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1. Introduction

Studies of particle transfer processes (atoms, molecules, ions) in porous media (soils, nano hetero-
geneous composite materials – electrodes, polymer, and biological membranes, etc.) are relevant in
terms of modern technologies in the creation of nano batteries, supercapacitors, membrane structures
for separation purification of aqueous solutions, etc. The importance and justification of such studies
are noted in many works, including [1–19]. The study of the mechanisms of anomalous dispersion of
rheological fluid flows in inhomogeneous porous media [11,16–18] is relevant from the point of view of
practical applications. Another aspect of research is related to the ionic conductivity of ionic solutions
in porous and layered structures, which is important in connection with the anomalous behavior of
ion diffusion and polarization effects [2,14,20–23]. In particular, theoretical studies of electrodiffusion
processes of ion transfer in systems are relevant “electrolyte – electrode” [4, 5, 14, 24–31] and associ-
ated with the need to describe nonequilibrium processes of intercalation–deintercalation of ions, and
with the need for a theory suitable for practical application for forecasting and management these
processes. Problems in the description of electrode processes are connected, first of all, as with the
superficial phenomena at the interface “electrolyte – electrode”, where complex processes of adsorption,
desorption, diffusion, and in the middle of the electrodes (porous, layered in structure), where complex
processes of association, dissociation between ions, their anomalous (sub or super) diffusion due to
complex interaction with the structure of the electrode, which in turn are associated with problems of
charge accumulation on electrodes in batteries. Therefore, it is very important to take into account,
to some extent, the change in microstructure electrode material, in particular, due to its polarization
properties and porosity. In the vast majority of studies to describe electrodiffusion processes of ion
transfer in systems “electrolyte – electrode” equations of nonequilibrium thermodynamics [24] with
constant diffusion coefficients are used.

It is interesting to study the processes of self-diffusion of ions in charged nanoporous media (particles
which are frozen) by computer simulation methods [32,33]. At the same time, an important feature of
these systems is their significant spatial heterogeneity, when the diffusion coefficients are functions of
spatial coordinates and time, that is, temporal correlation functions “stream – stream” 〈ĵ(rl; t)ĵ(rl′ ; t′)〉
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in each of the phases and between phases. It should be noted that some way of calculating the diffusion
coefficients of ions depending on the coordinates for the systems “electrolyte solution – membrane”,
“electrolyte solution – vitreous fuel-containing materials”, “electrolyte solution – soil” was proposed
in [34–36]. In [14,27], a statistical theory was proposed to describe electrodiffusion ion transfer processes
in the system “electrolyte – electrode ” taking into account the spatial inhomogeneities and memory
effects using the nonequilibrium method statistical operator (NSO). In [14, 28, 29, 31], experimental
and theoretical study of subdiffusion impedance for multilayer system GaSe with encapsulated β-
cyclodextrin having a porous fractal structure was carried out. From the point of view of theoretical
research, the generalized equations of electrodiffusion of Cattaneo type in fractional derivatives [31] were
applied. However, in most of the mentioned works, except for [34–36], in the corresponding transfer
equations, the transfer coefficients: diffusion, viscosity, and thermal conductivity, which determine the
main mechanisms of transfer processes, are constants at the corresponding temperatures. Obviously,
to elucidate such mechanisms, it is very important to apply such theoretical approaches that link
the transfer coefficients with the characteristic potentials of the interaction of particles and their
distribution functions.

In this paper, we will apply the kinetic approach to the description of ion transfer processes in the
system ionic solution – porous medium. The second section analyzes the modified chain of BBGKI
equations for nonequilibrium ion distribution functions in the ionic solution – porous medium system,
depending on whether the two subsystems interacted at the initial time. The third section considers
the chain of BBGKI equations for nonequilibrium ion distribution functions in the pairwise collision
approximation for the case when the ionic solution and porous matrix subsystems are interacting.
For this case, a generalized kinetic equation of the revised Enskog–Vlasov–Landau theory for the
nonequilibrium ion distribution function in the model of charged solid spheres will be obtained, taking
into account attractive short-range interactions for the ionic solution-porous medium system. To
calculate the paired quasi-equilibrium coordinate distribution functions for ions and particles of the
porous matrix, inhomogeneous, time-dependent Ornstein–Zernike equations will be proposed for the
corresponding complete correlation functions.

2. The chain of BBGKI equations for the ionic solution system in a porous medium

We consider a system of ionic solution that interacts with a porous medium by diffusing at its place.
Positively and negatively charged ions of the solution can penetrate into the structure of the porous
medium (matrix) and move in it, interacting with its particles. We assume the whole volume of the
system to be equal to V = Vl + Vs, where Vl is the volume occupied by the ionic solution, and Vs is
the true volume porous matrix. Entering the volume Vpor of the porous space of the matrix, we can

determine its porosity: ψ = 1− Vpor
V .

The ionic solution will be considered with specific dielectric properties without explicit consid-
eration molecular subsystem, and the porous matrix formed by moving particles (atoms, molecules)
varieties ξ subsystem, kinetic energy, which is much less than its potential energy. We believe that
the particles of the porous matrix perform oscillating motions, and its dynamics can be described by
interacting phonons, for example, in the case of porous silicon, and other porous materials [40]. When
interacting with an ionic solution, both the structure of the porous matrix and the dynamic and struc-
tural properties of the ionic solution itself can change. The Hamiltonian of such a system is an ionic
solution – a porous matrix can be represented as:

H =

Nα∑

α,j=1

(
pj − Zαe

c A(rj ; t)
)2

2mα
+
∑

α,γ

Nα,Nγ∑

j,l

Φαγ(rj, rl)

+
∑

α,ξ

Nα,Nξ∑

j,l

Φαξ(rj,Rl) +
∑

α

Nα∑

j

Zαeϕ(rj ; t) +Hs,
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where the indices j, l number the ions of the solution of varieties α, γ, with masses mα, mγ and
vector–momentum pj , pl, rj , Rl are the coordinate vectors of ions and particles, respectively porous

matrix, Nα is the total number of ions of the variety α; Φαγ(rj , rl) = Φshαγ(rj , rl) + Φlαγ(rj, rl) is an

even potential for interaction between ions of the grade α, γ, Φαξ(rj ,Rl) = Φshαξ(rj ,Rl) + Φlαξ(rj,Rl)
is the pairwise potential of ion interaction with porous matrix particles that have short-range and
long-range (attractive) contributions.

Moreover, short-term contributions can have repulsive and attractive components Φshαγ(rj, rl) =

Φsh−repαγ (rj , rl) + Φsh−attαγ (rj, rl), i.e. repulsive and attractive forces can act between ions at small
distances. In particular, attractive short-range interactions can describe the processes of association
between ions. Hs is a Hamiltonian of a porous matrix, the structure of which will not be specified at this
stage of modeling. A(rj; t), ϕ(rj; t) are the total vector and scalar potentials of the electromagnetic
field generated by valence ions Zα and external field, e is the electron charge and c is the speed of
light. In what follows, we will not consider vortex electromagnetic processes of order e

c , but only
potential contributions from the scalar potential ϕ(rj ; t). In addition, at this stage of research we
do not take into account the possible influence of the electromagnetic field on the particles of the
porous matrix, which may be associated with the processes of polarization, changes in its dielectric
properties. Although in reality, in many cases, in particular for electrodes, biological membranes, such
consideration is important.

The nonequilibrium state of the ionic solution when interacting with the porous matrix is com-
pletely described by the Liouville equation for nonequilibrium distribution function of all particles
ρ(x1, . . . , xNα |R1, . . . ,RNξ

; t) = ρ(xNα , RNξ ; t) (where the notation is entered: xNα = x1, . . . , xNα ,

xj = pjrj is the coordinate and momentum of j-th ion of the solution, RNξ = R1, . . . ,RNξ
, Rl is the

coordinate of the l-th particle of the porous matrix)

∂

∂t
ρ(xNα , RNξ ; t) + iLNρ(x

Nα , RNξ ; t) = 0

with the Liouville operator

iLN =

Nα∑

α,j=1

pj

mα
· ∂

∂rj
+

Nξ∑

ξ,l=1

P l

mξ
· ∂

∂Rl
−
∑

α,γ

NαNγ∑

j,l

∂

∂rj
Φαγ(rj, rl)

(
∂

∂pj
− ∂

∂pl

)

−
∑

α,ξ

Nα,Nξ∑

j,l

∂

∂rj
(Φαξ(rj ,Rl) + Zαeϕ(rj ; t)) ·

∂

∂pj
,

at the same time in the Liouville operator we do not consider terms −∑α,ξ

∑Nα,Nξ

j,l
∂
∂Rl

Φαξ(rj,Rl)· ∂
∂P l

,
since we believe that the microscopic forces acting on the atoms of the porous matrix on the ion of the
solution do not change the momentum of the particles of the matrix.

The nonequilibrium state of the system ionic solution – porous medium will be described using a
modified chain of BBGKI equations [37–39,41, 42] for partial nonequilibrium distribution functions of
ions and particles of a porous matrix. To do this, we use the approach proposed in the works [37–
39, 41, 42], where the modified chain of equations BBGKI is built, taking into account the concept
of a consistent description of kinetics and hydrodynamics of nonequilibrium processes of the system
of interacting particles in the method of nonequilibrium statistical operator Zubarev, based on the
Liouville equation with the source:

∂

∂t
ρ
(
xNα , RNξ ; t

)
+ iLNρ

(
xNα , RNξ ; t

)
= −ε

(
ρ
(
xNα , RNξ ; t

)
− ̺rel

(
xNα , RNξ ; t

))
, (1)

which selects the delayed (ε → +0, after thermodynamic limit) solutions of the Liouville equation
under given initial conditions.

In this case, the initial condition for solving the Liouville equation (Cauchy problem) can be con-
sidered two options: first

ρ
(
xNα , RNξ ; t

) ∣∣
t=t0

= ̺rel
(
xNα , RNξ ; t0

)
= ρliqrel

(
xNα ; t0

)
ρs
(
RNξ ; t0

)
,
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this means that at the initial moment of time t0 the ionic solution and the porous matrix are considered
independent; other

ρ
(
xNα , RNξ ; t

) ∣∣
t=t0

= ρrel
(
xNα , RNξ ; t0

)
,

when the ionic solution and the porous matrix are considered at the initial moment of time by inter-
acting subsystems.

In the first case, ρliqrel(x
Nα ; t) is the relevant ion distribution function obtained by [37–39, 41, 42]

from the condition of the maximum of the Gibbs entropy functional while preserving the normaliza-
tion conditions for the distribution and the given parameters of the abbreviated description of the
nonequilibrium state of the ionic solution: 〈n̂α(x)〉t = fα(x; t) is the nonequilibrium one-particle ion
distribution function of the variety α and 〈ε̂int(r)〉t is the nonequilibrium. The average interaction
energy of the ions of the solution has the following structure:

ρliqrel(x
Nα ; t) = exp

{
−Φliq(t)−

∫
dr βliq(r, t)ε̂int(r)−

∑

α

∫
dx aα(x, t)n̂α(x)

}
,

where Φliq(t) is the Masier–Planck functional

Φliq(t) =

∫
dΓNliq

(x) exp

{
−
∫
dr βliq(r, t)ε̂int(r)−

∑

α

∫
dx aα(x, t)n̂α(x)

}
,

in which

n̂α(x) =

Nα∑

j=1

δ(x − xj) =

Nα∑

j=1

δ(r − rj)δ(p − pj)

is the microscopic phase density of the number of ions of the variety α and

ε̂int(r) =
1

2

∑

α,γ

Nα,Nγ∑

j,l

Φαγ(rj, rl)δ(r − rj)

is the microscopic energy density of the interaction of the ions of the solution. The Lagrange parameters
βliq(r, t) (inverse of the nonequilibrium temperature of the ionic solution), aα(x, t) are determined from
the conditions of self-consistent:

〈ε̂int(r)〉t = 〈ε̂int(r)〉trel, 〈n̂α(x)〉t = 〈n̂α(x)〉trel.
In this case, the ionic solution has a temperature βliq(r, t), and the porous matrix βs.

In the second case, ρrel(x
Nα , RNξ ; t) is the relevant function of the distribution of ions and particles

of the porous matrix obtained respectively [37–39, 41, 42] from the condition of the maximum of the
Gibbs entropy functional with preserved normalization conditions for the distribution and set parame-
ters of the abbreviated description of the nonequilibrium state of the ionic solution: 〈n̂α(x)〉t = fα(x; t)
is nonequilibrium one-particle ion distribution function of α, 〈Êint(r)〉t is nonequilibrium average ion
interaction energy solution and particles of a porous matrix, 〈n̂ξ(R)〉t = nξ(R; t) is average the particle
density of the porous matrix of the variety ξ has the following structure:

ρrel(x
Nα , RNξ ; t)

= exp



−Φ(t)−

∫
dr β(r, t)

(
Êint(r) +Hs

)
−
∑

α

∫
dx aα(x, t)n̂α(x)−

∑

ξ

∫
dRµξ(R)n̂ξ(R)



 ,

where Φ(t) is a Masier–Planck functional

Φ(t) =

∫
dΓ(x,R)

× exp



−

∫
dr β(r, t)

(
Êint(r) +Hs

)
−
∑

α

∫
dx aα(x, t)n̂α(x)−

∑

ξ

∫
dRµξ(R)n̂ξ(R)



 ,
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in which n̂α(x) is a microscopic phase density of the number of ions of the variety α and

Êint(r) =
1

2

∑

α,γ

Nα,Nγ∑

j,l

Φαγ(rj, rl)δ(r − rj) +
∑

α,ξ

Nα,Nξ∑

j,l

Φαξ(rj, rl)δ(r − rj)

is the microscopic energy density of the interaction of solution ions and particles of the porous matrix,
which can perform oscillating motions. The Lagrange parameters β(r, t) (inverse of the nonequilibrium
temperature of the ionic solution system – porous matrix), aα(x, t) are determined from the conditions
of self-agreement: 〈

(Êint(r) +Hs)
〉t

=
〈
(Êint(r) +Hs)

〉t
rel
,
〈
n̂α(x)

〉t
=
〈
n̂α(x)

〉t
rel
.

In this case, the ionic solution and the porous matrix have a temperature of β(r, t).

2.1. Kinetic equations with initial condition of independent subsystems:
ionic solution and porous matrix

Given the structure ρliqrel(x
Nα ; t) and the approach [37–39, 41–44], integrating the Liouville equation

with the source (1) by the corresponding coordinates and momentum of the ions of the solution and
the coordinates of the particles of the porous matrix, we obtain a chain of equations BBGKI with
modified boundary conditions (taking into account spatiotemporal interparticle correlations) for the
system ionic solution – porous matrix:
(
∂

∂t
+ iLα(1)

)
fα(x1; t) +

∑

γ

∫
dx2 iLαγ(1, 2)fαγ(x1, x2; t) +

∫
dRs iLαs(1, s)fαs(x1,Rs; t) = 0, (2)

(
∂

∂t
+ iLα(1) + iLγ(2) + iLαγ(1, 2)

)
fαγ(x1, x2; t)

+
∑

ν

∫
dx3
(
iLαξ(1, 3)+ iLγξ(2, 3)

)
fαγν(x1, x2, x3; t)+

∫
dRs

(
iLαs(1, s)+ iLγs(2, s)

)
fαγs(x1, x2,Rs; t)

= −ε
(
fαγ(x1, x2; t)− gαγ(r1, r2|n, β; t)fα(x1; t)fγ(x2; t)

)
, (3)(

∂

∂t
+ iLα(1) + iLαs(1, s)

)
fαs(x1,Rs; t)

+
∑

γ

∫
dx3
(
iLαγ(1, 3) + iLsγ(s, 3)

)
fαsγ(x1,Rs, x3; t) +

∫
dRs′iLαs′(1, s

′)fαss′(x1,Rs,Rs′ ; t)

= −ε
(
fαs(x1,Rs; t)− fα(x1; t)n(Rs; t)

)
, (4)

where ε→ +0 after the thermodynamic limit,

iLα(j) =
pj

mα
· ∂

∂rj
− ∂

∂rj
Zαeϕ(rj ; t) ·

∂

∂pj
, (5)

iLαγ(j, l) = − ∂

∂rj
Φαγ(rj , rl) ·

(
∂

∂pj
− ∂

∂pl

)

there are one-part and two-part parts of the Liouville operator,

iLαs(j, s) = − ∂

∂rj
Φαs(rj ,Rs) ·

∂

∂pj

is a two-particle Liouville operator of particles of liquid subsystem and porous subsystem.
gαγ(r1, r2|n, β; t) are quasi-equilibrium pair coordinate functions of ion distribution of varieties α, γ
solution subsystems

gαγ(r1, r2|n, β; t) =
1

nα(r1; t)nγ(r2; t)

∫
dΓNliq

(x) n̂α(r1)n̂γ(r2)ρ
liq
rel(x

Nα ; t),

nα(r; t) =

∫
dp fα(x; t)
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is the nonequilibrium average value of the density of the number of ions of the variety α, n(rs; t)
is a nonequilibrium average density of the number of particles of the porous subsystem, fα(x1; t),
fαγ(x1, x2; t), fαγν(x1, x2, x3; t) are one-, two- and three-ionic nonequilibrium distribution functions,
fαγs(x1, x2,Rs; t), fαs(x1,Rs; t), fαss′(x1,Rs,Rs′ ; t) are nonequilibrium distribution functions ions
and particles of the porous medium.

The three-particle functions satisfy the following equations of the chain of equations BBGKI, which
include four-particle nonequilibrium distribution functions. It is important to note that one- and
two-particle (ionic) nonequilibrium distribution functions determine the behavior of hydrodynamic
variables: average non-equilibrium values densities of the number of ions nα(r; t), their momentum
pα(r; t), kinetic energy εkinα (r; t), as well as the potential energy εintα (r; t):

pα(r; t) =

∫
dp fα(r,p; t)p,

εkinα (r; t) =

∫
dp

p2

2mα
fα(r,p; t),

εintα (r; t) =
∑

γ

∫
dp

∫
dp′
∫
dr′Φαγ(r, r

′)fαγ(r,p, r
′,p′; t) +

∫
dp

∫
dRsΦαs(r,Rs)fαs(r,p,Rs; t),

which satisfy the corresponding laws of conservation of average nonequilibrium values of the number
of ions nα(r; t), full momentum p(r; t)

p(r; t) =
∑

α

pα(r; t)

and full of energy

ε(r; t) =
∑

α

(
εkinα (r; t) + εintα (r; t)

)
,

underlying the hydrodynamic description of nonequilibrium processes in the system ionic solution –
porous medium. The system of equations (2)–(4) for nonequilibrium ion distribution functions includes
paired quasi-equilibrium coordinate functions ion distribution (positively and negatively charged ions)
gαγ(r, r

′|n, β; t) (g++, g+−, g−−), which are functions of nonequilibrium ion densities nα(r; t) and in-
verse temperature β(r; t). They describe multiparticle correlations and may be of independent interest,
as they may be related to the corresponding partial dynamic structural factors of the corresponding
quasi-equilibrium state.

The calculation of paired quasi-equilibrium distribution functions is one of the important problems.
In particular, in the case of simple fluids in the works [45–47], when considering the corresponding mod-
els of the collision integral for this distribution function we used the generalization of the virial decom-
position by the density chosen for the time-dependent density. Another way is suggested in the recent
work [44], in which the paired quasi-equilibrium coordinate distribution function of a simple liquid is
calculated from the statistical sum of the corresponding quasi-equilibrium particle distribution in the
method of collective variables [48–52]. In addition, it is important to note that the use of the Ornstein–
Zernicke equation, which depends on the time [53–56], is promising to calculate g2(r1, r2|n, β; t). In
the case of equilibrium spatially homogeneous and inhomogeneous ionic and ionic-molecular systems,
the methods for solving the Ornstein–Zernike equations are perfectly developed [57–60].

In our case, the quasi-equilibrium distribution functions are even gαγ(r, r
′|n, β; t) can be related

to full correlation functions hαγ(r, r
′|n, β; t) (h++, h+−, h−−) that satisfy inhomogeneous Ornstein–

Zernike–type equations that depend on time:

hαγ(r, r
′; t) = cαγ(r, r

′; t) +
∑

ν

∫
dr′′cαν(r, r

′′; t)nν(r
′′; t)hνγ(r

′′, r′; t), (6)

where cαγ(r, r
′; t) are direct correlation functions of solution ion distribution. The system of equa-

tions (6) includes time-dependent ion densities nν(r
′′; t) (n+, n−), equations for which it is necessary

to find from the corresponding kinetic equation for fα(p, r; t) after integration by impulses dp.
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It is important to note that the boundary condition in the equation (3) takes into account spatially
inhomogeneous correlations between solution particles. In contrast, the boundary condition in the
equation (5) does not take into account spatially inhomogeneous correlations between solution parti-
cles and a porous matrix, which corresponds to the principle of complete weakening of Bogolyubov
correlations and, in this case, is a consequence of the independence of the ionic solution from the porous
matrix at the initial time.

2.2. Kinetic equations with the initial condition of interacting subsystems:
ionic solution and porous matrix

In the case when at the initial moment of time, the ionic solution and the porous matrix are considered
by interacting subsystems, the first equations of the BBGKI chain have the following form:
(
∂

∂t
+ iLα(1)

)
fα(x1; t) +

∑

γ

∫
dx2 iLαγ(1, 2)fαγ(x1, x2; t) +

∫
dRs iLαs(1, s)fαs(x1,Rs; t) = 0,

(
∂

∂t
+ iLα(1) + iLγ(2) + iLαγ(1, 2)

)
fαγ(x1, x2; t)

+
∑

ξ

∫
dx3
(
iLαξ(1, 3)+ iLγξ(2, 3)

)
fαγξ(x1, x2, x3; t)+

∫
dRs

(
iLαs(1, s)+ iLγs(2, s)

)
fαγs(x1, x2,Rs; t)

= −ε
(
fαγ(x1, x2; t)− gαγ(r1, r2|n, β; t)fα(x1; t)fγ(x2; t)

)
,(

∂

∂t
+ iLα(1) + iLαs(1, s)

)
fαs(x1,Rs; t)

+
∑

γ

∫
dx3

(
iLαγ(1, 3) + iLsγ(s, 3)

)
fαsγ(x1,Rs, x3; t) +

∫
dRs′iLαs′(1, s

′)fαss′(x1,Rs,Rs′ ; t)

= −ε
(
fαs(x1,Rs; t)− gαs(r1,Rs|n, β; t)fα(x1; t)n(Rs; t)

)
,

where gαγ(r1, r2|n, β; t), gαs(r1,Rs|n, β; t) are quasi-equilibrium pair ion distribution functions of α, γ
varieties solution subsystems and solution – porous matrix, n(rs; t) is a nonequilibrium density (unary
function distribution) of the porous subsystem particles, fα(x1; t), fαγ(x1, x2; t), fαγξ(x1, x2, x3; t)
are one-, two- and three-ion nonequilibrium distribution functions, fαγs(x1, x2,Rs; t), fαs(x1,Rs; t),
fαss′(x1,Rs,Rs′ ; t) are nonequilibrium distribution functions ions and particles of the porous medium.
Paired quasi-equilibrium distribution functions gαγ(r, r

′|n, β; t), gαs(r,Rs|n, β; t) in the chain of equa-
tions BBGKI as in the previous case can be associated with the corresponding complete correlation
functions hαγ(r, r

′|n, β; t) (h++, h−+, h−−), hαs(r,Rs|n, β; t) (h+s, h−s), which satisfy inhomogeneous
equations Ornstein–Zernike, which depend on time:

hαγ(r, r
′; t) = cαγ(r, r

′; t) +
∑

ξ

∫
dr′′cαξ(r, r

′′; t)nξ(r
′′; t)hξγ(r

′′, r′; t)

+

∫
dRs cαs(r,Rs; t)ns(Rs; t)hsγ(Rs, r

′; t),

hαs(r,Rs; t) = cαs(r,Rs; t) +
∑

ξ

∫
dr′′cαξ(r, r

′′; t)nξ(r
′′; t)hξs(r

′′,Rs; t)

+

∫
dRs′ cαs(r,Rs; t)ns′(Rs′ ; t)hs′s(Rs′ ,Rs),

hsα(Rs, r; t) = csα(Rs, r; t) +
∑

ξ

∫
dr′′csξ(Rs, r

′′; t)nξ(r
′′; t)hξα(r

′′, r; t)

+

∫
dRs′ css′(Rs,Rs′)ns′(Rs′ ; t)hs′α(Rs′ , r; t),
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hss(Rs,Rs′ ; t) = css(Rs,Rs′ ; t) +

∫
dRs′′css(Rs,Rs′′ ; t)ns(Rs′′ ; t)hss(Rs′′ ,Rs′ ; t),

where cαγ(r, r
′; t), cαs(r,Rs; t), css(Rs,Rs′ ; t) are direct correlation functions of ions and particles

of the porous medium. As we can see, the structure is a connected system of equations for finding
the correlation functions hαγ(r, r

′|n, β; t), hαs(r,Rs|n, β; t). It includes the nonequilibrium density
ns(Rs′′ ; t), hss(Rs,Rs′ ; t), css(Rs,Rs′ ; t) particles of a porous matrix. This raises the problem of
developing methods for solving time-dependent inhomogeneous Ornstein–Zernike equations.

In the next section, we consider the approximation of pair collisions between particles for the case
when the subsystems ionic solution and the porous matrix at the initial time are considered interacting.

3. Approaching pairwise collisions

In the approximate pair collisions between particles, when three-particle distribution functions are
not taken into account, for nonequilibrium two-particle distribution functions, we obtain [37, 39] the
following equations:
(
∂

∂t
+ iLα(1) + iLγ(2) + iLαγ(1, 2)

)
fαγ(x1, x2; t)

= −ε
(
fαγ(x1, x2; t)− gαγ(r1, r2|n, β; t)fα(x1; t)fγ(x2; t)

)
, (7)

(
∂

∂t
+ iLα(1) + iLαs(1, s)

)
fαs(x1,Rs; t)

= −ε
(
fαs(x1,Rs; t)− gαs(r1,Rs|n, β; t)fα(x1; t)n(Rs; t)

)
. (8)

Solutions of these equations (7), (8) can be given as:

fαγ(x1, x2; t) = ε

∫ 0

−∞
dτ e

(
ε+iL

(2)
αγ (1,2)

)
τgαγ(r1, r2|n, β; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ),

fαs(x1,Rs; t) = ε

∫ 0

−∞
dτ e

(
ε+iL

(2)
αs (1,s)

)
τgαs(r1,Rs|n, β; t+ τ)fα(x1; t+ τ)n(Rs; t+ τ),

where

iL(2)
αγ (1, 2) = iLα(1) + iLγ(2) + iLαγ(1, 2),

iL(2)
αs (1, s) = iLα(1) + iLαs(1, s).

Substituting these solutions into the equation (2), we obtain a non-Markov kinetic equation for nonequi-
librium one-particle ion distribution function in the system ionic solution – porous matrix:
(
∂

∂t
+ iLα(1)

)
fα(x1; t) = −

∑

γ

∫
dx2 iLαγ(1, 2)

× ε

∫ 0

−∞
dτ e

(
ε+iL

(2)
αγ (1,2)

)
τgαγ(r1, r2|n, β; t+ τ) fα(x1; t+ τ)fγ(x2; t+ τ)

−
∫
dRs iL(1, s) ε

∫ 0

−∞
dτ e

(
ε+iL

(2)
αs (1,s)

)
τgαs(r1,Rs|n, β; t+ τ) fα(x1; t+ τ)n(Rs; t+ τ). (9)

The obtained kinetic equation for the nonequilibrium one-particle ion distribution function
also takes into account the spatial heterogeneity of the system. If this equation formally put
gαs(r1,Rs|n, β; t + τ) = 1, then we obtain the kinetic equation for the nonequilibrium one-particle
distribution function ions, which corresponds to the initial condition of non-interacting subsystems of
ionic solution and porous matrix. When obtaining the kinetic equation (9), we did not specify the
paired potentials of interaction between ions and particles of the porous matrix.

In the next section, we consider the model of charged solid spheres to describe the ionic solution
in the presence of a porous matrix.
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4. Model of charged solid spheres. Kinetic equation of the revised Enskog–Vlasov–
Landau theory for the ionic solution-porous matrix system

Consider the model of charged solid spheres for an ionic subsystem when the interaction potential can
be submitted as an amount [37, 39, 43]:

Φαγ(r, r
′) = Φshαγ(r, r

′) + Φlαγ(r, r
′),

where Φsh
αγ(r, r

′) is the short-range interaction potential between ions, which will be modeled by the

sum of Φsh-rep
αγ (r, r′) is the potential of solid spheres and Φsh-att

αγ (r, r′) is short-range attraction potential,

which describes possible associative connections between ions; Φlαγ(r, r
′) is a long-range potential for

interaction between ions, in particular the potential of the Yukawa type. In addition, the interaction
of ions and particles of the porous medium will be described by short-term potential of solid spheres
Φsh-rep
αs (r,Rs) and some attractive potential Φsh-att

αs (r,Rs) with effective range reff . Based on the
works [37, 39] in the case of the model of solid spheres for the liquid subsystem from (9) we get:
(
∂

∂t
+ iLα(1)

)
fα(x1; t) = −

∑

γ

∫ σγ

0
dr2

∫
dp2 iL

sh-rep
αγ (12)

× ε

∫ 0

−∞
dτ e

(
ε+iL0

αγ(12)+iL
sh-rep
αγ (12)

)
τgαγ(r1, r2|n, β; t+ τ) fα(x1; t+ τ)fγ(x2; t+ τ)

−
∑

γ

∫ reff

σγ

dr2

∫
dp2 iL

sh-att
αγ (12) ε

∫ 0

−∞
dτ e

(
ε+iL0

αγ(12)+iL
sh-att
αγ (12)

)
τ

× gαγ(r1, r2|n, β; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ)

−
∑

γ

∫ ∞

reff

dr2

∫
dp2 iL

l
αγ(12) ε

∫ 0

−∞
dτ e

(
ε+iL0

αγ(12)+iL
l
αγ (12)

)
τgαγ(r1, r2|n, β; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ)

−
∫ σs

0
dRs iL

sh-rep
αs (1s) ε

∫ 0

−∞
dτ e

(
ε+iLα(1)+iL

sh-rep
αs (1s)

)
τgαs(r1,Rs|n, β; t+ τ)fα(x1; t+ τ)ns(Rs; t+ τ)

−
∫ reff

σs

dRs iL
sh-att
αs (1s) ε

∫ 0

−∞
dτ e

(
ε+iLα(1)+iLsh-att

αs (1s)
)
τgαs(r1,Rs|n, β; t+ τ)fα(x1; t+ τ)ns(Rs; t+ τ)

is a kinetic equation for the nonequilibrium one-particle ion distribution function, taking into account
areas of short-range (solid-sphere) and long-range potentials. Given that in the field of action of
the potential of solid spheres, the interaction time τ → +0 and detailed calculations [37, 39, 43], the
equation can be given as:
(
∂

∂t
+ iLα(1)

)
fα(x1; t) = −

∑

γ

∫
dx2 T̂αγ(12) gαγ (r1, r2|n, β; t) fα(x1; t)fγ(x2; t)

−
∫
dRs T̂αs(1s) gαs(r1,Rs|n, β; t)fα(x1; t)ns(Rs; t)

−
∑

γ

∫ reff

σγ

dr2

∫
dp2 iL

sh-att
αγ (12) ε

∫ 0

−∞
dτ e(ε+iL

0
αγ(12)+iL

sh-att
αγ (12))τ

× gαγ(r1, r2|n, β; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ)

−
∑

γ

∫ ∞

reff

dr2

∫
dp2 iL

l
αγ(12) ε

∫ 0

−∞
dτe(ε+iL

0
αγ (12)+iL

l
αγ (12))τ gαγ(r1, r2|n, β; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ)

−
∫ reff

σs

dRs iL
sh-att
αs (1s) ε

∫ 0

−∞
dτ e(ε+iLα(1)+iLsh-att

αs (1s))τgαs(r1,Rs|n, β; t+ τ)fα(x1; t+ τ)ns(Rs; t+ τ),

where T̂αγ(12) is the Enskog collision operator for charged solid spheres (ions) [37], T̂αs(1s) is the
operator Enskog collision for charged solid spheres and solid spheres, describing the porous medium.
Next, if in the long-range part of the collision integral to perform integration by parts, we obtain the
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following kinetic equation:
(
∂

∂t
+ iLα(1)

)
fα(x1; t) = −

∑

γ

∫
dx2 T̂αγ(12) gαγ (r1, r2|n, β; t) fα(x1; t) fγ(x2; t)

−
∫
dRs T̂αs(1s) gαs(r1,Rs|n, β; t) fα(x1; t)ns(Rs; t)

−
∑

γ

∫ reff

σγ

dr2

∫
dp2 iL

sh-att
αγ (12) gαγ (r1, r2|n, β; t) fα(x1; t) fγ(x2; t)

+
∑

γ

∫ reff

σγ

dr2

∫
dp2 iL

sh-att
αγ (12)

∫ 0

−∞
dτ e(ε+iL

0
αγ (12)+iL

sh-att
αγ (12))τ

×
(
∂

∂τ
+ iL0

αγ(12) + iLsh-att
αγ (12)

)
gαγ(r1, r2|n, β; t+ τ) fα(x1; t+ τ) fγ(x2; t+ τ)

−
∑

γ

∫ ∞

reff

dr2

∫
dp2 iL

l
αγ(12) gαγ (r1, r2|n, β; t) fα(x1; t) fγ(x2; t)

+
∑

γ

∫ ∞

reff

dr2

∫
dp2 iL

l
αγ(12)

∫ 0

−∞
dτ e(ε+iL

0
αγ(12)+iL

l
αγ (12))τ

×
(
∂

∂τ
+ iL0

αγ(12) + iLlαγ(12)

)
gαγ(r1, r2|n, β; t+ τ) fα(x1; t+ τ) fγ(x2; t+ τ)

−
∫ reff

σs

dRs iL
sh-att
αs (1s)gαs(r1,Rs|n, β; t) fα(x1; t)ns(Rs; t)

+

∫ reff

σs

dRs iL
sh-att
αs (1s)

∫ 0

−∞
dτ e(ε+iLα(1)+iLsh-att

αs (1s))τ

×
(
∂

∂τ
+ iLα(1) + iLsh-att

αs (1s)

)
gαs(r1,Rs|n, β; t+ τ) fα(x1; t+ τ)ns(Rs; t+ τ),

where the third, fifth, and seventh terms in the right part are generalized integrals of the Vlasov
collision – generalized middle fields, and the fourth, sixth, and eighth terms are generalized Landau–
type collision integrals between ions and ions and porous matrix particles, taking into account memory
effects.

Revealing the action of the operator Enskog in the right part, in a spatially inhomogeneous case,
(up to linear values by gradients) and without taking into account the effects of memory, we obtain:

(
∂

∂t
+ iLα(1)

)
fα(x1; t) = I

(0)
αE(x1; t) + I

(1)
αE(x1; t) + I

(1)
αMF (x1; t) + I

(1)
αL(x1; t), (10)

where the terms on the right are the integrals of collisions, due to the contribution of an certain type
of interparticle interaction. The first and second of them are Enskog–type collision integrals of the
RET theory [37]:

I
(0)
αE(x1; t) =

∑

γ

∫
dv2

∫
dε

∫
b db g(12)gαγ (σαγ |n, β; t)

×
(
fα(r1,v

′
1; t)fγ(r2,v

′
2; t)− f1(rα,v1; t)fγ(r2,v2; t)

)
,

I
(1)
αE(x1; t) =

∑

γ

σ3αγ

∫
dr̂12

∫
dv2 Θ

(
r̂12 · g(12)

)(
r̂12 · g(12)

)

×
(
gαγ(r12|n; t)r12 · [fα(r1,v′

1; t)∇2fγ(r2,v
′

2; t)− fα(r1,v1; t)∇2fγ(r2,v2; t)]

+
1

2

(
r̂12 ·∇2gαγ(r12|n, β; t)

)[
fα(r1,v

′

1; t)fγ(r2,v
′

2; t)− fα(r1,v1; t)fγ(r2,v2; t)
])
,

where b is the aiming parameter, gαγ(σαγ |n; t) is the contact value of the paired quasi-equilibrium
distribution function, r̂12 =

r12
|r12| is a single vector, v′

1 = v1+r̂12(r̂12 ·g(12)), v′

2 = v2−r̂12(r̂12 ·g(12))
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is the value of particle velocities 1, 2 after the collision, while v1, v2 is the value of their velocities
before the collision, where g(12) = v2 − v1 is the relative velocity.

The next term is the contribution of the mean-field theory KMFT [37]:

I
(1)
αMF (x1; t) =

1

mα

∑

γ

∫ reff

σγ

dr2
∂

∂r1
Φsh-att
αγ (r12) ·

∂

∂v1
gαγ(r12|n, β; t)fα(r1,v1; t)nγ(r2; t)

+
1

mα

∑

γ

∫ ∞

reff

dr2
∂

∂r1
Φlαγ(r12) ·

∂

∂v1
gαγ(r12|n, β; t)fα(r1,v1; t)nγ(r2; t)

+
1

mα

∑

γ

∫ reff

σγ

dR2
∂

∂r1
Φsh-att
αs (r1,R2, ) ·

∂

∂v1
gαs(r1,R2|n, β; t)fα(r1,v1; t)ns(R2; t).

The last term is the integral of Landau–type collisions [37, 39]

I
(1)
αL(x1; t) =

∑

γ

∫ reff

σγ

dr2

∫
dp2 iL

sh-att
αγ (12)

∫ 0

−∞
dτ e(ε+iL

0
αγ(12)+iL

sh-att
αγ (12))τ

×
(
∂

∂τ
+ iLsh-att

αγ (12)

)
gαγ(r1, r2|n, β; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ)

+
∑

γ

∫ ∞

reff

dr2

∫
dp2 iL

l
αγ(12)

∫ 0

−∞
dτ e(ε+iL

0
αγ(12)+iL

l
αγ (12))τ

×
(
∂

∂τ
+ iLlαγ(12)

)
gαγ(r1, r2|n, β; t+ τ)fα(x1; t+ τ)fγ(x2; t+ τ)

+

∫ reff

σs

dR2iL
sh-att
αs (12)

∫ 0

−∞
dτ e(ε+iL

0
αs(12)+iL

sh-att
αs (12))τ

×
(
∂

∂τ
+ iLsh-att

αs (12)

)
gαs(r1,R2|n, β; t+ τ)fα(x1; t+ τ)ns(R2; t+ τ).

By solving [43] kinetic Enskog–Vlasov–Landau equations (10) for charged solid spheres can be con-
structed as equations hydrodynamics and obtained analytical expressions for mutual diffusion coeffi-
cients, thermodiffusion, viscosity, and thermal conductivity through particle distribution functions and
them the nature of the interaction.

5. Conclusions

The kinetic approach is applied to the description of ion transfer processes in the system ionic solu-
tion – a porous medium. The nonequilibrium state of the system is described using a modified one
chain of equations BBGKI [37–39,41, 42] for partial nonequilibrium distribution functions of ions and
particles of the porous matrix. For this purpose, we used the approach proposed in [37–39,41, 42, 44],
where the modified chain of BBGKI equations is built taking into account the concept of the con-
sistent description of kinetics and hydrodynamics of nonequilibrium processes of interacting particles
in the Zubarev method of nonequilibrium statistical operator. A generalized kinetic equation of the
revised Enskog–Vlasov–Landau theory for the nonequilibrium ion distribution function in the model of
charged solid spheres is obtained, taking into account attractive short-range interactions for the ionic
solution – porous medium system. Two cases of construction of kinetic equations depending on the
initial conditions of the interaction of ionic solution particles and porous matrix are considered. In the
case of non-interacting subsystems (at the initial moment of time), the modified boundary conditions
of the BBGKI chain of equations do not include quasi-equilibrium coordinate (pair and higher-order)
functions describing correlations between solution ions and porous matrix particles. In the case of
interacting subsystems (at the initial moment of time), modified boundary conditions in the chain
of equations BBGKI include vase-equilibrium coordinate (pair and higher-order) functions describing
the correlations between solution ions and porous matrix particles. For this case, a generalized ki-
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netic equation of the revised Enskog–Vlasov–Landau theory for the nonequilibrium ion distribution
function in the model of charged solid spheres is obtained, taking into account attractive short-range
interactions for the ionic solution – porous medium system. To calculate the paired quasi-equilibrium
distribution coordinate functions for ions and particles of the porous matrix, it is proposed to use in-
homogeneous, time-dependent Ornstein–Zernike equations for the corresponding complete correlation
functions hαγ(r, r

′|n, β; t) (h++, h−+, h−−), hαs(r,Rs|n, β; t) (h+s, h−s).
In the following works, solutions for the Enskog–Vlasov–Landau kinetic equations for nonequilib-

rium distribution functions will be found by the boundary conditions method and the corresponding
equations of hydrodynamics with generalized ion transfer coefficients in the ionic solution-porous ma-
trix system will be obtained.
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Кiнетичний опис iонного транспорту у системi
“iонний розчин – пористе середовище”

Токарчук М. В.

Iнститут фiзики конденсованих систем НАН України,
вул. Свєнцiцького, 1, 79011, Львiв, Україна

Нацiональний унiверситет “Львiвська полiтехнiка”,
вул. Бандери 12, 79013, Львiв, Україна

Для опису процесiв переносу iонiв у системi “iонний розчин – пористе середовище”
застосовано кiнетичний пiдхiд, що базується на модифiкованому ланцюжку рiвнянь
ББГКI для нерiвноважних функцiй розподiлу частинок. Отримано узагальнене кiне-
тичне рiвняння ревiзованої теорiї Енскога–Власова–Ландау для нерiвноважної функ-
цiї розподiлу iонiв у моделi заряджених твердих сфер з врахуванням короткодiючих
притягальних взаємодiй для системи “iонний розчин – пористе середовище”.

Ключовi слова: кiнетичнi рiвняння, нерiвноважний статистичний оператор,
функцiя розподiлу, iонний розчин – пористе середовище.
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