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In this paper, we propose a new model of spatio-temporal dynamics concerning the
tritrophic reaction-diffusion system by introducing Phytoplankton and Zooplankton. We
recall that the phytoplankton and zooplankton species are the basis of the marine food
chain. There is prey in each marine tritrophic system. The main objective of this work
is to control this species’s biomass to ensure the system’s sustainability. To achieve this,
we determine an optimal control that minimizes the biomass of super predators. In this
paper, we study the existence and stability of the interior equilibrium point. Then, we
move to give the characterization of optimal control.
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1. Introduction

Since the relationship of different biological species is widespread in nature, many scholars have done a
lot of works on the dynamic behavior of the prey-predator model; researchers have studied this field for
many years since the pioneering work done by Lotka and Volterra. The authors present the well-known
Lotka–Volterra predator–prey model. It is established that the response function is the key element
of predator-prey models. The ratio-dependent functional response was first proposed by Leslie and
Gower in 1973 [1, 2]. The authors explain that a predator’s number is described by prey density, as
well as by the ratio of predator density to prey density. This model is also known as the Holling–Tanner
predator–prey model [3]. The dynamics (local and global stability, limit cycles) and pattern solutions
of Holling–Tanner predator–prey model have already been investigated [4–7]. Such factors as delay and
randomness are also considered in the recent literature [8,9]. The fuzzy approach is also considered to
construct the predator–prey model [10, 11]. Besides, the Holling–Tanner–type predator–prey models
are attractive for their results for modeling the real ecological interactions between prey and predator
species.

Some biological species can release toxic substances that can affect the growth of other species [12–
15]. In [16], Chattopadhyay studied the local and global stability of the interior equilibrium of a
two-species competitive system with toxic substances. In [17], Kar and Chaudhuri considered a two-
species competing model with harvesting effect and toxic substances. In addition, reaction–diffusion
models arise in a variety of real-world problems, such as in physical [18], chemical [19] and biologi-
cal [20] applications. In [20], Zhang and Zhao proposed a diffusive predator–prey model with the toxic
substance.

In these work, the authors have treated models concerning marine species in predator and/or
competition with respect to time. And in others, they worked out the spatial diffusion for the general
models.

The novelty of this paper is in the presenting a tritrophic model concerning marine species well
specified, namely:

– at the primary level, there are the phytoplankton (of which microalgae are a part);
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– the zooplankton (which belongs to the animals) constitute the secondary level and consume the
phytoplankton;

– anchovies or sardines represent the tertiary level.

And, moreover, we consider the space-time diffusion in the model that we propose.

2. Formulation of the mathematical model

In this section, we give the formulation of the diffusive biological model. The proposed tritrophic
model concerns prey (planctonic) organism, predators and super predator species, denoted by b, p and
v, respectively. We assume that the three populations inhabit in a heterogeneous environment, so
they move from one region to another, their biomasses depend not only on time T but also on spatial
location, which is more realistic.

We denote by b(T, x) the biomass of population b at time T and the spatial position x.

– The first equation describes the evolution of the biomass concerning planctonic organism.
– The number of encounters between plant and prey is both proportional to b and p and, therefore,

proportional to the product bp.
– The number of encounters between prey and predators is both proportional to p and v and, therefore,

proportional to the product pv.

The following system is considered to model the evolution of the biomasses of the three populations:





∂b(T, x)

∂T
= ε1b

(
1− b

K1

)
− β1bp, ∀(T, x) ∈ [0, Tf ]× Ω,

∂p(T, x)

∂T
= D1∆p(T, x) + ε2p

(
1− p

K2

)
− β2pv + β0bp, ∀(T, x) ∈ [0, Tf ]× Ω,

∂v(T, x)

∂T
= D2∆v(T, x) + ε3V

(
1− v

K3

)
+ β3pv, ∀(T, x) ∈ [0, Tf ]× Ω,

∂b(T, x)

∂η
=
∂p(T, x)

∂η
=
∂v(Tx)

∂η
= 0, ∀η ∈ Ω,

b(0, x) = b0 > 0, p(0, x) = p0 > 0, v(0, x) = v0 > 0, ∀x ∈ Ω,

(1)

where ∆ = ∂2

∂x2
+ ∂2

∂y2
represents the usual Laplacian operator, Ω is a fixed and bounded domain in R

2

with smooth boundary ∂Ω, η is the outward unit normal vector on the boundary, the time t belongs
to a finite interval [0, Tf ], while x varies in Ω. Here the homogeneous Neumann boundary condition
implies that the above system is self-contained and there is no migration across the boundary.

All parameters are positive; ε1, ε2 and ε3 denote the intrinsic growth rates of plants population,
prey and predator, respectively; D1 and D2 are diffusion coefficients; K1, K2 and K3 are the carrying
capacity of the plant’s environment, the prey’s environment and predator’s environment, respectively.
β1 coefficient interaction between biomass of plant and prey, β2 and β3 coefficient interaction between
prey and predator. To simplify the system (1), we introduce the changes of variables:

t = ε1T, B =
b

K1
, P =

p

K2
,

d1 =
D1

ε1
, d2 =

D2

ε1
, b0 =

β0K2

ε1
,

b1 =
β1K2

ε1
, b2 =

β2K3

ε1
, b3 =

β3K2

ε1
.
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The system (1) becomes:





∂B(t, x)

∂t
= B (1−B)− b1BP, ∀(t, x) ∈ [0, Tf ]× Ω,

∂P (t, x)

∂t
= d1∆P (t, x) +

ε2
ε1
P (1− P )− b2PV + b0BP, ∀(t, x) ∈ [0, Tf ]× Ω,

∂V (t, x)

∂t
= d2∆V (t, x) +

ε3
ε1
V (1− V ) + b3PV, ∀(t, x) ∈ [0, Tf ]× Ω,

∂B(t, x)

∂η
=
∂P (t, x)

∂η
=
∂V (t, x)

∂η
= 0 , ∀η ∈ Ω,

B(0, x) = B0 > 0, P (0, x) = P0 > 0, V (0, x) = V0 > 0, ∀x ∈ Ω.

(2)

3. Existence and stability of equilibrium points

In this section, we will study the stability of the equilibrium states of the system (2).

3.1. Existence and boundary of solutions

The population B, P and V should remain non-negative and bounded.
To prove the existence of a global strong solution, we use the following notation: W 1,2([0, T ];H(Ω))

is the space of all absolutely continuous functions.
Let:
– L(T,Ω) = L2([0, T ];H2(Ω)) ∩ L∞([0, T ];H1(Ω)).
– y = (y1, y2, y3) = (B,P, V ) is solution of the system (5), with y0 = (y01 , y

0
2, y

0
3) = (B0, P0, V0).

– A is the linear operator defined as follow:

{
A : D (A) ⊂ H(Ω) −→ H(Ω),
Ay = (0, d1∆y2, d2∆y3) ∈ D(A),∀y ∈ D(A),

with the domain of A is defined for all y = (y1, y2, y3) in D(A) by

D(A) =

{
y ∈

(
H2(Ω)

)3
,
∂y1
∂η

=
∂y2
∂η

=
∂y3
∂η

= 0, a.e. ∈ ∂Ω

}
.

Theorem 1. Let Ω be a bounded domain from R2, with the boundary of class C2+α, α > 0, and
smooth enough y0i > 0 on Ω (for i = 1, 2, 3), the system (2) has a unique (global) strong solution
y ∈W 1,2([0, T ];H(Ω)) such that

(y1, y2, y3) ∈ L(T,Ω) ∩ L∞(Q).

In addition y1, y2, y3 are non negative.
Furthermore, there exists Cst > 0 for all t ∈ [0, Tf ]

∥∥∥∥
∂yi
∂t

∥∥∥∥
L2(Q)

+ ‖yi‖L2(0,T,H2(Ω)) + ‖yi‖H1(Ω) + ‖yi‖L∞(Q) 6 Cst, for i = 1, 2, 3. (3)

Proof. Let 



f1(y(t)) = y1(1− y1)− b1y1y2,

f2(y(t)) =
ε2
ε1
y2(1− y2)− b2y2y3 + b0y1y2, t ∈ [0, Tf ],

f3(y(t)) =
ε3
ε1
y3(1− y3)− b3y2y3.

(4)
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We consider f(y(t)) = (f1(y(t)), f2(y(t)), f3(y(t))), then we can rewrite our system in the space
H(Ω) under the form 




∂y

∂t
= Ay + f(y(t)), t ∈ [0, T ],

y(0) = y0.
(5)

As the operator A is dissipating and self adjoint and generates a C0 semi group of contractions on
H(Ω), since | yi |6 N for i = 1, 2, 3, where N is a constant that represents the total population.

Indeed, suppose y1(t) and y∗1(t) be two functions, then we get:

‖f1(y1(t))− f1(y
∗
1(t))‖ = ‖y1(1− y1)− b1y1y2 − (y∗1(1− y∗1)− b1y

∗
1y2)‖

= ‖y1(1− y1)− y∗1(1− y∗1)− b1y2(y1 − y∗1)‖
6
(
1− b1Supt∈[0,Tf ]|y2|

)
‖y1 − y∗1‖

6M1‖y1 − y∗1‖,
where M1 = (1− b1Supt∈[0,Tf ]|y2|).

Repeating the same procedure as in Eq. (4) above, we have:

‖f2(y2(t))− f2(y
∗
2(t))‖ 6M2‖y2 − y∗2‖,

‖f3(y3(t))− f3(y
∗
3(t))‖ 6M3‖y3 − y∗3‖,

where Mi(i = 1, 2, 3) are the corresponding Lipschitz constant for the functions fi(·) for i = 1, 2, 3.
Thus function f = (f1, f2, f3) becomes lipshitz continuous in y = (y1, y2, y3) uniformly with

respect to t ∈ [0, Tf ], then the problem (1) admits a unique strong solution y = (y1, y2, y3) ∈
W 1,2([0, T ];H(Ω)). Indeed, if we denote

M = max
{
‖f2‖L∞(Q) ,

∥∥y02
∥∥
L∞(Ω)

}
,

and {P (t), t > 0} is the C0 – semi-group generated by the operator

χ : D(χ) ⊂ L2(Ω) −→ L2(Ω),

where χy = d1∆y2 and D(χ) =
{
y2 ∈ H2(Ω), ∂y2∂η = 0, a.e. ∂Ω

}
.

It is obvious that function Y2(t, x) = y2 − ‖y02‖L∞(Ω) satisfies the Cauchy problem

∂Y1
∂t

(t, x) = d1∆Y2 + f02 −
∥∥y02
∥∥
L∞(Ω)

.

The corresponding strong solution is

Y2(t) = P (t)
(
y02 − ‖y02‖L∞(Ω)

)
+

∫ t

0
P (t− s)(f2(y(s))) ds.

Since y02 − ‖y02‖L∞(Ω) 6 0 and f2(y(t)) 6 0, it follows that Y2(t, x) 6 0, ∀(t, x) ∈ Q. Moreover the
function W2(t, x) = y2 + ‖y02‖L∞(Ω) satisfies the Cauchy problem





∂W2

∂t
(t, x) = d1∆Y2 + f2(y(t)), t ∈ [0, Tf ],

W2(0, x) = y02 + ‖y02‖L∞(Ω).

The strong solution is

W1(t) = P (t)
(
y02 + ‖y02‖L∞(Ω)

)
+

∫ t

0
P (t− s)(f2(y(s)) +M) ds.

Since y02 + ‖y02‖L∞(Ω) > 0 and f2(y(t)) > 0, it follows that W2(t, x) > 0, ∀(t, x) ∈ Q. Then

|y2(t, x)| 6 ‖y02‖L∞(Ω), ∀(t, x) ∈ Q,
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and, similarly |yi(t, x)| 6 ‖y0i ‖L∞(Ω), ∀(t, x) ∈ Q for i = 1, 3.

Thus we have proved that yi ∈ L∞(Q)(∀(t, x) ∈ Q) for i = 1, 2, 3. To show the positivity of y2, we set
y2 = y+2 − y−2 with

y+2 (t, x) = sup{y2(t, x), 0},
y−2 (t, x) = sup{−y2(t, x), 0}.

One multiplies ∂y2
∂t = λ2∆y2 +

ε1
ε2
y2(1− y2)− b2y2y3 + b0y1y2 by y−2 , integrates over Ω then

− 1

2

d

dt

(∫

Ω
(y−2 )

2(t, x) dx

)
=

∫

Ω
|λ2∇y−2 (t, x)|2 dx+

ε1
ε2

∫

Ω
(y−2 )

2(1− y−2 )(t, x) dx

− b2

∫

Ω
y3(y

−
2 )

2(t, x) dx + b0

∫

Ω
y1(y

−
2 )

2(t, x) dx,

which involves

−1

2

d

dt

(∫

Ω
(y−2 )

2(t, x) dx

)
> −b2

∫

Ω
y3(y

−
2 )

2(t, x) dx + b0

∫

Ω
y1(y

−
2 )

2(t, x) dx.

As y3 6 |y3| 6 N and y1 6 |y1| 6 N , then −b2y3 > −b2|y3| > −b2N and b0y1 6 b0|y1| 6 b0N , we have

−1

2

d

dt

(∫

Ω
(y−2 )

2(t, x) dx

)
> −b2

∫

Ω
N(y−2 )

2(t, x) dx + b0

∫

Ω
N(y−2 )

2(t, x) dx.

Gronwall’s inequality conduits to
∫

Ω
(y−2 )

2(t, x) dx 6 et(−b2+b0)N
∫

Ω
(y−2 )

2(0, x) dx.

Then
y−2 = 0.

One deduces that y2(t, x) > 0, ∀(t, x) ∈ Q. In addition, system




∂y1
∂t

= y1(1− y1)− b1y1y2,

∂y3
∂t

= λ3∆y3 +
ε3
ε2
y3(1− y3)− b3y2y3

(6)

can be written as 



∂y1
∂t

= λ1∆y1 + F (y1, y3) ,

∂y3
∂t

= λ3∆y3 +G (y2, y3) .

It is easy to see that F (y1, y3) and G(y1, y3) are continuously differentiable satisfying F (0, y3) = 0
and G(y2, 0) = 0, for all y1, y3 > 0. Since initial data of system (6) are nonnegative, we deduce
the positivity of y1 and y3 (see [21]). One deduces that y1(t, x) > 0, y2(t, x) > 0 and y3(t, x) > 0,
∀(t, x) ∈ Q. By the second equation of (6) we get:

∫ t

0

∫

Ω

∣∣∣∣
∂y3
∂s

∣∣∣∣
2

ds dx+ λ23

∫ t

0

∫

Ω
|∆y3|2 ds dx− 2λ3

∫ t

0

∫

Ω

∂y3
∂s

∆y3ds dx

=

∫ t

0

∫

Ω

(
ε3
ε2
y3(1− y3)− b3y2y3

)2

ds dx,

via Green’s formula we have
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∫ t

0

∫

Ω

∂y3
∂s

∆y3 dx ds =

∫

Ω

(
−|∇y3|2 + |∇y03|2

)
dx,

then

∫ t

0

∫

Ω

∣∣∣∣
∂y3
∂s

∣∣∣∣
2

dx ds + λ23

∫ t

0

∫

Ω
|∆y3|2 dx ds+ 2λ3

∫

Ω
|∇y3|2 dx− 2λ3

∫

Ω

∣∣∇y03
∣∣2 dx

=

∫ t

0

∫

Ω

(
ε3
ε2
y3(1− y3)− b3y2y3

)2

dx ds.

Since y03 ∈ H2(Ω) and ‖yi‖L∞(Q) for i = 1, 2, 3 are bounded independently, it yields that

y3 ∈ L∞ (0, T ;H1(Ω)
)

and the inequality in (3) holds for i = 3. The remaining cases can be treated similarly. �

Theorem 2.
1. For all positive functions B0, P0 and V0 given, the system (1) admits a global and regular solution.
2. The domain R

+ × R
+ × R

+ is positively invariant.
3. Any solution of the problem (1) whith initial condition is in R

+ × R
+ × R

+, converges to the set
defined by

A ≡ [0, 1] × [0, 1] ×
[
0,
ε3
ε1

+ b3

]
.

Proof. Let us first consider the second equation of the problem (1), we obtain:





∂B

∂t
6 B(1−B),

∂B

∂ν
= 0, t > 0,

B(x, 0) = B0(x) 6 B01 ≡ max
Ω̄

B0(x).

By the principle of comparison, we have B(x, t) 6 B1(t) 6 1. B1(t) =
B01

B01+(1−B01)e−t is the solution of
the following problem: 




dB1

dt
= B1 (1−B1) ,

B1(0) = B01 6 1.

Following the first equation of problem (1), we have:





∂P

∂t
6 d1∆P +

ε2
ε1
P (1− P ),

∂P

∂ν
= 0, t > 0,

P (x, 0) = P0(x) 6 P01 ≡ max
Ω̄

P0(x).

By the principle of comparison, we have P (x, t) 6 P1(t) 6 1. P1(t) =
P01

P01+ε2/ε1(1−P01)e−t is the solution
of the following problem: 




dP1

dt
= P1(1− P1),

P1(0) = P01 6 1.

From second equation of system (1) and as P (t, x) 6 1, we get
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



∂V

∂t
= d2∆V +

ε3
ε1
V (1− V ) + b3PV 6 d2∆V + V

(
ε2
ε1

(1− V ) + b3

)
,

∂V

∂ν
= 0, t > 0,

V (x, 0) = V0(x) 6 V01 ≡ max
Ω̄

V0(x).

According to the principle of comparison, we have V (t, x) 6 V1 6 1 where

V1(t) =
V01

V01 + e−t
(
ε3
ε1
(1− V01) + b3

)

is a solution of the following differential equation:




dV1
∂t

=

(
ε3
ε1

(1− V1) + b3

)
V1,

V1(0) = V01 6 1,

Which gives the result.
*Solution remains in the invariant region:
Following the same way of argument as in 2, we have for any initial condition of the system (1)

(B0(x), P0(x), V0(x))
0 6 B 6 S0, S0(0) = max

Ω̄
B0(x),

0 6 P 6 S1, S1(0) = max
Ω̄

P0(x),

0 6 V 6 S2, S2(0) = max
Ω̄

V0(x).

Thus, we can say that the domain R
+ × R

+ × R
+ is positively invariant and the solutions of the

system (1) are bounded B0(x) > 1 and P0(x) > 1. On the other hand, from [22,23] we have:





lim
t→+∞

S0(t) 6 1,

lim
t→+∞

S1(t) 6 1,

lim
t→+∞

S2(t) 6 1 + b3.

The solution is convergent. �

4. Equilibrium points

The equilibrium points are defined by resolving the system:




Be (1−Be)− b1BePe = 0,

d1∆Pe +
ε2
ε1
Pe (1− Pe)− b2PeVe + b0BePe = 0,

d2∆Ve +
ε3
ε1
Ve (1− Ve) + b3PeVe = 0.

(7)

Theorem 3.
i) E0 = (0, 0, 0),
ii) E1 = (1, 0, 0), E2 = (0, 1, 0), E3 = (0, 0, 1),
iii) E4 = (B0, P0, 0), E5 = (0, P1, V1), E6 = (1, 0, 1),

with

P0 =
ε1/ε2 + b0
ε1/ε2 + b0b1

, B0 =
ε1/ε2(1 + b1)

ε1/ε2 + b0b1
, P1 =

ε3(b2 − ε2)

ε3ε2 + b2b3
, V1 =

ε2(2ε3ε2 + b2b3 − ε3b2)

b2(ε3ε2 + b2b3)
.
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Proof. The other fixed points are determined by the following system:





(1−B)− b1P = 0,

(1− P )− ε1
ε2
b2V = 0,

(1− V ) +
ε1
ε3
b3P = 0.

(8)

The first system equation (8):

B∗ =
ε3ε2 + ε21b2b3 − ε3b1b2b3(ε2 − ε1)

ε3ε2 + ε21b2b3
.

The second system equation (8):

P ∗ =
ε3b2b3(ε2 − ε1)

ε3ε2 + ε21b2b3
.

The third system equation (8):

V ∗ =
ε2b3(ε3 + ε1)

ε3ε2 + ε21b2b3
.

In the following we study the local stability of trivial points. �

The Jacobian matrix associated with an equilibrium point (B,P, V ) is given by

J(B,P, V ) =




1− 2B − b1P −b1B 0

b0P
ε2
ε1

− 2Pε2
ε1

− b2V + b0B −b2P

0 b3V
ε3
ε1

− 2V ε3
ε1

+ b3P



.

4.1. Analysis stability

Theorem 4. The system admits the following equilibrium points:
i) the trivial equilibrium point E0 = (0, 0, 0);
ii) the axial equilibrium point E1 = (1, 0, 0), E2 = (0, 1, 0) and E3 = (0, 0, 1);
iii) the interior equilibrium point E4 = (B0, P0, 0), E5 = (0, P1, V1) and E6 = (1, 0, 1).

with

P0 =
ε1/ε2 + b0
ε1/ε2 + b0b1

, B0 =
ε1/ε2(1 + b1)

ε1/ε2 + b0b1
, P1 =

ε3(b2 − ε2)

ε3ε2 + b2b3
, V1 =

ε2 (2ε3ε2 + b2b3 − ε3b2)

b2 (ε3ε2 + b2b3)
.

Proof. Let us determine the eigenvalues of the Jacobian matrix associated with each equilibrium Ei,
i = 0, 1, 2.

J(E0) =




1 0 0
0 ε2

ε1
0

0 0 ε3
ε1


 , J(E1) =




−1 −b1 0
0 ε2

ε1
+ b0 0

0 0 ε2
ε1


 , J(E2) =




1− b1 0 0
b0 − ε2

ε1
−b2

0 0 ε3
ε1

+ b3


 ,

J(E3) =




1 0 0
0 ε2

ε1
− b2 0

0 b3 − ε3
ε1


 ; J(E4) =




1− 2B0 − b1P0 −b1B0 0

b0P0
ε2
ε1

− 2P0ε2
ε1

+ b0B0 −b2P0

0 0 ε3
ε1

+ b3P0


 ,
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J(E5) =




1− b1P1 0 0

b0P1
ε2
ε1

− 2P1ε2
ε1

− b2V1 −b2P1

0 b3V1
ε3
ε1

− 2V 1ε3
ε1

+ b3P1



,

J(E6) =




−1− b1 −b1 0

b0
ε2
ε1

− 2ε2
ε1

+ b0 −b2

0 0 ε3
ε1

+ b3


 .

• The eigenvalues of the matrix J(E0) are

λ1 = 1 > 0, λ2 =
ε2
ε1
> 0, λ3 =

ε3
ε1
> 0.

So, the point E0 = (0, 0, 0) is an unstable point.
• The eigenvalues of the matrix J(E1) are

λ1 = −1 < 0, λ2 =
ε2
ε1
> 0, λ3 =

ε3
ε1
> 0.

So, E1 = (1, 0, 0) is a saddle point.
• The eigenvalues of the matrix J(E2) are

λ1 = 1− b2, λ2 = −ε2
ε1
< 0, λ3 =

ε3
ε1

+ b3 > 0.

So, E2 = (0, 1, 0) is a saddle point.
• The eigenvalues of the matrix J(E3) are

λ1 = 1, λ2 =
ε2
ε1

− b2, λ3 = −ε2
ε1
< 0.

So, E3 = (0, 1, 0) is a saddle point.
• The eigenvalues of the matrix J(E4) are

λ1 =
1

2

(
−
√
a2 − 2ad− 4b1B0b0P0 + d2 + a+ d

)
< 0,

λ2 =
1

2

(√
a2 − 2ad− 4b1B0b0P0 + d2 + a+ d

)
> 0,

λ3 =
ε3
ε1

+ b3P0 > 0

with a = 1− 2B0 − b1P0, d = ε2
ε1

− 2P0ε2
ε1

+ b0B0, f = ε3
ε1

+ b3P0.
So, E4 = (B0, P0, 0) is a saddle point.

• The eigenvalues of the matrix J(E5) are

λ1 = 1− b1P1 < 0,

λ2 =
1

2

(
−
√
c2 − 2cf + 4de+ f2 + c+ f

)
< 0,

λ3 =
1

2

(√
c2 − 2cf + 4de+ f2 + c+ f

)
> 0

with a = 1− b1P1, b = b0P1, c =
ε2
ε1

− 2P1ε2
ε1

− b2V1, d = −b2P1, e = b3V1, f = ε3
ε1

− 2V1ε3
ε1

+ b3P1.
So, E5 = (0, P1, V1) is a saddle point.
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• The eigenvalues of the matrix J(E6) are

λ1 =
ε3
ε1

+ b3 > 0,

λ2 =
1

2

(
−
√
a2 − 2ad− 4b1b0 + d2 + a+ d

)
< 0,

λ3 =
1

2

(√
a2 − 2ad− 4b1b0 + d2 + a+ d

)
> 0

with a = −1− b1, d = ε2
ε1

− 2ε2
ε1

+ b0, e = −b2, f = ε3
ε1

+ b3.
So, E6 = (1, 0, 1) is a saddle point.

�

4.2. Interior equilibrium

The other fixed points are determined by the following system:




(1−B)− b1P = 0,

(1− P )− ε1
ε2
b2V +

ε1
ε2
b0B = 0,

(1− V ) +
ε1
ε3
b3P = 0.

(9)

The first system equation (9):

B∗ =
ε1/ε3b2b3 + ε2/ε1 + b2 − b1 (ε2/ε1 + b0 − b2)

ε1/ε3b2b3 + ε2/ε1 + b2
.

The second system equation (9)

P ∗ =
ε2/ε1 + b0 − b2

ε1/ε3b2b3 + ε2/ε1 + b2
.

The third system equation (9)

V ∗ =
(ε2/ε1 + b0) (ε1/ε3b2b3 + ε2/ε1 + b2)− (ε2/ε1 + b0 − b2) (ε2/ε1 + b0b1)

(ε1/ε3b2b3 + ε2/ε1 + b2) b2
.

Theorem 5. If the condition a2 > 0 is satisfied, then the system (2) has a unique positive equilibrium
point E∗ = (B∗, P ∗, V ∗).

Proof. The Jacobian matrix associated with an equilibrium point E∗(B∗, P ∗, V ∗) is given by

J(E∗) =




1− 2B∗ − b1P
∗ −b1B∗ 0

0 ε2
ε1

− 2P ∗ε2
ε1

− b2V
∗ + b0B

∗ −b2P ∗

0 b3V
∗ ε3

ε1
− 2V ∗ε3

ε1
+ b3P

∗



,

det(J(E∗)− λ) = (J11 − λ)
(
λ2 − λ(J22 + J33) + J22J33 + b3b3V

∗P ∗) ,

with J11 = 1− 2B∗ − b1P
∗, J22 =

ε2
ε1

− 2P ∗ε2
ε1

− b2V
∗ + b0B

∗, J33 =
ε3
ε1

− 2V ∗ε3
ε1

+ b3P
∗.

We see that the characteristic equation of J(E∗) has an eigenvalue. Value λ1 = J11 is negative. So,
in order to determine the stability of the E∗, we discuss the roots of the following equation λ2+aλ+ b,
with a = −(J22 + J33) and b = J22J33 + b3b3V

∗P ∗.
By Routh–Hurwitz criterion, if a > 0 and b > 0, the eigenvalue is negative.
We see that the first eigenvalue, if a and b are negative, E∗ is stable; otherwise, E∗ and is a saddle

point. �
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5. The existence of the optimal control

Therefore, we adopted our mathematical model by introducing a control u(x, t) in the third equation
of system (10) as a control measure to combat the spread of predators,





∂B(t, x)

∂t
= ε1B

(
1− B

K1

)
− β1BP, ∀(t, x) ∈ (0,+∞) ×Ω,

∂P (t, x)

∂t
−D1∆P (t, x) = ε2P

(
1− P

K2

)
− β2PV, ∀(t, x) ∈ (0,+∞) ×Ω,

∂V (t, x)

∂t
−D2∆V (t, x) = ε3V

(
1− V

K3

)
+ β3PV − u(x, t)V, ∀(t, x) ∈ (0,+∞) ×Ω,

∂B

∂η
=
∂P

∂η
=
∂V

∂η
= 0, on ∂Ω,

B(0, x) = B0 > 0, P (0, x) = P0 > 0, V (0, x) = V0 > 0.

(10)

The objective of our work is to minimize the predator population and the cost of implementing the
control by using possible minimal control variables u,

J(X,u) = ρ

∫ T

0

∫

Ω
X3(t, x) dx dt+

η

2
‖u‖2L2(Q). (11)

In the objective functional, the quantity ρ represents the weight constant of shark fishing, η is the weight
constants for mechanisms on shark fishing control. The terms η

2‖u‖2L2(Q) are the costs associated to
the mechanisms on shark fishing control. The square of the controls variables reflects the severity of
the side effects of the mechanisms on shark fishing. Our objective is to find control functions such that

J ((B∗, P ∗, V ∗);u∗) = min {J((B,P, V );u), u ∈ Uad} .

Subject to system (10), where the control set is defined as

Uad =
{
u ∈ (L∞(Q))2 / 0 6 u 6 umax a.e. (t, x) ∈ Q

}
.

For biological reasons, the following are assumed to hold: B(0, x) = B0 > 0, P (0, x) = P 0 > 0, and
V (0, x) = V 0 > 0.

Theorem 6. Under the hypotheses of theorem 2, the optimal control problem (10) admits an optimal
solution (X∗, u).

Proof. From Theorem 2, we know that, u, X1, X2, and X3 are bounded uniformly in L∞(Q), J is
finite. Let (un) ∈ Uad be a minimizing sequence such that

lim
n→∝

J (Xn, un)) = inf
u∈Uad

J(X,u),

where (Xn
1 ,X

n
2 ,X

n
3 ) is the solution of system (10) corresponding to the control un for n = 1, 2, . . ..

That is 



∂Xn
1

∂t
= ε1X

n
1

(
1− Xn

1

K1

)
− β1X

n
1X

n
2 ,

∂Xn
2

∂t
= D1∆X

n
2 + ε2X

n
2

(
1− Xn

2

K2

)
− β2X

n
2X

n
3 + β0X

n
1X

n
2 ,

∂Xn
3

∂t
= D2∆X

n
3 + ε3X

n
3

(
1− Xn

3

K3

)
+ β3X

n
2X

n
3 − unXn

3 ,

∂Xn
1

∂η
=
∂Xn

2

∂η
=
∂Xn

3

∂η
= 0,

Condition initail.

(12)
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Using the estimate (2) and H1(Ω) is compactly embedded in L2(Ω), so we deduce that Xn
1 (t) is

compact in L2(Ω). Let us show that {Xn
1 (t), n > 1} is equicontinuous in C

(
[0, T ] : L2(Ω)

)
. As

∂Xn
1

∂t is
bounded in L2(Q), this implies that for all s, t ∈ [0, T ]

∣∣∣∣
∫

Ω
(Xn

1 )
2 (t, x) dx −

∫

Ω
(Xn

1 )
2 (s, x) dx

∣∣∣∣ 6 K|t− s|

The Ascoli–Arzela theorem (see [24]) implies that Xn
1 is compact in C

(
[0, T ] : L2(Ω)

)
. Hence, selecting

further sequences, if necessary, we have Xn
1 −→ X∗

1 in L2(Ω), uniformly with respect to t.
Similarly, we have for Xn

i −→ X∗
i in L2(Ω) for i = 2, 3 uniformly with respect to t. From the

boundedness of ∆Xn
i in L2(Q), which implies it is weakly convergent in L2(Q) on a subsequence

denoted again ∆yni then for all distribution ϕ
∫

Q
ϕ∆Xn

i dx =

∫

Q
Xn
i ∆ϕdx→

∫

Q
X∗
i ∆ϕdx =

∫

Q
ϕ∆X∗

i dx.

Which implies that ∆Xn
i → ∆X∗

i weakly in L2(Q), i = 1, 2, 3, 4. In addition, the estimates leads to

∂Xn
i

∂t
→ ∂X∗

i

∂t
weakly in L2(Q), i = 1, 2, 3

Xn
i → X∗

i weakly in L2
(
0, T ;F 2(Ω)

)
, i = 1, 2, 3

Xn
i → X∗

i weakly star in L∞ (0, T ;F 1(Ω)
)
, i = 1, 2, 3.

We now show that Xn
i X

n
j 7→ X∗

i X
∗
j for i = 1, 2, 3 and j = 1, 2, 3 strongly in L2(Q), we write

Xn
i X

n
j −X∗

i X
∗
j = (Xn

i −X∗
i )X

n
j +X∗

i

(
Xn
j −X∗

j

)
,

and we make use of the convergences Xn
i −→ X∗

i strongly in L2(Q), i = 1, 2, 3, Xn
j −→ X∗

j strongly

in L2(Q), j = 1, 2, 3 and of the boundedness of X∗
i , X

n
j in L∞(Q), then Xn

i X
n
j 7→ X∗

i X
∗
j strongly

in L2(Q). We use 0 < βn· and 0 < β∗· , and of the boundedness of β∗· , β
n
· in L∞(Q), we deduce that

βn· X
n
i X

n
j 7→ β∗· X

∗
i X

∗
j for i = 1, 2, 3 and j = 1, 2, 3.

Since un is bounded, we can assume that un → u∗ weakly in L2(Q) on a subsequence denoted
again un. Since Uad is a closed and convex set in L2(Q), it is weakly closed, so u∗ ∈ Uad. We now
show that

unXn
3 → u∗X∗

3 weakly in L2(Q),

writing
unXn

3 − u∗X∗
3 = (Xn

3 −X∗
3 ) u

n + (un − u∗)X∗
3 ,

and making use of the convergences Xn
3 −→ X∗

3 strongly in L2(Q) and un −→ u∗ weakly in L2(Q),
one obtains that unXn

3 → u∗X∗
3 weakly in L2(Q).

By taking n → ∞ in (12), we obtain that y∗ is a solution of (. . .) corresponding to u∗ ∈ Uad.
Therefore

J(X∗, u∗) = ρ

∫ T

0

∫

Ω
X∗

3 (t, x) dx dt +
η

2
‖u∗‖2L2(Q)

6 lim
n→α

inf

(
ρ

∫ T

0

∫

Ω
Xn

3 (t, x) dx dt +
η

2
‖un‖2L2(Q)

)

= lim
n→∞

(
ρ

∫ T

0

∫

Ω
Xn

3 (t, x) dx dt +
η

2
‖un‖2L2(Q)

)

= inf
u∈Uad

J(u).

This shows that J attains its minimum at (X∗, u∗), we deduce that (X∗, u∗) verifies problem (12) and
minimizes the object if functional (11). The proof is complete. �
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6. Necessary optimality conditions

In order to establish the main result of this section (optimality conditions), let (X∗, u∗) be an optimal
pair and uε = u∗ + εu ∈ Uad(ε > 0), be a control function such that u ∈ L2(0, T ;L2(Ω)) and u ∈ Uad.
Denote by Xε = (Xε

1 ,X
ε
2 ,X

ε
3) = (X1,X2,X3)(u

ε) and X∗ = (X∗
1 ,X

∗
2 ,X

∗
3 ) = (X1,X2,X3)(u

∗) the
solution of (12) corresponding to uεi and u∗, respectively. Put Xε

i = X∗
i +εz

ε
i for i = 1, 2, 3. Subtracting

system (12) corresponding u∗ from the system corresponding to uε we get




∂zε1
∂t

= ε1z
ε
1

(
1− zε1

K1

)
− β1X

∗
1z
ε
2 − β1z

ε
1X

ε
2 ,

∂zε2
∂t

= D1∆z
ε
2 + ε2z

ε
2

(
1− zε2

K2

)
− β2X

∗
2z

ε
3 − β2z

ε
2X

ε
3 − β0X

∗
1z

ε
2 − β0z

ε
1X

ε
2 ,

∂zε3
∂t

= D2∆z
ε
3 + ε3z

ε
3

(
1− zε3

K3

)
+ β3z

ε
2X

∗
3 + β3X

ε
2z
ε
3 − uX∗

3 − uεzε3,

(13)

with the homogeneous Neumann boundary conditions

∂zε1
∂η

=
∂zε2
∂η

=
∂zε3
∂η

= 0, (x, t) ∈ Σ; (14)

zεi (0, x) = 0, x ∈ Ω for i = 1, 2, 3. (15)

Now we show that Xε
i are bounded in L2(Q) uniformly with respect to ε and that yεi in L2(Q). To

this end, denote zε = (Xε
1 ,X

ε
2 ,X

ε
3)

F ε =




z1b − β1X
ε
2 −β1X∗

1 0

β0X2 z2b − β2X
ε
3 + β0X

ε
1 −β2X∗

2

0 β3X
∗
3 z3b + β3X

ε
2 − uε


 , G =




0
0
X∗

3


 .

Then (13) can be written in the form
{

∂zε

∂t
= Azε + F εzε +Gu, t ∈ [0, T ],

zε(0) = 0.

If (S(t), t > 0) is the semi-group generated by A, then the solution of this problem is given by

zε(t) =

∫ t

0
S(t− s)F ε(s)zε(s) ds +

∫ t

0
S(t− s)(Gu(s)) ds. (16)

Since the elements of the matrix F ε are bounded uniformly with respect to ε, by Gronwall’s inequality
we are led to

‖Xε
i ‖L2(Q) 6 K∗

for some constant K∗ > 0 (i = 1, . . . , 5). Then ‖Xε
i −X∗

i ‖L2(Q) = ε ‖Xε
i ‖L2(Q). Thus Xε

i → X∗
i in

L2(Q), i = 1, 2, 3. Let

F =




z1b − β1X
∗
2 −β1X∗

1 0

β0X
∗
1 z2b − β2X

∗
3 + β0X

∗
1 −β2X∗

2

0 β3X
∗
3 z3b + β3X

∗
2 − u∗


 and G =




0
0
X∗

3


 .

Then system (13)–(15) can be written as




∂z

∂t
= Az + Fz +Gu t ∈ [0, T ],

z(0) = 0

and its solution is given by
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z(t) =

∫ t

0
S(t− s)F (s)z(s)ds +

∫ t

0
S(t− s)(Gu(s)) ds, (17)

By (16) and (17) one deduces that

zε(t)− z(t) =

∫ t

0
[S(t− s)F ε(s) (zε − z) +z(s) (F ε(s)− F (s))] ds.

Since all the elements of the matrix F ε tend to the corresponding elements of the matrix F in L2(Q),
and making use of Gronwall’s inequality, we conclude Xε

i → X∗
i in L2(Q) as ε → 0, for i = 1, . . . , 5.

This can be summarized by the following result.

Proposition 4. The mapping y : Uad → W 1,2(0, T ;H(Ω)) with Xi ∈ L(T,Ω) is Gateaux differen-
tiable with respect to u∗. For u ∈ Uad, y

′(u∗)u = z is the unique solution in W 1,2(0, T ;H(Ω)) with
Xi ∈ L(T,Ω) of the following equation





∂z

∂t
= Az + Fz +Gu, t ∈ [0, T ],

z(0, x) = 0.

Moreover let R = (r1, r2, r3) the adjoint variable, we can write the dual system associated to the system




−∂R
∂t

−AR− FR = D∗DX∗, t ∈ [0, T ],

R(T, x) = D∗DX∗(T, x),

where u∗ is the optimal control, X∗ = (X∗
1 ,X

∗
2 ,X

∗
3 ) is the corresponding optimal state and D is the

matrix defined by

D =




0 0 0
0 0 0
0 0 1


 .

Lemma 1. Under hypotheses of theorem (2), if (X∗, u∗) is an optimal pair, then the dual system
(14) admits a unique strong solution R ∈W 1,2(0, T ;H(Ω)) with pi ∈ L(T,Ω) for i = 1, . . . , 3.

Proof. The lemma can be proved by making the change of variable s = T − t and the change of
functions qi(s, x) = ri(T − s, x) = ri(t, x), (t, x) ∈ Q, i = 1, . . . , 3 and applying the same method like
in the proof of theorem (2). �

In the following result, we give the first order necessary conditions.

Theorem 7. Let (u∗) be an optimal control of (13) and letX∗ ∈W 1,2(0, T ;H(Ω)) withX∗
i ∈ L(T,Ω)

for i = 1, 2, 3 be the optimal state, that is X∗ is the solution to (13) with the control (u∗). Then, there
exists a unique solution R ∈W 1,2(0, T ;H(Ω)) with ri ∈ L(T,Ω) of the linear system





−∂R
∂t

−AR− FR = D∗DX∗, t ∈ [0, T ],

R(T, x) = D∗DX∗(T, x).

expression of the variational inequality leads to

u∗ = min

(
umax,max

(
0,
X∗

3

η
r3

))
.

Proof. Suppose (u∗) is an optimal control and X∗ = (X∗
1 ,X

∗
2 ,X

∗
3 ) = (X1,X2,X3)(u

∗) are the
corresponding state variables. Consider uε = u∗ + εh ∈ Uad and corresponding state solution Xε =
(Xε

1 ,X
ε
2 ,X

ε
3) = (X1,X2,X3)(u

ε), ρ = (0, 0, ρ). Since the minimum of the objective functional is
attained at u∗, we have

J ′(u∗)(h) = lim
ε→0

1

ε
(J(uε)− J(u∗))
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= lim
ε→0

1

ε

(
ρ

∫ T

0

∫

Ω
(Xε

3 −X∗
3 ) (t, x) dx dt+

η

2

∫ T

0

∫

Ω

(
(uε)2 − (u∗)2

)
(t, x) dx dt

)

= lim
ε→0

(
ρ

∫ T

0

∫

Ω

(
Xε

3 −X∗
3

ε

)
(t, x) dx dt +

η

2

∫ T

0

∫

Ω

(
ε(h)2 + 2hu∗

)
(t, x) dx dt

)

= ρ

∫ T

0

∫

Ω
X3(t, x) dx dt + η

∫ T

0

∫

Ω
(hu∗)(t, x) dx dt

=

∫ T

0
〈Dρ,DX〉H(Ω) dt+

∫ T

0
〈ηu∗, h〉(L2(Ω))2 dt.

Since J is Gateaux differentiable at u∗ and Uad is convex, as the minimum of the objective functional
is attained at u∗ it is seen that J ′(u∗)(v − u∗) > 0 for all v ∈ Uad. We take h = v − u∗ then

J ′(u∗)(v− u∗) =
∫ T
0 〈G∗r+ ηu∗, (v−u∗)〉(L2(Ω))2dt. We conclude that J ′(u∗)(v− u∗) > 0 equivalent to∫ T

0 〈G∗r + ηu∗, (v − u∗)〉(L2(Ω))2dt > 0 for all v ∈ Uad. By standard arguments varying v, we obtain

ηu∗ = −G∗r.
Then

u∗ =
X∗

3

η
r3.

As (u∗) ∈ Uad, we have

u∗ = min
(
umax,max

(
0,

X∗
3
η r3

))
. �

7. Conclusion

In this work, we have investigated a new tritrophic spatio-temporal model. A reaction-diffusion system
concerns phytoplanktonic organisms. We have studied the existence and stability of the different
equilibrium points. Moreover, we have proved the existence of the optimal control that can ensure the
sustainability of planktonic organisms in the presence of super predator species.
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Оптимальне керування тритрофною реакцiйно-дифузiйною
системою за допомогою просторово-часової моделi

Баала Ю., Агмур I., Рачик М.

Лабораторiя аналiзу, моделювання та симуляцiї, Унiверситет Хасана II, Касабланка, Марокко

У цiй статтi пропонується нова модель просторово-часової динамiки, що стосується
тритрофної реакцiйно-дифузiйної системи, вводячи фiтопланктон i зоопланктон. На-
гадаємо, що фiтопланктон i зоопланктон є основою морського харчового ланцюга. У
кожнiй морськiй тритрофнiй системi є здобич. Основною метою цiєї роботи є кон-
троль бiомаси цього виду для забезпечення стiйкостi системи. Щоб досягти цього,
визначаємо оптимальний контроль, який мiнiмiзує бiомасу суперхижакiв. У цiй стат-
тi дослiджується iснування та стiйкiсть внутрiшньої точки рiвноваги. Окрема увага
надана характеристицi оптимального керування.

Ключовi слова: просторово-часова динамiка, реакцiйно-дифузiйна система, опти-
мальне керування, максимiзацiя, стiйкiсть.
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