ =
(X1, X5,X5) = (X1, X2, X3)(w®), p=(0,0,p). Since the minimum of the objective functional is
attained at u*, we have
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= liml p/T/ (X5 — X3) (t,x)dx dt + 1 /T/ ((u)? = (u*)?) (¢, z) dx dt
e=0¢ o Jo TP TP 2Jo Ja ’
T X& _ X* T
_ lim <p/ / <M) (t.2) dodt + ﬁ/ / (e(h)? + 2hu*) (t,2) da dt)
e—0 0 Q £ 2 0 Q

:p/OT/QXg(t,az)d:ndt+77/0T/Q(hu*)(t,:n)dazdt
T

T

Since J is Gateaux differentiable at ©* and U4 is convex, as the minimum of the objective functional
is attained at uw* it is seen that J'(u*)(v — u*) > 0 for all v € U,y. We take h = v — u* then
J(u*)(v—u*) = fOT<G*T +nu*, (v —u*))(2(q)2dt. We conclude that J'(u*)(v —u*) > 0 equivalent to
f0T<G*7’ +nu*, (v —u*))(L2(Q)2dt > 0 for all v € Uyg. By standard arguments varying v, we obtain

nu* = —G*r.
Then
. _ X3
u = 3.
As (u*) € Uyq, we have
u* = min (uma", max (0, )573 7’3)) . [

7. Conclusion

In this work, we have investigated a new tritrophic spatio-temporal model. A reaction-diffusion system
concerns phytoplanktonic organisms. We have studied the existence and stability of the different
equilibrium points. Moreover, we have proved the existence of the optimal control that can ensure the
sustainability of planktonic organisms in the presence of super predator species.
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OnTumanbHe kepyBaHHA TPUTPO(HOIO peakuiiHo-aAndgy3iiHoK
CMCTEMOI0 3a A0MOMOrol0 NPOCTOPOBO-4aCcoOBOI Moaeni

Baama FO., Armyp 1., Pauuk M.

Jlabopamopisa ananisy, modearosarns ma cumyaauit, Yuieepcumem Xacana I, Kacabranka, Mapoxko

Y 1iit cTaTTi TPOMOHYETHCA HOBA MOJIENIb ITIPOCTOPOBO-YACOBOI IMHAMIKH, IO CTOCYETHCS
TpuTpodHOT peakIiitHo-1udy3iitHol cucremu, BBOASYIN (DITOILIAHKTOH 1 30011aHKTOH. Ha-
raJlaeMo, 1o (iTOMIAHKTOH i 300IIAHKTOH € OCHOBOIO MOPCBHKOTO XapdOBOTO JIAHITIOTa. Y
KOXKHIlf MOpCBKiii TpuTpodHiii cucremi € 3700m4. OCHOBHOIO METOIO Ii€l PoOOTH € KOH-
TpoJIb HioMach IbOro BUIY JJjisi 3abe3nedents: cTikocTi cucremu. 1Ilo6 mocartu mporo,
BU3HATAEMO ONTUMAJILHUN KOHTPOJIb, AKUI MiHiMi3ye 6iomacy cymnepxmKakiB. ¥ Iiiit crarT-
Ti JOCTIIXKY€EThCS ICHYBaHHS Ta CTIWKICTh BHYTPIHBOI TOUKHU piBHOBarm. OKpema yBara
HaJaHA XaPAKTEPUCTHUII ONTUMAJIBHOTO KEDYBaHHS.

Knto4oBi cnoBa: npocmoposo-4aco6a OuHaMiKa, PEGKUItHO-OuPY3ilna cucmema, onmu-
MANOHE KEPYBAHHA, MAKCUMIZAULA, CTITKICMD.
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