Optimal control of tritrophic reaction-diffusion system with a spatiotemporal model

Baala Y., Agmour I., Rachik M.
Analysis, Modeling and Simulation Laboratory, Hassan II University, Casablanca, Morocco

(Received 29 April 2022; Revised 2 July 2022; Accepted 5 July 2022)

Abstract

In this paper, we propose a new model of spatio-temporal dynamics concerning the tritrophic reaction-diffusion system by introducing Phytoplankton and Zooplankton. We recall that the phytoplankton and zooplankton species are the basis of the marine food chain. There is prey in each marine tritrophic system. The main objective of this work is to control this species's biomass to ensure the system's sustainability. To achieve this, we determine an optimal control that minimizes the biomass of super predators. In this paper, we study the existence and stability of the interior equilibrium point. Then, we move to give the characterization of optimal control.

Keywords: spatio-temporal dynamics, reaction-diffusion system, optimal control, maximizing, stability.
2010 MSC: 93A30, 49J20
DOI: $10.23939 / m m c 2022.03 .647$

1. Introduction

Since the relationship of different biological species is widespread in nature, many scholars have done a lot of works on the dynamic behavior of the prey-predator model; researchers have studied this field for many years since the pioneering work done by Lotka and Volterra. The authors present the well-known Lotka-Volterra predator-prey model. It is established that the response function is the key element of predator-prey models. The ratio-dependent functional response was first proposed by Leslie and Gower in 1973 [1, 2]. The authors explain that a predator's number is described by prey density, as well as by the ratio of predator density to prey density. This model is also known as the Holling-Tanner predator-prey model [3]. The dynamics (local and global stability, limit cycles) and pattern solutions of Holling-Tanner predator-prey model have already been investigated [4-7]. Such factors as delay and randomness are also considered in the recent literature $[8,9]$. The fuzzy approach is also considered to construct the predator-prey model $[10,11]$. Besides, the Holling-Tanner-type predator-prey models are attractive for their results for modeling the real ecological interactions between prey and predator species.

Some biological species can release toxic substances that can affect the growth of other species [1215]. In [16], Chattopadhyay studied the local and global stability of the interior equilibrium of a two-species competitive system with toxic substances. In [17], Kar and Chaudhuri considered a twospecies competing model with harvesting effect and toxic substances. In addition, reaction-diffusion models arise in a variety of real-world problems, such as in physical [18], chemical [19] and biological [20] applications. In [20], Zhang and Zhao proposed a diffusive predator-prey model with the toxic substance.

In these work, the authors have treated models concerning marine species in predator and/or competition with respect to time. And in others, they worked out the spatial diffusion for the general models.

The novelty of this paper is in the presenting a tritrophic model concerning marine species well specified, namely:

- at the primary level, there are the phytoplankton (of which microalgae are a part);
- the zooplankton (which belongs to the animals) constitute the secondary level and consume the phytoplankton;
- anchovies or sardines represent the tertiary level.

And, moreover, we consider the space-time diffusion in the model that we propose.

2. Formulation of the mathematical model

In this section, we give the formulation of the diffusive biological model. The proposed tritrophic model concerns prey (planctonic) organism, predators and super predator species, denoted by b, p and v, respectively. We assume that the three populations inhabit in a heterogeneous environment, so they move from one region to another, their biomasses depend not only on time T but also on spatial location, which is more realistic.

We denote by $b(T, x)$ the biomass of population b at time T and the spatial position x.

- The first equation describes the evolution of the biomass concerning planctonic organism.
- The number of encounters between plant and prey is both proportional to b and p and, therefore, proportional to the product $b p$.
- The number of encounters between prey and predators is both proportional to p and v and, therefore, proportional to the product $p v$.

The following system is considered to model the evolution of the biomasses of the three populations:

$$
\begin{cases}\frac{\partial b(T, x)}{\partial T}=\varepsilon_{1} b\left(1-\frac{b}{K_{1}}\right)-\beta_{1} b p, & \forall(T, x) \in\left[0, T_{f}\right] \times \Omega \tag{1}\\ \frac{\partial p(T, x)}{\partial T}=D_{1} \Delta p(T, x)+\varepsilon_{2} p\left(1-\frac{p}{K_{2}}\right)-\beta_{2} p v+\beta_{0} b p, & \forall(T, x) \in\left[0, T_{f}\right] \times \Omega \\ \frac{\partial v(T, x)}{\partial T}=D_{2} \Delta v(T, x)+\varepsilon_{3} V\left(1-\frac{v}{K_{3}}\right)+\beta_{3} p v, & \forall(T, x) \in\left[0, T_{f}\right] \times \Omega \\ \frac{\partial b(T, x)}{\partial \eta}=\frac{\partial p(T, x)}{\partial \eta}=\frac{\partial v(T x)}{\partial \eta}=0, & \forall \eta \in \Omega \\ b(0, x)=b_{0}>0, \quad p(0, x)=p_{0}>0, \quad v(0, x)=v_{0}>0, & \forall x \in \Omega\end{cases}
$$

where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ represents the usual Laplacian operator, Ω is a fixed and bounded domain in \mathbb{R}^{2} with smooth boundary $\partial \Omega, \eta$ is the outward unit normal vector on the boundary, the time t belongs to a finite interval $\left[0, T_{f}\right]$, while x varies in Ω. Here the homogeneous Neumann boundary condition implies that the above system is self-contained and there is no migration across the boundary.

All parameters are positive; $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} denote the intrinsic growth rates of plants population, prey and predator, respectively; D_{1} and D_{2} are diffusion coefficients; K_{1}, K_{2} and K_{3} are the carrying capacity of the plant's environment, the prey's environment and predator's environment, respectively. β_{1} coefficient interaction between biomass of plant and prey, β_{2} and β_{3} coefficient interaction between prey and predator. To simplify the system (1), we introduce the changes of variables:

$$
\begin{gathered}
t=\varepsilon_{1} T, \quad B=\frac{b}{K_{1}}, \quad P=\frac{p}{K_{2}} \\
d_{1}=\frac{D_{1}}{\varepsilon_{1}}, \quad d_{2}=\frac{D_{2}}{\varepsilon_{1}}, \quad b_{0}=\frac{\beta_{0} K_{2}}{\varepsilon_{1}} \\
b_{1}=\frac{\beta_{1} K_{2}}{\varepsilon_{1}}, \quad b_{2}=\frac{\beta_{2} K_{3}}{\varepsilon_{1}}, \quad b_{3}=\frac{\beta_{3} K_{2}}{\varepsilon_{1}} .
\end{gathered}
$$

The system (1) becomes:

$$
\begin{cases}\frac{\partial B(t, x)}{\partial t}=B(1-B)-b_{1} B P, & \forall(t, x) \in\left[0, T_{f}\right] \times \Omega, \tag{2}\\ \frac{\partial P(t, x)}{\partial t}=d_{1} \Delta P(t, x)+\frac{\varepsilon_{2}}{\varepsilon_{1}} P(1-P)-b_{2} P V+b_{0} B P, & \forall(t, x) \in\left[0, T_{f}\right] \times \Omega, \\ \frac{\partial V(t, x)}{\partial t}=d_{2} \Delta V(t, x)+\frac{\varepsilon_{3}}{\varepsilon_{1}} V(1-V)+b_{3} P V, & \forall(t, x) \in\left[0, T_{f}\right] \times \Omega, \\ \frac{\partial B(t, x)}{\partial \eta}=\frac{\partial P(t, x)}{\partial \eta}=\frac{\partial V(t, x)}{\partial \eta}=0, & \forall \eta \in \Omega, \\ B(0, x)=B_{0}>0, \quad P(0, x)=P_{0}>0, \quad V(0, x)=V_{0}>0, & \forall x \in \Omega .\end{cases}
$$

3. Existence and stability of equilibrium points

In this section, we will study the stability of the equilibrium states of the system (2).

3.1. Existence and boundary of solutions

The population B, P and V should remain non-negative and bounded.
To prove the existence of a global strong solution, we use the following notation: $W^{1,2}([0, T] ; H(\Omega))$ is the space of all absolutely continuous functions.

Let:
$-L(T, \Omega)=L^{2}\left([0, T] ; H^{2}(\Omega)\right) \cap L^{\infty}\left([0, T] ; H^{1}(\Omega)\right)$.
$-y=\left(y_{1}, y_{2}, y_{3}\right)=(B, P, V)$ is solution of the system (5), with $y^{0}=\left(y_{1}^{0}, y_{2}^{0}, y_{3}^{0}\right)=\left(B_{0}, P_{0}, V_{0}\right)$.
$-A$ is the linear operator defined as follow:

$$
\left\{\begin{array}{l}
A: D(A) \subset H(\Omega) \longrightarrow H(\Omega) \\
A y=\left(0, d_{1} \Delta y_{2}, d_{2} \Delta y_{3}\right) \in D(A), \forall y \in D(A)
\end{array}\right.
$$

with the domain of A is defined for all $y=\left(y_{1}, y_{2}, y_{3}\right)$ in $D(A)$ by

$$
D(A)=\left\{y \in\left(H^{2}(\Omega)\right)^{3}, \frac{\partial y_{1}}{\partial \eta}=\frac{\partial y_{2}}{\partial \eta}=\frac{\partial y_{3}}{\partial \eta}=0, \text { a.e. } \in \partial \Omega\right\}
$$

Theorem 1. Let Ω be a bounded domain from \mathbb{R}^{2}, with the boundary of class $C^{2+\alpha}, \alpha>0$, and smooth enough $y_{i}^{0} \geqslant 0$ on Ω (for $i=1,2,3$), the system (2) has a unique (global) strong solution $y \in W^{1,2}([0, T] ; H(\Omega))$ such that

$$
\left(y_{1}, y_{2}, y_{3}\right) \in L(T, \Omega) \cap L^{\infty}(Q)
$$

In addition y_{1}, y_{2}, y_{3} are non negative.
Furthermore, there exists $C^{s t}>0$ for all $t \in\left[0, T_{f}\right]$

$$
\begin{equation*}
\left\|\frac{\partial y_{i}}{\partial t}\right\|_{L^{2}(Q)}+\left\|y_{i}\right\|_{L^{2}\left(0, T, H^{2}(\Omega)\right)}+\left\|y_{i}\right\|_{H^{1}(\Omega)}+\left\|y_{i}\right\|_{L^{\infty}(Q)} \leqslant C^{s t}, \text { for } i=1,2,3 \tag{3}
\end{equation*}
$$

Proof. Let

$$
\left\{\begin{align*}
f_{1}(y(t)) & =y_{1}\left(1-y_{1}\right)-b_{1} y_{1} y_{2} \tag{4}\\
f_{2}(y(t)) & =\frac{\varepsilon_{2}}{\varepsilon_{1}} y_{2}\left(1-y_{2}\right)-b_{2} y_{2} y_{3}+b_{0} y_{1} y_{2}, \quad t \in\left[0, T_{f}\right] \\
f_{3}(y(t)) & =\frac{\varepsilon_{3}}{\varepsilon_{1}} y_{3}\left(1-y_{3}\right)-b_{3} y_{2} y_{3}
\end{align*}\right.
$$

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 647-662 (2022)

We consider $f(y(t))=\left(f_{1}(y(t)), f_{2}(y(t)), f_{3}(y(t))\right)$, then we can rewrite our system in the space $H(\Omega)$ under the form

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}=A y+f(y(t)), \quad t \in[0, T] \tag{5}\\
y(0)=y^{0}
\end{array}\right.
$$

As the operator A is dissipating and self adjoint and generates a C_{0} semi group of contractions on $H(\Omega)$, since $\left|y_{i}\right| \leqslant N$ for $i=1,2,3$, where N is a constant that represents the total population.

Indeed, suppose $y_{1}(t)$ and $y_{1}^{*}(t)$ be two functions, then we get:

$$
\begin{aligned}
\left\|f_{1}\left(y_{1}(t)\right)-f_{1}\left(y_{1}^{*}(t)\right)\right\| & =\left\|y_{1}\left(1-y_{1}\right)-b_{1} y_{1} y_{2}-\left(y_{1}^{*}\left(1-y_{1}^{*}\right)-b_{1} y_{1}^{*} y_{2}\right)\right\| \\
& =\left\|y_{1}\left(1-y_{1}\right)-y_{1}^{*}\left(1-y_{1}^{*}\right)-b_{1} y_{2}\left(y_{1}-y_{1}^{*}\right)\right\| \\
& \left.\leqslant\left(1-b_{1} \operatorname{Sup}_{t \in\left[0, T_{f}\right]}\right] y_{2} \mid\right)\left\|y_{1}-y_{1}^{*}\right\| \\
& \leqslant M_{1}\left\|y_{1}-y_{1}^{*}\right\|,
\end{aligned}
$$

where $M_{1}=\left(1-b_{1} \operatorname{Sup}_{t \in\left[0, T_{f}\right]}\left|y_{2}\right|\right)$.
Repeating the same procedure as in Eq. (4) above, we have:

$$
\begin{aligned}
\left\|f_{2}\left(y_{2}(t)\right)-f_{2}\left(y_{2}^{*}(t)\right)\right\| & \leqslant M_{2}\left\|y_{2}-y_{2}^{*}\right\|, \\
\left\|f_{3}\left(y_{3}(t)\right)-f_{3}\left(y_{3}^{*}(t)\right)\right\| & \leqslant M_{3}\left\|y_{3}-y_{3}^{*}\right\|,
\end{aligned}
$$

where $M_{i}(i=1,2,3)$ are the corresponding Lipschitz constant for the functions $f_{i}(\cdot)$ for $i=1,2,3$.
Thus function $f=\left(f_{1}, f_{2}, f_{3}\right)$ becomes lipshitz continuous in $y=\left(y_{1}, y_{2}, y_{3}\right)$ uniformly with respect to $t \in\left[0, T_{f}\right]$, then the problem (1) admits a unique strong solution $y=\left(y_{1}, y_{2}, y_{3}\right) \in$ $W^{1,2}([0, T] ; H(\Omega))$. Indeed, if we denote

$$
M=\max \left\{\left\|f_{2}\right\|_{L^{\infty}(Q)},\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)}\right\}
$$

and $\{P(t), t \geqslant 0\}$ is the C_{0}-semi-group generated by the operator

$$
\chi: D(\chi) \subset L^{2}(\Omega) \longrightarrow L^{2}(\Omega),
$$

where $\chi y=d_{1} \Delta y_{2}$ and $D(\chi)=\left\{y_{2} \in H^{2}(\Omega), \frac{\partial y_{2}}{\partial \eta}=0\right.$, a.e. $\left.\partial \Omega\right\}$.
It is obvious that function $Y_{2}(t, x)=y_{2}-\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)}$ satisfies the Cauchy problem

$$
\frac{\partial Y_{1}}{\partial t}(t, x)=d_{1} \Delta Y_{2}+f_{2}^{0}-\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)}
$$

The corresponding strong solution is

$$
Y_{2}(t)=P(t)\left(y_{2}^{0}-\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)}\right)+\int_{0}^{t} P(t-s)\left(f_{2}(y(s))\right) d s
$$

Since $y_{2}^{0}-\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)} \leqslant 0$ and $f_{2}(y(t)) \leqslant 0$, it follows that $Y_{2}(t, x) \leqslant 0, \forall(t, x) \in Q$. Moreover the function $W_{2}(t, x)=y_{2}+\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)}$ satisfies the Cauchy problem

$$
\left\{\begin{array}{l}
\frac{\partial W_{2}}{\partial t}(t, x)=d_{1} \Delta Y_{2}+f_{2}(y(t)), \quad t \in\left[0, T_{f}\right], \\
W_{2}(0, x)=y_{2}^{0}+\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)} .
\end{array}\right.
$$

The strong solution is

$$
W_{1}(t)=P(t)\left(y_{2}^{0}+\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)}\right)+\int_{0}^{t} P(t-s)\left(f_{2}(y(s))+M\right) d s
$$

Since $y_{2}^{0}+\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)} \geqslant 0$ and $f_{2}(y(t)) \geqslant 0$, it follows that $W_{2}(t, x) \geqslant 0, \forall(t, x) \in Q$. Then

$$
\left|y_{2}(t, x)\right| \leqslant\left\|y_{2}^{0}\right\|_{L^{\infty}(\Omega)}, \quad \forall(t, x) \in Q,
$$

and, similarly

$$
\left|y_{i}(t, x)\right| \leqslant\left\|y_{i}^{0}\right\|_{L^{\infty}(\Omega)}, \quad \forall(t, x) \in Q \quad \text { for } \quad i=1,3 .
$$

Thus we have proved that $y_{i} \in L^{\infty}(Q)(\forall(t, x) \in Q)$ for $i=1,2,3$. To show the positivity of y_{2}, we set $y_{2}=y_{2}^{+}-y_{2}^{-}$with

$$
\begin{aligned}
& y_{2}^{+}(t, x)=\sup \left\{y_{2}(t, x), 0\right\}, \\
& y_{2}^{-}(t, x)=\sup \left\{-y_{2}(t, x), 0\right\} .
\end{aligned}
$$

One multiplies $\frac{\partial y_{2}}{\partial t}=\lambda_{2} \Delta y_{2}+\frac{\varepsilon_{1}}{\varepsilon_{2}} y_{2}\left(1-y_{2}\right)-b_{2} y_{2} y_{3}+b_{0} y_{1} y_{2}$ by y_{2}^{-}, integrates over Ω then

$$
\begin{aligned}
-\frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}\left(y_{2}^{-}\right)^{2}(t, x) d x\right)=\int_{\Omega}\left|\lambda_{2} \nabla y_{2}^{-}(t, x)\right|^{2} d x & +\frac{\varepsilon_{1}}{\varepsilon_{2}} \int_{\Omega}\left(y_{2}^{-}\right)^{2}\left(1-y_{2}^{-}\right)(t, x) d x \\
& -b_{2} \int_{\Omega} y_{3}\left(y_{2}^{-}\right)^{2}(t, x) d x+b_{0} \int_{\Omega} y_{1}\left(y_{2}^{-}\right)^{2}(t, x) d x
\end{aligned}
$$

which involves

$$
-\frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}\left(y_{2}^{-}\right)^{2}(t, x) d x\right) \geqslant-b_{2} \int_{\Omega} y_{3}\left(y_{2}^{-}\right)^{2}(t, x) d x+b_{0} \int_{\Omega} y_{1}\left(y_{2}^{-}\right)^{2}(t, x) d x .
$$

As $y_{3} \leqslant\left|y_{3}\right| \leqslant N$ and $y_{1} \leqslant\left|y_{1}\right| \leqslant N$, then $-b_{2} y_{3} \geqslant-b_{2}\left|y_{3}\right| \geqslant-b_{2} N$ and $b_{0} y_{1} \leqslant b_{0}\left|y_{1}\right| \leqslant b_{0} N$, we have

$$
-\frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}\left(y_{2}^{-}\right)^{2}(t, x) d x\right) \geqslant-b_{2} \int_{\Omega} N\left(y_{2}^{-}\right)^{2}(t, x) d x+b_{0} \int_{\Omega} N\left(y_{2}^{-}\right)^{2}(t, x) d x .
$$

Gronwall's inequality conduits to

$$
\int_{\Omega}\left(y_{2}^{-}\right)^{2}(t, x) d x \leqslant e^{t\left(-b_{2}+b_{0}\right) N} \int_{\Omega}\left(y_{2}^{-}\right)^{2}(0, x) d x .
$$

Then

$$
y_{2}^{-}=0 .
$$

One deduces that $y_{2}(t, x) \geqslant 0, \forall(t, x) \in Q$. In addition, system

$$
\left\{\begin{array}{l}
\frac{\partial y_{1}}{\partial t}=y_{1}\left(1-y_{1}\right)-b_{1} y_{1} y_{2} \tag{6}\\
\frac{\partial y_{3}}{\partial t}=\lambda_{3} \Delta y_{3}+\frac{\varepsilon_{3}}{\varepsilon_{2}} y_{3}\left(1-y_{3}\right)-b_{3} y_{2} y_{3}
\end{array}\right.
$$

can be written as

$$
\left\{\begin{array}{l}
\frac{\partial y_{1}}{\partial t}=\lambda_{1} \Delta y_{1}+F\left(y_{1}, y_{3}\right) \\
\frac{\partial y_{3}}{\partial t}=\lambda_{3} \Delta y_{3}+G\left(y_{2}, y_{3}\right)
\end{array}\right.
$$

It is easy to see that $F\left(y_{1}, y_{3}\right)$ and $G\left(y_{1}, y_{3}\right)$ are continuously differentiable satisfying $F\left(0, y_{3}\right)=0$ and $G\left(y_{2}, 0\right)=0$, for all $y_{1}, y_{3} \geqslant 0$. Since initial data of system (6) are nonnegative, we deduce the positivity of y_{1} and y_{3} (see [21]). One deduces that $y_{1}(t, x) \geqslant 0, y_{2}(t, x) \geqslant 0$ and $y_{3}(t, x) \geqslant 0$, $\forall(t, x) \in Q$. By the second equation of (6) we get:

$$
\begin{aligned}
\int_{0}^{t} \int_{\Omega}\left|\frac{\partial y_{3}}{\partial s}\right|^{2} d s d x+\lambda_{3}^{2} \int_{0}^{t} \int_{\Omega}\left|\Delta y_{3}\right|^{2} d s d x-2 \lambda_{3} \int_{0}^{t} \int_{\Omega} & \frac{\partial y_{3}}{\partial s} \Delta y_{3} d s d x \\
& =\int_{0}^{t} \int_{\Omega}\left(\frac{\varepsilon_{3}}{\varepsilon_{2}} y_{3}\left(1-y_{3}\right)-b_{3} y_{2} y_{3}\right)^{2} d s d x
\end{aligned}
$$

via Green's formula we have

$$
\int_{0}^{t} \int_{\Omega} \frac{\partial y_{3}}{\partial s} \Delta y_{3} d x d s=\int_{\Omega}\left(-\left|\nabla y_{3}\right|^{2}+\left|\nabla y_{3}^{0}\right|^{2}\right) d x
$$

then

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega}\left|\frac{\partial y_{3}}{\partial s}\right|^{2} d x d s+\lambda_{3}^{2} \int_{0}^{t} \int_{\Omega}\left|\Delta y_{3}\right|^{2} d x d s+2 \lambda_{3} \int_{\Omega}\left|\nabla y_{3}\right|^{2} d x-2 \lambda_{3} \int_{\Omega}\left|\nabla y_{3}^{0}\right|^{2} d x \\
&=\int_{0}^{t} \int_{\Omega}\left(\frac{\varepsilon_{3}}{\varepsilon_{2}} y_{3}\left(1-y_{3}\right)-b_{3} y_{2} y_{3}\right)^{2} d x d s
\end{aligned}
$$

Since $y_{3}^{0} \in H^{2}(\Omega)$ and $\left\|y_{i}\right\|_{L^{\infty}(Q)}$ for $i=1,2,3$ are bounded independently, it yields that

$$
y_{3} \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right)
$$

and the inequality in (3) holds for $i=3$. The remaining cases can be treated similarly.

Theorem 2.

1. For all positive functions B_{0}, P_{0} and V_{0} given, the system (1) admits a global and regular solution.
2. The domain $\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$is positively invariant.
3. Any solution of the problem (1) whith initial condition is in $\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$, converges to the set defined by

$$
A \equiv[0,1] \times[0,1] \times\left[0, \frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3}\right]
$$

Proof. Let us first consider the second equation of the problem (1), we obtain:

$$
\left\{\begin{array}{l}
\frac{\partial B}{\partial t} \leqslant B(1-B) \\
\frac{\partial B}{\partial \nu}=0, \quad t>0 \\
B(x, 0)=B_{0}(x) \leqslant B_{01} \equiv \max _{\bar{\Omega}} B_{0}(x)
\end{array}\right.
$$

By the principle of comparison, we have $B(x, t) \leqslant B_{1}(t) \leqslant 1 . B_{1}(t)=\frac{B_{01}}{B_{01}+\left(1-B_{01}\right) e^{-t}}$ is the solution of the following problem:

$$
\left\{\begin{array}{l}
\frac{d B_{1}}{d t}=B_{1}\left(1-B_{1}\right) \\
B_{1}(0)=B_{01} \leqslant 1
\end{array}\right.
$$

Following the first equation of problem (1), we have:

$$
\left\{\begin{array}{l}
\frac{\partial P}{\partial t} \leqslant d_{1} \Delta P+\frac{\varepsilon_{2}}{\varepsilon_{1}} P(1-P) \\
\frac{\partial P}{\partial \nu}=0, \quad t>0 \\
P(x, 0)=P_{0}(x) \leqslant P_{01} \equiv \max _{\bar{\Omega}} P_{0}(x)
\end{array}\right.
$$

By the principle of comparison, we have $P(x, t) \leqslant P_{1}(t) \leqslant 1 . P_{1}(t)=\frac{P_{01}}{P_{01}+\varepsilon_{2} / \varepsilon_{1}\left(1-P_{01}\right) e^{-t}}$ is the solution of the following problem:

$$
\left\{\begin{array}{l}
\frac{d P_{1}}{d t}=P_{1}\left(1-P_{1}\right) \\
P_{1}(0)=P_{01} \leqslant 1
\end{array}\right.
$$

From second equation of system (1) and as $P(t, x) \leqslant 1$, we get

$$
\left\{\begin{array}{l}
\frac{\partial V}{\partial t}=d_{2} \Delta V+\frac{\varepsilon_{3}}{\varepsilon_{1}} V(1-V)+b_{3} P V \leqslant d_{2} \Delta V+V\left(\frac{\varepsilon_{2}}{\varepsilon_{1}}(1-V)+b_{3}\right) \\
\frac{\partial V}{\partial \nu}=0, \quad t>0 \\
V(x, 0)=V_{0}(x) \leqslant V_{01} \equiv \max _{\bar{\Omega}} V_{0}(x) .
\end{array}\right.
$$

According to the principle of comparison, we have $V(t, x) \leqslant V_{1} \leqslant 1$ where

$$
V_{1}(t)=\frac{V_{01}}{V_{01}+e^{-t}\left(\frac{\varepsilon_{3}}{\varepsilon_{1}}\left(1-V_{01}\right)+b_{3}\right)}
$$

is a solution of the following differential equation:

$$
\left\{\begin{array}{l}
\frac{d V_{1}}{\partial t}=\left(\frac{\varepsilon_{3}}{\varepsilon_{1}}\left(1-V_{1}\right)+b_{3}\right) V_{1} \\
V_{1}(0)=V_{01} \leqslant 1
\end{array}\right.
$$

Which gives the result.
*Solution remains in the invariant region:
Following the same way of argument as in 2, we have for any initial condition of the system (1) $\left(B_{0}(x), P_{0}(x), V_{0}(x)\right)$

$$
\begin{array}{ll}
0 \leqslant B \leqslant S_{0}, & S_{0}(0)=\max _{\bar{\Omega}} B_{0}(x), \\
0 \leqslant P \leqslant S_{1}, & S_{1}(0)=\max _{\bar{\Omega}} P_{0}(x), \\
0 \leqslant V \leqslant S_{2}, & S_{2}(0)=\max _{\bar{\Omega}} V_{0}(x) .
\end{array}
$$

Thus, we can say that the domain $\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$is positively invariant and the solutions of the system (1) are bounded $B_{0}(x)>1$ and $P_{0}(x)>1$. On the other hand, from [22,23] we have:

$$
\left\{\begin{array}{l}
\lim _{t \rightarrow+\infty} S_{0}(t) \leqslant 1, \\
\lim _{t \rightarrow+\infty} S_{1}(t) \leqslant 1, \\
\lim _{t \rightarrow+\infty} S_{2}(t) \leqslant 1+b_{3} .
\end{array}\right.
$$

The solution is convergent.

4. Equilibrium points

The equilibrium points are defined by resolving the system:

$$
\left\{\begin{array}{l}
B_{e}\left(1-B_{e}\right)-b_{1} B_{e} P_{e}=0 \tag{7}\\
d_{1} \Delta P_{e}+\frac{\varepsilon_{2}}{\varepsilon_{1}} P_{e}\left(1-P_{e}\right)-b_{2} P_{e} V_{e}+b_{0} B_{e} P_{e}=0 \\
d_{2} \Delta V_{e}+\frac{\varepsilon_{3}}{\varepsilon_{1}} V_{e}\left(1-V_{e}\right)+b_{3} P_{e} V_{e}=0
\end{array}\right.
$$

Theorem 3.

i) $E_{0}=(0,0,0)$,
ii) $E_{1}=(1,0,0), E_{2}=(0,1,0), E_{3}=(0,0,1)$,
iii) $E_{4}=\left(B_{0}, P_{0}, 0\right), E_{5}=\left(0, P_{1}, V_{1}\right), E_{6}=(1,0,1)$,
with

$$
P_{0}=\frac{\varepsilon_{1} / \varepsilon_{2}+b_{0}}{\varepsilon_{1} / \varepsilon_{2}+b_{0} b_{1}}, \quad B_{0}=\frac{\varepsilon_{1} / \varepsilon_{2}\left(1+b_{1}\right)}{\varepsilon_{1} / \varepsilon_{2}+b_{0} b_{1}}, \quad P_{1}=\frac{\varepsilon_{3}\left(b_{2}-\varepsilon_{2}\right)}{\varepsilon_{3} \varepsilon_{2}+b_{2} b_{3}}, \quad V_{1}=\frac{\varepsilon_{2}\left(2 \varepsilon_{3} \varepsilon_{2}+b_{2} b_{3}-\varepsilon_{3} b_{2}\right)}{b_{2}\left(\varepsilon_{3} \varepsilon_{2}+b_{2} b_{3}\right)} .
$$

Proof. The other fixed points are determined by the following system:

$$
\left\{\begin{array}{l}
(1-B)-b_{1} P=0, \tag{8}\\
(1-P)-\frac{\varepsilon_{1}}{\varepsilon_{2}} b_{2} V=0, \\
(1-V)+\frac{\varepsilon_{1}}{\varepsilon_{3}} b_{3} P=0 .
\end{array}\right.
$$

The first system equation (8):

$$
B^{*}=\frac{\varepsilon_{3} \varepsilon_{2}+\varepsilon_{1}^{2} b_{2} b_{3}-\varepsilon_{3} b_{1} b_{2} b_{3}\left(\varepsilon_{2}-\varepsilon_{1}\right)}{\varepsilon_{3} \varepsilon_{2}+\varepsilon_{1}^{2} b_{2} b_{3}} .
$$

The second system equation (8):

$$
P^{*}=\frac{\varepsilon_{3} b_{2} b_{3}\left(\varepsilon_{2}-\varepsilon_{1}\right)}{\varepsilon_{3} \varepsilon_{2}+\varepsilon_{1}^{2} b_{2} b_{3}} .
$$

The third system equation (8):

$$
V^{*}=\frac{\varepsilon_{2} b_{3}\left(\varepsilon_{3}+\varepsilon_{1}\right)}{\varepsilon_{3} \varepsilon_{2}+\varepsilon_{1}^{2} b_{2} b_{3}} .
$$

In the following we study the local stability of trivial points.
The Jacobian matrix associated with an equilibrium point (B, P, V) is given by

$$
J(B, P, V)=\left(\begin{array}{ccc}
1-2 B-b_{1} P & -b_{1} B & 0 \\
b_{0} P & \frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 P \varepsilon_{2}}{\varepsilon_{1}}-b_{2} V+b_{0} B & -b_{2} P \\
0 & b_{3} V & \frac{\varepsilon_{3}}{\varepsilon_{1}}-\frac{2 V \varepsilon_{3}}{\varepsilon_{1}}+b_{3} P
\end{array}\right)
$$

4.1. Analysis stability

Theorem 4. The system admits the following equilibrium points:
i) the trivial equilibrium point $E_{0}=(0,0,0)$;
ii) the axial equilibrium point $E_{1}=(1,0,0), E_{2}=(0,1,0)$ and $E_{3}=(0,0,1)$;
iii) the interior equilibrium point $E_{4}=\left(B_{0}, P_{0}, 0\right), E_{5}=\left(0, P_{1}, V_{1}\right)$ and $E_{6}=(1,0,1)$.
with

$$
P_{0}=\frac{\varepsilon_{1} / \varepsilon_{2}+b_{0}}{\varepsilon_{1} / \varepsilon_{2}+b_{0} b_{1}}, \quad B_{0}=\frac{\varepsilon_{1} / \varepsilon_{2}\left(1+b_{1}\right)}{\varepsilon_{1} / \varepsilon_{2}+b_{0} b_{1}}, \quad P_{1}=\frac{\varepsilon_{3}\left(b_{2}-\varepsilon_{2}\right)}{\varepsilon_{3} \varepsilon_{2}+b_{2} b_{3}}, \quad V_{1}=\frac{\varepsilon_{2}\left(2 \varepsilon_{3} \varepsilon_{2}+b_{2} b_{3}-\varepsilon_{3} b_{2}\right)}{b_{2}\left(\varepsilon_{3} \varepsilon_{2}+b_{2} b_{3}\right)} .
$$

Proof. Let us determine the eigenvalues of the Jacobian matrix associated with each equilibrium E_{i}, $i=0,1,2$.

$$
\begin{gathered}
J\left(E_{0}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\varepsilon_{2}}{\varepsilon_{1}} & 0 \\
0 & 0 & \frac{\varepsilon_{3}}{\varepsilon_{1}}
\end{array}\right), \quad J\left(E_{1}\right)=\left(\begin{array}{ccc}
-1 & -b_{1} & 0 \\
0 & \frac{\varepsilon_{2}}{\varepsilon_{1}}+b_{0} & 0 \\
0 & 0 & \frac{\varepsilon_{2}}{\varepsilon_{1}}
\end{array}\right), \quad J\left(E_{2}\right)=\left(\begin{array}{cc}
1-b_{1} & 0 \\
b_{0} & -\frac{\varepsilon_{2}}{\varepsilon_{1}} \\
0 & -b_{2} \\
0 & \frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3}
\end{array}\right), \\
J\left(E_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\varepsilon_{2}}{\varepsilon_{1}}-b_{2} & 0 \\
0 & b_{3} & -\frac{\varepsilon_{3}}{\varepsilon_{1}}
\end{array}\right) ; \quad J\left(E_{4}\right)=\left(\begin{array}{cccc}
1-2 B_{0}-b_{1} P_{0} & -b_{1} B_{0} & 0 \\
b_{0} P_{0} & \frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 P_{0} \varepsilon_{2}}{\varepsilon_{1}}+b_{0} B_{0} & -b_{2} P_{0} \\
0 & 0 & \frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3} P_{0}
\end{array}\right),
\end{gathered}
$$

$$
\begin{gathered}
J\left(E_{5}\right)=\left(\begin{array}{ccc}
1-b_{1} P_{1} & 0 & 0 \\
b_{0} P_{1} & \frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 P 1 \varepsilon_{2}}{\varepsilon_{1}}-b_{2} V_{1} & -b_{2} P_{1} \\
0 & b_{3} V_{1} & \frac{\varepsilon_{3}}{\varepsilon_{1}}-\frac{2 V 1 \varepsilon_{3}}{\varepsilon_{1}}+b_{3} P_{1}
\end{array}\right), \\
J\left(E_{6}\right)=\left(\begin{array}{ccc}
-1-b_{1} & -b_{1} & 0 \\
b_{0} & \frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 \varepsilon_{2}}{\varepsilon_{1}}+b_{0} & -b_{2} \\
0 & 0 & \frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3}
\end{array}\right) .
\end{gathered}
$$

- The eigenvalues of the matrix $J\left(E_{0}\right)$ are

$$
\lambda_{1}=1>0, \quad \lambda_{2}=\frac{\varepsilon_{2}}{\varepsilon_{1}}>0, \quad \lambda_{3}=\frac{\varepsilon_{3}}{\varepsilon_{1}}>0
$$

So, the point $E_{0}=(0,0,0)$ is an unstable point.

- The eigenvalues of the matrix $J\left(E_{1}\right)$ are

$$
\lambda_{1}=-1<0, \quad \lambda_{2}=\frac{\varepsilon_{2}}{\varepsilon_{1}}>0, \quad \lambda_{3}=\frac{\varepsilon_{3}}{\varepsilon_{1}}>0
$$

So, $E_{1}=(1,0,0)$ is a saddle point.

- The eigenvalues of the matrix $J\left(E_{2}\right)$ are

$$
\lambda_{1}=1-b_{2}, \quad \lambda_{2}=-\frac{\varepsilon_{2}}{\varepsilon_{1}}<0, \quad \lambda_{3}=\frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3}>0
$$

So, $E_{2}=(0,1,0)$ is a saddle point.

- The eigenvalues of the matrix $J\left(E_{3}\right)$ are

$$
\lambda_{1}=1, \quad \lambda_{2}=\frac{\varepsilon_{2}}{\varepsilon_{1}}-b_{2}, \quad \lambda_{3}=-\frac{\varepsilon_{2}}{\varepsilon_{1}}<0
$$

So, $E_{3}=(0,1,0)$ is a saddle point.

- The eigenvalues of the matrix $J\left(E_{4}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left(-\sqrt{a^{2}-2 a d-4 b_{1} B_{0} b_{0} P_{0}+d^{2}}+a+d\right)<0 \\
& \lambda_{2}=\frac{1}{2}\left(\sqrt{a^{2}-2 a d-4 b_{1} B_{0} b_{0} P_{0}+d^{2}}+a+d\right)>0 \\
& \lambda_{3}=\frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3} P_{0}>0
\end{aligned}
$$

with $a=1-2 B_{0}-b_{1} P_{0}, d=\frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 P_{0} \varepsilon_{2}}{\varepsilon_{1}}+b_{0} B_{0}, f=\frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3} P_{0}$.
So, $E_{4}=\left(B_{0}, P_{0}, 0\right)$ is a saddle point.

- The eigenvalues of the matrix $J\left(E_{5}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=1-b_{1} P_{1}<0 \\
& \lambda_{2}=\frac{1}{2}\left(-\sqrt{c^{2}-2 c f+4 d e+f^{2}}+c+f\right)<0 \\
& \lambda_{3}=\frac{1}{2}\left(\sqrt{c^{2}-2 c f+4 d e+f^{2}}+c+f\right)>0
\end{aligned}
$$

with $a=1-b_{1} P_{1}, b=b_{0} P_{1}, c=\frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 P_{1} \varepsilon_{2}}{\varepsilon_{1}}-b_{2} V_{1}, d=-b_{2} P_{1}, e=b_{3} V_{1}, f=\frac{\varepsilon_{3}}{\varepsilon_{1}}-\frac{2 V_{1} \varepsilon_{3}}{\varepsilon_{1}}+b_{3} P_{1}$. So, $E_{5}=\left(0, P_{1}, V_{1}\right)$ is a saddle point.

- The eigenvalues of the matrix $J\left(E_{6}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=\frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3}>0 \\
& \lambda_{2}=\frac{1}{2}\left(-\sqrt{a^{2}-2 a d-4 b_{1} b_{0}+d^{2}}+a+d\right)<0 \\
& \lambda_{3}=\frac{1}{2}\left(\sqrt{a^{2}-2 a d-4 b_{1} b_{0}+d^{2}}+a+d\right)>0
\end{aligned}
$$

with $a=-1-b_{1}, d=\frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 \varepsilon_{2}}{\varepsilon_{1}}+b_{0}, e=-b_{2}, f=\frac{\varepsilon_{3}}{\varepsilon_{1}}+b_{3}$.
So, $E_{6}=(1,0,1)$ is a saddle point.

4.2. Interior equilibrium

The other fixed points are determined by the following system:

$$
\left\{\begin{array}{l}
(1-B)-b_{1} P=0 \tag{9}\\
(1-P)-\frac{\varepsilon_{1}}{\varepsilon_{2}} b_{2} V+\frac{\varepsilon_{1}}{\varepsilon_{2}} b_{0} B=0 \\
(1-V)+\frac{\varepsilon_{1}}{\varepsilon_{3}} b_{3} P=0
\end{array}\right.
$$

The first system equation (9):

$$
B^{*}=\frac{\varepsilon_{1} / \varepsilon_{3} b_{2} b_{3}+\varepsilon_{2} / \varepsilon_{1}+b_{2}-b_{1}\left(\varepsilon_{2} / \varepsilon_{1}+b_{0}-b_{2}\right)}{\varepsilon_{1} / \varepsilon_{3} b_{2} b_{3}+\varepsilon_{2} / \varepsilon_{1}+b_{2}}
$$

The second system equation (9)

$$
P^{*}=\frac{\varepsilon_{2} / \varepsilon_{1}+b_{0}-b_{2}}{\varepsilon_{1} / \varepsilon_{3} b_{2} b_{3}+\varepsilon_{2} / \varepsilon_{1}+b_{2}}
$$

The third system equation (9)

$$
V^{*}=\frac{\left(\varepsilon_{2} / \varepsilon_{1}+b_{0}\right)\left(\varepsilon_{1} / \varepsilon_{3} b_{2} b_{3}+\varepsilon_{2} / \varepsilon_{1}+b_{2}\right)-\left(\varepsilon_{2} / \varepsilon_{1}+b_{0}-b_{2}\right)\left(\varepsilon_{2} / \varepsilon_{1}+b_{0} b_{1}\right)}{\left(\varepsilon_{1} / \varepsilon_{3} b_{2} b_{3}+\varepsilon_{2} / \varepsilon_{1}+b_{2}\right) b_{2}}
$$

Theorem 5. If the condition $a_{2}>0$ is satisfied, then the system (2) has a unique positive equilibrium point $E^{*}=\left(B^{*}, P^{*}, V^{*}\right)$.

Proof. The Jacobian matrix associated with an equilibrium point $E^{*}\left(B^{*}, P^{*}, V^{*}\right)$ is given by

$$
\begin{gathered}
J\left(E^{*}\right)=\left(\begin{array}{ccc}
1-2 B^{*}-b_{1} P^{*} & -b_{1} B^{*} & 0 \\
0 & \frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 P^{*} \varepsilon_{2}}{\varepsilon_{1}}-b_{2} V^{*}+b_{0} B^{*} & -b_{2} P^{*} \\
0 & b_{3} V^{*} & \frac{\varepsilon_{3}}{\varepsilon_{1}}-\frac{2 V^{*} \varepsilon_{3}}{\varepsilon_{1}}+b_{3} P^{*}
\end{array}\right), \\
\operatorname{det}\left(J\left(E^{*}\right)-\lambda\right)=\left(J_{11}-\lambda\right)\left(\lambda^{2}-\lambda\left(J_{22}+J_{33}\right)+J_{22} J_{33}+b_{3} b_{3} V^{*} P^{*}\right)
\end{gathered}
$$

with $J_{11}=1-2 B^{*}-b_{1} P^{*}, J_{22}=\frac{\varepsilon_{2}}{\varepsilon_{1}}-\frac{2 P^{*} \varepsilon_{2}}{\varepsilon_{1}}-b_{2} V^{*}+b_{0} B^{*}, J_{33}=\frac{\varepsilon_{3}}{\varepsilon_{1}}-\frac{2 V^{*} \varepsilon_{3}}{\varepsilon_{1}}+b_{3} P^{*}$.
We see that the characteristic equation of $J\left(E^{*}\right)$ has an eigenvalue. Value $\lambda_{1}=J_{11}$ is negative. So, in order to determine the stability of the E^{*}, we discuss the roots of the following equation $\lambda^{2}+a \lambda+b$, with $a=-\left(J_{22}+J_{33}\right)$ and $b=J_{22} J_{33}+b_{3} b_{3} V^{*} P^{*}$.

By Routh-Hurwitz criterion, if $a>0$ and $b>0$, the eigenvalue is negative.
We see that the first eigenvalue, if a and b are negative, E^{*} is stable; otherwise, E^{*} and is a saddle point.

5. The existence of the optimal control

Therefore, we adopted our mathematical model by introducing a control $u(x, t)$ in the third equation of system (10) as a control measure to combat the spread of predators,

$$
\begin{cases}\frac{\partial B(t, x)}{\partial t}=\varepsilon_{1} B\left(1-\frac{B}{K_{1}}\right)-\beta_{1} B P, & \forall(t, x) \in(0,+\infty) \times \Omega \tag{10}\\ \frac{\partial P(t, x)}{\partial t}-D_{1} \Delta P(t, x)=\varepsilon_{2} P\left(1-\frac{P}{K_{2}}\right)-\beta_{2} P V, & \forall(t, x) \in(0,+\infty) \times \Omega \\ \frac{\partial V(t, x)}{\partial t}-D_{2} \Delta V(t, x)=\varepsilon_{3} V\left(1-\frac{V}{K_{3}}\right)+\beta_{3} P V-u(x, t) V, & \forall(t, x) \in(0,+\infty) \times \Omega \\ \frac{\partial B}{\partial \eta}=\frac{\partial P}{\partial \eta}=\frac{\partial V}{\partial \eta}=0, & \text { on } \partial \Omega \\ B(0, x)=B_{0}>0, \quad P(0, x)=P_{0}>0, & V(0, x)=V_{0}>0\end{cases}
$$

The objective of our work is to minimize the predator population and the cost of implementing the control by using possible minimal control variables u,

$$
\begin{equation*}
J(X, u)=\rho \int_{0}^{T} \int_{\Omega} X_{3}(t, x) d x d t+\frac{\eta}{2}\|u\|_{L^{2}(Q)}^{2} \tag{11}
\end{equation*}
$$

In the objective functional, the quantity ρ represents the weight constant of shark fishing, η is the weight constants for mechanisms on shark fishing control. The terms $\frac{\eta}{2}\|u\|_{L^{2}(Q)}^{2}$ are the costs associated to the mechanisms on shark fishing control. The square of the controls variables reflects the severity of the side effects of the mechanisms on shark fishing. Our objective is to find control functions such that

$$
J\left(\left(B^{*}, P^{*}, V^{*}\right) ; u^{*}\right)=\min \left\{J((B, P, V) ; u), u \in U_{a d}\right\}
$$

Subject to system (10), where the control set is defined as

$$
U_{a d}=\left\{u \in\left(L^{\infty}(Q)\right)^{2} / 0 \leqslant u \leqslant u^{\max } \text { a.e. }(t, x) \in Q\right\}
$$

For biological reasons, the following are assumed to hold: $B(0, x)=B^{0}>0, P(0, x)=P^{0} \geqslant 0$, and $V(0, x)=V^{0} \geqslant 0$.
Theorem 6. Under the hypotheses of theorem 2, the optimal control problem (10) admits an optimal solution $\left(X^{*}, u\right)$.

Proof. From Theorem 2, we know that, u, X_{1}, X_{2}, and X_{3} are bounded uniformly in $L^{\infty}(Q), J$ is finite. Let $\left(u^{n}\right) \in U_{a d}$ be a minimizing sequence such that

$$
\left.\lim _{n \rightarrow \infty} J\left(X^{n}, u^{n}\right)\right)=\inf _{u \in U_{a d}} J(X, u)
$$

where $\left(X_{1}^{n}, X_{2}^{n}, X_{3}^{n}\right)$ is the solution of system (10) corresponding to the control u^{n} for $n=1,2, \ldots$ That is

$$
\left\{\begin{array}{l}
\frac{\partial X_{1}^{n}}{\partial t}=\varepsilon_{1} X_{1}^{n}\left(1-\frac{X_{1}^{n}}{K_{1}}\right)-\beta_{1} X_{1}^{n} X_{2}^{n} \tag{12}\\
\frac{\partial X_{2}^{n}}{\partial t}=D_{1} \Delta X_{2}^{n}+\varepsilon_{2} X_{2}^{n}\left(1-\frac{X_{2}^{n}}{K_{2}}\right)-\beta_{2} X_{2}^{n} X_{3}^{n}+\beta_{0} X_{1}^{n} X_{2}^{n} \\
\frac{\partial X_{3}^{n}}{\partial t}=D_{2} \Delta X_{3}^{n}+\varepsilon_{3} X_{3}^{n}\left(1-\frac{X_{3}^{n}}{K_{3}}\right)+\beta_{3} X_{2}^{n} X_{3}^{n}-u^{n} X_{3}^{n} \\
\frac{\partial X_{1}^{n}}{\partial \eta}=\frac{\partial X_{2}^{n}}{\partial \eta}=\frac{\partial X_{3}^{n}}{\partial \eta}=0 \\
\text { Condition initail. }
\end{array}\right.
$$

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 647-662 (2022)

Using the estimate (2) and $H^{1}(\Omega)$ is compactly embedded in $L^{2}(\Omega)$, so we deduce that $X_{1}^{n}(t)$ is compact in $L^{2}(\Omega)$. Let us show that $\left\{X_{1}^{n}(t), n \geqslant 1\right\}$ is equicontinuous in $C\left([0, T]: L^{2}(\Omega)\right)$. As $\frac{\partial X_{1}^{n}}{\partial t}$ is bounded in $L^{2}(Q)$, this implies that for all $s, t \in[0, T]$

$$
\left|\int_{\Omega}\left(X_{1}^{n}\right)^{2}(t, x) d x-\int_{\Omega}\left(X_{1}^{n}\right)^{2}(s, x) d x\right| \leqslant K|t-s|
$$

The Ascoli-Arzela theorem (see [24]) implies that X_{1}^{n} is compact in $C\left([0, T]: L^{2}(\Omega)\right)$. Hence, selecting further sequences, if necessary, we have $X_{1}^{n} \longrightarrow X_{1}^{*}$ in $L^{2}(\Omega)$, uniformly with respect to t.

Similarly, we have for $X_{i}^{n} \longrightarrow X_{i}^{*}$ in $L^{2}(\Omega)$ for $i=2,3$ uniformly with respect to t. From the boundedness of ΔX_{i}^{n} in $L^{2}(Q)$, which implies it is weakly convergent in $L^{2}(Q)$ on a subsequence denoted again Δy_{i}^{n} then for all distribution φ

$$
\int_{Q} \varphi \Delta X_{i}^{n} d x=\int_{Q} X_{i}^{n} \Delta \varphi d x \rightarrow \int_{Q} X_{i}^{*} \Delta \varphi d x=\int_{Q} \varphi \Delta X_{i}^{*} d x
$$

Which implies that $\Delta X_{i}^{n} \rightarrow \Delta X_{i}^{*}$ weakly in $L^{2}(Q), i=1,2,3,4$. In addition, the estimates leads to

$$
\begin{aligned}
\frac{\partial X_{i}^{n}}{\partial t} & \rightarrow \frac{\partial X_{i}^{*}}{\partial t} \text { weakly in } L^{2}(Q), i=1,2,3 \\
X_{i}^{n} & \rightarrow X_{i}^{*} \text { weakly in } L^{2}\left(0, T ; F^{2}(\Omega)\right), i=1,2,3 \\
X_{i}^{n} & \rightarrow X_{i}^{*} \text { weakly star in } L^{\infty}\left(0, T ; F^{1}(\Omega)\right), i=1,2,3
\end{aligned}
$$

We now show that $X_{i}^{n} X_{j}^{n} \mapsto X_{i}^{*} X_{j}^{*}$ for $i=1,2,3$ and $j=1,2,3$ strongly in $L^{2}(Q)$, we write

$$
X_{i}^{n} X_{j}^{n}-X_{i}^{*} X_{j}^{*}=\left(X_{i}^{n}-X_{i}^{*}\right) X_{j}^{n}+X_{i}^{*}\left(X_{j}^{n}-X_{j}^{*}\right)
$$

and we make use of the convergences $X_{i}^{n} \longrightarrow X_{i}^{*}$ strongly in $L^{2}(Q), i=1,2,3, X_{j}^{n} \longrightarrow X_{j}^{*}$ strongly in $L^{2}(Q), j=1,2,3$ and of the boundedness of X_{i}^{*}, X_{j}^{n} in $L^{\infty}(Q)$, then $X_{i}^{n} X_{j}^{n} \mapsto X_{i}^{*} X_{j}^{*}$ strongly in $L^{2}(Q)$. We use $0<\beta^{n}$ and $0<\beta_{.^{*}}$, and of the boundedness of $\beta_{.}^{*}, \beta^{n}$ in $L^{\infty}(Q)$, we deduce that $\beta^{n} X_{i}^{n} X_{j}^{n} \mapsto \beta^{*} X_{i}^{*} X_{j}^{*}$ for $i=1,2,3$ and $j=1,2,3$.

Since u^{n} is bounded, we can assume that $u^{n} \rightarrow u^{*}$ weakly in $L^{2}(Q)$ on a subsequence denoted again u^{n}. Since $U_{a d}$ is a closed and convex set in $L^{2}(Q)$, it is weakly closed, so $u^{*} \in U_{a d}$. We now show that

$$
u^{n} X_{3}^{n} \rightarrow u^{*} X_{3}^{*} \text { weakly in } L^{2}(Q)
$$

writing

$$
u^{n} X_{3}^{n}-u^{*} X_{3}^{*}=\left(X_{3}^{n}-X_{3}^{*}\right) u^{n}+\left(u^{n}-u^{*}\right) X_{3}^{*}
$$

and making use of the convergences $X_{3}^{n} \longrightarrow X_{3}^{*}$ strongly in $L^{2}(Q)$ and $u^{n} \longrightarrow u^{*}$ weakly in $L^{2}(Q)$, one obtains that $u^{n} X_{3}^{n} \rightarrow u^{*} X_{3}^{*}$ weakly in $L^{2}(Q)$.

By taking $n \rightarrow \infty$ in (12), we obtain that y^{*} is a solution of (...) corresponding to $u^{*} \in U_{a d}$. Therefore

$$
\begin{aligned}
J\left(X^{*}, u^{*}\right) & =\rho \int_{0}^{T} \int_{\Omega} X_{3}^{*}(t, x) d x d t+\frac{\eta}{2}\left\|u^{*}\right\|_{L^{2}(Q)}^{2} \\
& \leqslant \lim _{n \rightarrow \alpha} \inf \left(\rho \int_{0}^{T} \int_{\Omega} X_{3}^{n}(t, x) d x d t+\frac{\eta}{2}\left\|u^{n}\right\|_{L^{2}(Q)}^{2}\right) \\
& =\lim _{n \rightarrow \infty}\left(\rho \int_{0}^{T} \int_{\Omega} X_{3}^{n}(t, x) d x d t+\frac{\eta}{2}\left\|u^{n}\right\|_{L^{2}(Q)}^{2}\right) \\
& =\inf _{u \in U_{a d}} J(u)
\end{aligned}
$$

This shows that J attains its minimum at $\left(X^{*}, u^{*}\right)$, we deduce that $\left(X^{*}, u^{*}\right)$ verifies problem (12) and minimizes the object if functional (11). The proof is complete.

6. Necessary optimality conditions

In order to establish the main result of this section (optimality conditions), let (X^{*}, u^{*}) be an optimal pair and $u^{\varepsilon}=u^{*}+\varepsilon u \in U_{a d}(\varepsilon>0)$, be a control function such that $u \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $u \in U_{\text {ad }}$. Denote by $X^{\varepsilon}=\left(X_{1}^{\varepsilon}, X_{2}^{\varepsilon}, X_{3}^{\varepsilon}\right)=\left(X_{1}, X_{2}, X_{3}\right)\left(u^{\varepsilon}\right)$ and $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)=\left(X_{1}, X_{2}, X_{3}\right)\left(u^{*}\right)$ the solution of (12) corresponding to u_{i}^{ε} and u^{*}, respectively. Put $X_{i}^{\varepsilon}=X_{i}^{*}+\varepsilon z_{i}^{\varepsilon}$ for $i=1,2,3$. Subtracting system (12) corresponding u^{*} from the system corresponding to u^{ε} we get

$$
\left\{\begin{array}{l}
\frac{\partial z_{1}^{\varepsilon}}{\partial t}=\varepsilon_{1} z_{1}^{\varepsilon}\left(1-\frac{z_{1}^{\varepsilon}}{K_{1}}\right)-\beta_{1} X_{1}^{*} z_{2}^{\varepsilon}-\beta_{1} z_{1}^{\varepsilon} X_{2}^{\varepsilon}, \tag{13}\\
\frac{\partial z_{2}^{\varepsilon}}{\partial t}=D_{1} \Delta z_{2}^{\varepsilon}+\varepsilon_{2} z_{2}^{\varepsilon}\left(1-\frac{z_{2}^{\varepsilon}}{K_{2}}\right)-\beta_{2} X_{2}^{*} z_{3}^{\varepsilon}-\beta_{2} z_{2}^{\varepsilon} X_{3}^{\varepsilon}-\beta_{0} X_{1}^{*} z_{2}^{\varepsilon}-\beta_{0} z_{1}^{\varepsilon} X_{2}^{\varepsilon}, \\
\frac{\partial z_{3}^{\varepsilon}}{\partial t}=D_{2} \Delta z_{3}^{\varepsilon}+\varepsilon_{3} z_{3}^{\varepsilon}\left(1-\frac{z_{3}^{\varepsilon}}{K_{3}}\right)+\beta_{3} z_{2}^{\varepsilon} X_{3}^{*}+\beta_{3} X_{2}^{\varepsilon} z_{3}^{\varepsilon}-u X_{3}^{*}-u^{\varepsilon} z_{3}^{\varepsilon}
\end{array}\right.
$$

with the homogeneous Neumann boundary conditions

$$
\begin{gather*}
\frac{\partial z_{1}^{\varepsilon}}{\partial \eta}=\frac{\partial z_{2}^{\varepsilon}}{\partial \eta}=\frac{\partial z_{3}^{\varepsilon}}{\partial \eta}=0, \quad(x, t) \in \Sigma \tag{14}\\
z_{i}^{\varepsilon}(0, x)=0, \quad x \in \Omega \quad \text { for } \quad i=1,2,3 \tag{15}
\end{gather*}
$$

Now we show that X_{i}^{ε} are bounded in $L^{2}(Q)$ uniformly with respect to ε and that y_{i}^{ε} in $L^{2}(Q)$. To this end, denote $z^{\varepsilon}=\left(X_{1}^{\varepsilon}, X_{2}^{\varepsilon}, X_{3}^{\varepsilon}\right)$

$$
F^{\varepsilon}=\left(\begin{array}{ccc}
z_{1 b}-\beta_{1} X_{2}^{\varepsilon} & -\beta_{1} X_{1}^{*} & 0 \\
\beta_{0} X_{2} & z_{2 b}-\beta_{2} X_{3}^{\varepsilon}+\beta_{0} X_{1}^{\varepsilon} & -\beta_{2} X_{2}^{*} \\
0 & \beta_{3} X_{3}^{*} & z_{3 b}+\beta_{3} X_{2}^{\varepsilon}-u^{\varepsilon}
\end{array}\right), \quad G=\left(\begin{array}{c}
0 \\
0 \\
X_{3}^{*}
\end{array}\right) .
$$

Then (13) can be written in the form

$$
\left\{\begin{array}{l}
\frac{\partial z^{\varepsilon}}{\partial t}=A z^{\varepsilon}+F^{\varepsilon} z^{\varepsilon}+G u, \quad t \in[0, T], \\
z^{\varepsilon}(0)=0 .
\end{array}\right.
$$

If $(S(t), t \geqslant 0)$ is the semi-group generated by A, then the solution of this problem is given by

$$
\begin{equation*}
z^{\varepsilon}(t)=\int_{0}^{t} S(t-s) F^{\varepsilon}(s) z^{\varepsilon}(s) d s+\int_{0}^{t} S(t-s)(G u(s)) d s \tag{16}
\end{equation*}
$$

Since the elements of the matrix F^{ε} are bounded uniformly with respect to ε, by Gronwall's inequality we are led to

$$
\left\|X_{i}^{\varepsilon}\right\|_{L^{2}(Q)} \leqslant K^{*}
$$

for some constant $K^{*}>0(i=1, \ldots, 5)$. Then $\left\|X_{i}^{\varepsilon}-X_{i}^{*}\right\|_{L^{2}(Q)}=\varepsilon\left\|X_{i}^{\varepsilon}\right\|_{L^{2}(Q)}$. Thus $X_{i}^{\varepsilon} \rightarrow X_{i}^{*}$ in $L^{2}(Q), i=1,2,3$. Let

$$
F=\left(\begin{array}{ccc}
z_{1 b}-\beta_{1} X_{2}^{*} & -\beta_{1} X_{1}^{*} & 0 \\
\beta_{0} X_{1}^{*} & z_{2 b}-\beta_{2} X_{3}^{*}+\beta_{0} X_{1}^{*} & -\beta_{2} X_{2}^{*} \\
0 & \beta_{3} X_{3}^{*} & z_{3 b}+\beta_{3} X_{2}^{*}-u^{*}
\end{array}\right) \quad \text { and } \quad G=\left(\begin{array}{c}
0 \\
0 \\
X_{3}^{*}
\end{array}\right) .
$$

Then system (13)-(15) can be written as

$$
\left\{\begin{array}{l}
\frac{\partial z}{\partial t}=A z+F z+G u \quad t \in[0, T] \\
z(0)=0
\end{array}\right.
$$

and its solution is given by

$$
\begin{equation*}
z(t)=\int_{0}^{t} S(t-s) F(s) z(s) d s+\int_{0}^{t} S(t-s)(G u(s)) d s \tag{17}
\end{equation*}
$$

By (16) and (17) one deduces that

$$
z^{\varepsilon}(t)-z(t)=\int_{0}^{t}\left[S(t-s) F^{\varepsilon}(s)\left(z^{\varepsilon}-z\right)+z(s)\left(F^{\varepsilon}(s)-F(s)\right)\right] d s .
$$

Since all the elements of the matrix F^{ε} tend to the corresponding elements of the matrix F in $L^{2}(Q)$, and making use of Gronwall's inequality, we conclude $X_{i}^{\varepsilon} \rightarrow X_{i}^{*}$ in $L^{2}(Q)$ as $\varepsilon \rightarrow 0$, for $i=1, \ldots, 5$. This can be summarized by the following result.
Proposition 4. The mapping $y: U_{a d} \rightarrow W^{1,2}(0, T ; H(\Omega))$ with $X_{i} \in L(T, \Omega)$ is Gateaux differentiable with respect to u^{*}. For $u \in U_{a d}, y^{\prime}\left(u^{*}\right) u=z$ is the unique solution in $W^{1,2}(0, T ; H(\Omega))$ with $X_{i} \in L(T, \Omega)$ of the following equation

$$
\left\{\begin{array}{l}
\frac{\partial z}{\partial t}=A z+F z+G u, \quad t \in[0, T] \\
z(0, x)=0
\end{array}\right.
$$

Moreover let $R=\left(r_{1}, r_{2}, r_{3}\right)$ the adjoint variable, we can write the dual system associated to the system

$$
\left\{\begin{array}{l}
-\frac{\partial R}{\partial t}-A R-F R=D^{*} D X^{*}, \quad t \in[0, T] \\
R(T, x)=D^{*} D X^{*}(T, x)
\end{array}\right.
$$

where u^{*} is the optimal control, $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)$ is the corresponding optimal state and D is the matrix defined by

$$
D=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Lemma 1. Under hypotheses of theorem (2), if $\left(X^{*}, u^{*}\right)$ is an optimal pair, then the dual system (14) admits a unique strong solution $R \in W^{1,2}(0, T ; H(\Omega))$ with $p_{i} \in L(T, \Omega)$ for $i=1, \ldots, 3$.

Proof. The lemma can be proved by making the change of variable $s=T-t$ and the change of functions $q_{i}(s, x)=r_{i}(T-s, x)=r_{i}(t, x),(t, x) \in Q, i=1, \ldots, 3$ and applying the same method like in the proof of theorem (2).

In the following result, we give the first order necessary conditions.
Theorem 7. Let (u^{*}) be an optimal control of (13) and let $X^{*} \in W^{1,2}(0, T ; H(\Omega))$ with $X_{i}^{*} \in L(T, \Omega)$ for $i=1,2,3$ be the optimal state, that is X^{*} is the solution to (13) with the control $\left(u^{*}\right)$. Then, there exists a unique solution $R \in W^{1,2}(0, T ; H(\Omega))$ with $r_{i} \in L(T, \Omega)$ of the linear system

$$
\left\{\begin{array}{l}
-\frac{\partial R}{\partial t}-A R-F R=D^{*} D X^{*}, \quad t \in[0, T] \\
R(T, x)=D^{*} D X^{*}(T, x)
\end{array}\right.
$$

expression of the variational inequality leads to

$$
u^{*}=\min \left(u^{\max }, \max \left(0, \frac{X_{3}^{*}}{\eta} r_{3}\right)\right)
$$

Proof. Suppose (u^{*}) is an optimal control and $X^{*}=\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)=\left(X_{1}, X_{2}, X_{3}\right)\left(u^{*}\right)$ are the corresponding state variables. Consider $u^{\varepsilon}=u^{*}+\varepsilon h \in U_{a d}$ and corresponding state solution $X^{\varepsilon}=$ $\left(X_{1}^{\varepsilon}, X_{2}^{\varepsilon}, X_{3}^{\varepsilon}\right)=\left(X_{1}, X_{2}, X_{3}\right)\left(u^{\varepsilon}\right), \rho=(0,0, \rho)$. Since the minimum of the objective functional is attained at u^{*}, we have

$$
J^{\prime}\left(u^{*}\right)(h)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(J\left(u^{\varepsilon}\right)-J\left(u^{*}\right)\right)
$$

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 647-662 (2022)

$$
\begin{aligned}
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\rho \int_{0}^{T} \int_{\Omega}\left(X_{3}^{\varepsilon}-X_{3}^{*}\right)(t, x) d x d t+\frac{\eta}{2} \int_{0}^{T} \int_{\Omega}\left(\left(u^{\varepsilon}\right)^{2}-\left(u^{*}\right)^{2}\right)(t, x) d x d t\right) \\
& =\lim _{\varepsilon \rightarrow 0}\left(\rho \int_{0}^{T} \int_{\Omega}\left(\frac{X_{3}^{\varepsilon}-X_{3}^{*}}{\varepsilon}\right)(t, x) d x d t+\frac{\eta}{2} \int_{0}^{T} \int_{\Omega}\left(\varepsilon(h)^{2}+2 h u^{*}\right)(t, x) d x d t\right) \\
& =\rho \int_{0}^{T} \int_{\Omega} X_{3}(t, x) d x d t+\eta \int_{0}^{T} \int_{\Omega}\left(h u^{*}\right)(t, x) d x d t \\
& =\int_{0}^{T}\langle D \rho, D X\rangle_{H(\Omega)} d t+\int_{0}^{T}\left\langle\eta u^{*}, h\right\rangle_{\left(L^{2}(\Omega)\right)^{2}} d t .
\end{aligned}
$$

Since J is Gateaux differentiable at u^{*} and $U_{a d}$ is convex, as the minimum of the objective functional is attained at u^{*} it is seen that $J^{\prime}\left(u^{*}\right)\left(v-u^{*}\right) \geqslant 0$ for all $v \in U_{a d}$. We take $h=v-u^{*}$ then $J^{\prime}\left(u^{*}\right)\left(v-u^{*}\right)=\int_{0}^{T}\left\langle G^{*} r+\eta u^{*},\left(v-u^{*}\right)\right\rangle_{\left(L^{2}(\Omega)\right)^{2}} d t$. We conclude that $J^{\prime}\left(u^{*}\right)\left(v-u^{*}\right) \geqslant 0$ equivalent to $\int_{0}^{T}\left\langle G^{*} r+\eta u^{*},\left(v-u^{*}\right)\right\rangle_{\left(L^{2}(\Omega)\right)^{2}} d t \geqslant 0$ for all $v \in U_{a d}$. By standard arguments varying v, we obtain

$$
\eta u^{*}=-G^{*} r .
$$

Then

$$
u^{*}=\frac{X_{3}^{*}}{\eta} r_{3} .
$$

As $\left(u^{*}\right) \in U_{a d}$, we have

$$
u^{*}=\min \left(u^{\max }, \max \left(0, \frac{X_{3}^{*}}{\eta} r_{3}\right)\right)
$$

7. Conclusion

In this work, we have investigated a new tritrophic spatio-temporal model. A reaction-diffusion system concerns phytoplanktonic organisms. We have studied the existence and stability of the different equilibrium points. Moreover, we have proved the existence of the optimal control that can ensure the sustainability of planktonic organisms in the presence of super predator species.
[1] Leslie P. H. Some further notes on the use of matrices in population mathematics. Biometrika. 35 (3-4), 213-245 (1948).
[2] Leslie P. H., Gower J. C. The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika. 47 (3-4), 219-234 (1960).
[3] Siez E., González-Olivares E. Dynamics of a predator-prey model. SIAM Journal on Applied Mathematics. 59 (5), 1867-1878 (2021).
[4] Ma Z.-P., Li W.-T. Bifurcation analysis on a diffusive Holling-Tanner predator-prey model. Applied Mathematical Modelling. 37 (6), 4371-4384 (2013).
[5] Li X., Jiang W., Shi J. Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predatorprey model. IMA Journal of Applied Mathematics. 78 (2), 287-306 (2013).
[6] May R. M. Limit cycles in predator-prey communities. Science. 177 (4052), 900-902 (1972).
[7] Sun G.-Q., Zhang J., Song L.-P., Jin Z., Li B.-L. Pattern formation of a spatial predator-prey system. Applied Mathematics and Computation. 218 (22), 11151-11162 (2012).
[8] Mandal P. S., Banerjee M. Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model. Physica A: Statistical Mechanics and its Applications. 391 (4), 1216-1233 (2012).
[9] Chang L., Sun G.-Q., Wang Z., Jin Z. Rich dynamics in a spatial predator-prey model with delay. Applied Mathematics and Computation. 256, 540-550 (2015).
[10] Peixoto M. S., de Barros L. C., Bassanezi R. C. Predator-prey fuzzy model. Ecological Modelling. 214 (1), 39-44 (2008).
[11] Peixoto M. S., de Barros L. C., Bassanezi R. C. An approach via fuzzy sets theory for predator-prey model. Decision Making and Soft Computing. 9, 682-687 (2014).
[12] Yi F., Wei J., Shi J. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. Journal of Differential Equations. 246 (5), 1944-1977 (2009).
[13] Wang J., Shi J., Wei J. Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey. Journal of Differential Equations. 251 (4-5), 1276-1304 (2011).
[14] Song Y., Jiang H., Yuan Y. Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model. Journal of Applied Analysis \& Computation. 9 (3), 1132-1164 (2019).
[15] Cao X., Jiang W. Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response. Nonlinear Analysis: Real World Applications. 43, 428-450 (2018).
[16] Chattopadhyay J. Effect of toxic substances on a two-species competitive system. Ecological Modelling. 84 (1-3), 287-289 (1996).
[17] Clark W. C. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. WileyInterscience (1990).
[18] Cohen Y. Applications of control theory in ecology. Lecture Notes in Biomathematics. Berlin, Heidelberg, New York, Tokyo, Springer (1987).
[19] Wei X., Wei J. Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback. Communications in Nonlinear Science and Numerical Simulation. 50, 241-255 (2017).
[20] Zhang X., Zhao H. Dynamics and pattern formation of a diffusive predator-prey model in the presence of toxicity. Nonlinear Dynamics. 95, 2163-2179 (2019).
[21] Smoller J. Shock waves and reaction-diffusion equations. Vol. 258. Springer Science \& Business Media, New York (2012).
[22] Aziz-Alaoui M. A., Daher Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling type II shemes. Applied Mathematics Letters. 16 (7), 1069-1075 (2003).
[23] Daher Okiye M., Aziz-Alaoui M. A. On the dynamics of a predator-prey model with the Holling-Tanner functional response. 270-278. MIRIAM Editions, Proc. ESMTB conf. (2002).
[24] Brezis H., Ciarlet P. G., Lions J. L. Analyse fonctionnelle: theorie et applications. Vol. 91. Dunod Paris (1999).

Оптимальне керування тритрофною реакційно-дифузійною системою за допомогою просторово-часової моделі

Баала Ю., Агмур I., Рачик М.
Лабораторія аналізу, моделювання та симуляиії, Університет Хасана II, Касабланка, Марокко
У цій статті пропонується нова модель просторово-часової динаміки, що стосується тритрофної реакційно-дифузійної системи, вводячи фітопланктон і зоопланктон. Нагадаємо, що фітопланктон і зоопланктон є основою морського харчового ланцюга. У кожній морській тритрофній системі є здобич. Основною метою цієї роботи є контроль біомаси цього виду для забезпечення стійкості системи. Щоб досягти цього, визначаємо оптимальний контроль, який мінімізує біомасу суперхижаків. У цій статті досліджується існування та стійкість внутрішньої точки рівноваги. Окрема увага надана характеристиці оптимального керування.

Ключові слова: просторово-часова динаміка, реакиійно-дифузійна система, оптимальне керування, максимізація, стійкість.

