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1. Introduction

The modern formulation of optimal control problems has emerged in connection with the need to take
into account the restrictive conditions of different nature imposed on the control parameters and state
functions when satisfying a certain criterion of optimality of the optimization object.

Except for some cases, when the system of equations, quality criteria, and constraints are quite
simple, solving problems of optimal control requires the use of numerical methods. The analysis of
the results obtained in this direction shows that the construction of effective algorithms for solving
optimal control problems taking into account phase (terminal) constraints is associated with the need
to solve a number of complex aspects of the problem [1–6]. However, the reduction of the optimal
control problem at different stages of its solution to some finite-dimensional and subsequent use of
nonlinear programming methods or methods of variation in control space or phase variables, in the
case of constraints on phase variables, is quite complicated and can be successful, as a rule, only for a
certain class of tasks [7–10]. At the same time, the direct use of the necessary optimality conditions
in Pontryagin’s maximum principle form for the case of phase constraints [1, 11, 12], as one of the
fundamental results of the theory of optimal control, seems quite promising to solve these problems.

In the given article, the algorithm of successive approximations method for problems of optimum
control with phase restrictions is based on the procedures of consecutive direct satisfaction of necessary
optimality conditions in the form of Pontryagin’s maximum principle [12].

2. Formulation of the problem

The task of optimal control is to find amongst all the valid controls δ̄ = (δ1, δ2, . . . , δm) that δ̄(E) ∈ Dm

which transfer the object from the state ū(x0) to the state ū(xL) and provide a minimum of the
functional

V (ū, δ̄) =

∫ xL

x0

ϕ0

(
ū, δ̄, x

)
dx, (1)
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where ū = (u1, u2, . . . , un) is a vector of phase coordinates that determines the state of the control
object; ui(x) are functions defined in the n-dimensional Euclidean space En, ū ∈ Du; x0, xL are the
start and the end points of the trajectory.

In formulating the necessary conditions for optimality, it is assumed that Dm ∈ En, Du ≡ En and
the values x0, xL are fixed.

It is assumed that the mathematical model of the optimization object can be reduced to the
boundary value problem for the system of n ordinary first-order differential equations

dui
dx

= ϕi
[
ū(x), δ̄(x), x

]
, x0 6 x 6 xL; (i = 1, n), (2)

with the boundary conditions

ū0 = ū(x0) ∈ U0, ūL = ū(xL) ∈ UL, (3)

which determine the values ui of all or only some state variables for the two values x0, xL of the
independent variable.

At the points of initial and final states, given areas of possible values ū(E) are in the form

θej (ū(xe), xe) = 0; (e = 0, L) . (4)

A number of restrictions of the following kind can be imposed on the control and phase variables

(a) f1
(
u, δ, x

)
6 0; (b)

∫ xL

x0

f2
(
u, δ, x

)
dx 6 η; (c) f3 (u(x

∗), x∗) = 0; (d) f4 (u, x) 6 0,

(5)where x∗ is fixed point (x0 < x∗ < xL) and f3 is a vector-function of the dimension q 6 n.

3. Optimal conditions and the simplest method of successive approximations

Necessary conditions of optimality are taken in the form of Pontryagin’s maximum principle [12]. The
extended Hamiltonian and the system for conjugated functions λ̄(E) subjected to the constraints (5)
by using the Lagrange method are presented as follows [1, 11, 13]

(a) H∗ = H + ξ̄ · f̄ ;

(b)
dλi
dx

= −∂H
∂ui

−
m∑

j=1

ξj(x) ·
∂Fj
∂ui

, i = 1, n. (6)

The requirement of coincidence of the direction of the normal to the surface (4) with the direction
of the vector–function λ̄(x) at the points x0, xL gives the vector condition of transversality λ̄∗(x0)⊥U0,
λ̄∗(xL)⊥UL, which is given in the form

λ̄(xe) =

pe∑

j=1

cj grad θej [ū(xe), xe] , (e = 0, L) . (7)

Here H =
∑n

i=0 λiϕi; λ̄(x) is a vector of conjugate functions satisfying Eq. (6,b) with the boundary
conditions of transversality (7); the components of the column vector F are components of generalized
constraints (5) (for case (5,d), this is the first of the highest derivatives of the constraint, where control
is first explicitly included [1]); A, ξ(x) are multipliers and Lagrange functions; components of ξ(x)
satisfy the conditions

ξj < 0,
ξj = 0,

for
Fj > 0;
Fj < 0,

(8)

where a negative sign ξj at Fj > 0 is interpreted as a requirement for the possibility of improvement
of H∗ (6,a) only by violating restrictions, and the optimal control δ

∗
(x), x ∈ [x0, xL] is found from the

maximum condition of the Hamiltonian

H∗ (ū∗(x), λ̄∗(x), δ̄∗(x), x
)
= sup

δ̄∈Dm

H∗ (ū∗(x), λ̄∗(x), δ̄(x), x
)
, (9)

i.e., the principle establishes dependence δ∗(x) = δ∗
(
ū∗(x), λ̄∗(x), x

)
.
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It also should be noted that after excluding the pe, values cj (j = 1, pe) from n+ pe conditions (4),
(7), there are still n relations that act as boundary conditions for each of the points x0, xL. That
is, when solving the boundary value problem of the maximum principle for a system 2n of ordinary
differential equations of the first order (2), (6,b) with boundary conditions given at the start and end
points of the trajectory (4), (7), regardless of form as given boundary conditions, their number for
both the starting and ending points is the same and equals n. Therefore, the functions ū∗(x), λ̄∗(x) for
certain initial valuesδ̄(x) can, in principle, always be defined by solving these boundary value problems,
and then the optimal control δ∗(x) for all x0 6 x 6 xL in accordance with (9) can be found.

Thus, the application of the approach makes it possible to reduce the problem of optimal control
to two main stages of a single iterative process: solving boundary value problems for the main (2), (3)
and conjugate (6,b), (7) systems to find ū∗(x), λ̄∗(x); and solving a sequence of auxiliary problems of
nonlinear programming [14], usually of low dimension, finding the maximum of the Hamiltonian (9)
for variable variables δ̄(x) at fixed (nodal) points of a given integration interval.

Different variants of the method of successive approximations are often used for numerical solution
of optimal control problems on the basis of the maximum principle [6,15,16]. The simplest scheme for
the tasks considered here can be presented as follows.

Let some admissible control δ̄k be known, then the kth iteration is as follows:
а) to determine ūk(x), the system of n differential equations of state (2) is integrated on the interval
[x0, xL] taking into account δ̄k with the given boundary conditions (4);
b) the search λ̄k(x) is performed by integrating the system for conjugate functions (6,b) in the interval
[x0, xL] taking into account the conditions of transversality (7);
c) control of the next step is determined from the conditions of the maximum (9), after what we
proceed to the next iteration.

If the process of successive approximations coincides (this problem is studied in [15–17], where
developed a number of techniques that improve the convergence of the algorithm as a whole), the
iterations continue until subsequent approximations differ from each other within a given accuracy.
The solution thus obtained will satisfy the basic ratios of the necessary conditions for the optimality
of the maximum principle.

At the same time, in the presence of constraints imposed on controls and phase coordinates, or
only on phase coordinates, the application of this scheme of the method of successive approximations
is often problematic. In this case, the use of integral functions of the fine [1] also does not allow to
obtain a sufficiently reliable result, because in this case the quality criterion includes an additional
component, i.e., the fine and the functional of the problem is given in the form

V ∗ = V +

m∑

j=1

dj

∫ xL

x0

[
Fj(ū, δ̄, x)

]2
E(Fj) dx, (10)

where

E(Fj) =

{
0, at Fj < 0,
1, at Fj > 0,

dj = const > 0 and the problem is reduced to solving a control problem with a generalized quality
criterion (10), but without restrictions. Indeed, if it V ∗ reaches a minimum, then naturally Fj(ū, δ̄, x) =
0, because dj > 0. However, minimization and proper choice of dj is a difficult task.

The fact is that the larger the value dj is, the more precisely the corresponding constraints (5) will
be satisfied, but for the large dj known minimization methods will mainly satisfy the constraint rather
than minimize the quality criterion, and as a result, convergence to a satisfactory solution can be very
slow. In addition, there are often artificial local extremums associated with the emergence of fines.
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4. Algorithm of the method for the case of restrictions to control and phase variables

The algorithm for satisfying the necessary conditions for the optimality of the maximum principle in
the presence of constraints (5) containing controls and phase variables is based on the generalization
of the scheme of successive approximations δ̄k−1 → ūk → λ̄k → supδ̄H → δ̄k proposed by Krylov A. I.
and Chernousko F. L. [15], where the calculation ūk, λ̄k is performed by sequentially integrating the
corresponding boundary value problems (2), (3) and (6,b), (7) and further finding the optimal control
of the next step of condition (9).

In the case of phase constraints in this article it is taken into account that the boundary value
problem for conjugate variables (6,b), given the conditions (8), may differ in the presence or absence
of components with corresponding factors (functions) Lagrange ξj(x), since the trajectory in this case
consists of segments, some of which are on the permissible areas (Fj = 0), and others are within them
(Fj < 0). At the connecting points, the control δ̄(E) can be both continuous and discontinuous at the
ends of the segment [x0, xL] and all breakpoints, if any, are located at intervals x0 < x < xL.

It should be noted that in the general case, the boundary value problem (2), (3) for phase variables
is nonlinear on ū(x), δ̄(x) and for conjugate (6,b), (7) is nonlinear on ū(x), δ̄(x) and is linear on λ̄(x).

Most of the known algorithms for solving nonlinear boundary value problems are related to their
reduction to the Cauchy problem with partially unknown initial conditions at one of the boundary
points. This approach is often quite effective, although its application involves computational costs to
determine the relevant derivatives and overcome the significant dependence of the calculation result on
the initial conditions, which often reduces the efficiency and reliability of such an approach in iterative
processes of optimization algorithms. The essence of some other methods is to linearize the original
nonlinear boundary value problem and further solve the sequence of corresponding linear boundary
value problems. Such methods include, in particular well-known in mechanics, variants of methods of
variable parameters of elasticity, additional loads, etc.

Therefore, in the following, a separate problem of solving a nonlinear boundary value problem for
the main system (2), (3) is taken out of the discussion of this article and the case is considered when
this boundary value problem is linear in components of the phase vector ū(x) and nonlinear one in
control δ̄(E). Such problems are characteristic of a wide range of problems of optimal design of objects,
in particular in the mechanics of shell structures [2, 17].

It is assumed that the functions ϕi (i = 0, n) in Eqs. (1), (2) have the form

ϕi =
n∑

j=1

aij
(
δ̄(x), x

)
uj + bj

(
δ̄(x), x

)
, (i = 1, n), (11)

and the boundary conditions are given in the form of linear relations

θej =

n∑

i=1

ajiui(xe) + bje = 0, (12)

where j = 1, pe, xe = x0 or xe = xL.
Here the coefficients in (11) are known functions, and the coefficients in (12) are given to be

constants.
Emerging linear boundary value problems of the maximum principle are solved by the method of

running with orthogonalization according to S. K. Godunov [18].
The essence of the proposed approach to the numerical solution of optimal control problems in

the presence of phase constraints is to build effective algorithms for integrating the boundary value
problem for a conjugate system (6,b), (7) in the presence of different components of the right side on
certain intervals x0 6 x 6 xL and additional conditions at certain internal points.

To construct the procedure for satisfying the constraint (5,a), the scheme of successive approxima-
tions [15] (Fig. 1a) is supplemented by the algorithm of the method of generalized Lagrange multipli-
ers [1,13], which allows you to find ξ̄(x) depending on the output (east) of the phase trajectory of the
given constraints, fulfill the condition (9), and calculate the free members of the system (6,b).
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In this case, the constraints (5,a) at an arbitrary node point x = xi are satisfied in the general
scheme of recalculation of Lagrange multipliers taking into account

fkt
(
ūk, δ̄k(ξkt ), xi

)
< 0, ξkt = 0 ∨ fkt

(
ūk, δ̄k(ξkt ), xi

)
= 0, ξkt < 0. (13)

Numerical researches have shown that the convergence of the iterative process to perform (9), (13)
significantly depends on the method of ξt(x) change. One of the effective algorithms was the method
of generalized Lagrange multipliers in the following form

ξk,s+1
t (xi) =





0, ft(δ̄
ks, xi) < 0;

ξkst (xi), ft(δ̄
ks, xi) = 0;

ωξkst (xi), ft(δ̄
ks, xi) > 0, ξkst 6= 0;

ωε, ft(δ̄
ks, xi) > 0, ξkst = 0,

(14)

where ω = min
δkj

{
1−

∣∣∣∣
∂H(ūk ,λ̄k,δ̄ks,xi)/∂δksj∑

e ξ
ks
e ∂fe/∂δksj

∣∣∣∣
}

; (j = 1,m, i = 0, N , e ∈
{
1,m

}
, t = 1, z).

( )a

AC B

( )b

( )ñ

AB

( )d

Fig. 1. Algorithmic schemes.

Thus, if the tth constraint is violated, the cor-
responding Lagrange multiplier at the point xi
must be reduced (see (14)). The Lagrange mul-
tiplier remains unchanged, if the trajectory is on
the verge of limitation. If the constraint is not
violated, then the Lagrange multiplier, obviously,
can be absent, i.e., tends to zero. Calculations are
repeated for s = 1, υ, until ξ̄kυt , δ̄kυj are found, will
not satisfy (13) with controlled deviation. Here
j, t are the numbers of the corresponding compo-
nents of the vectors δ̄, f̄ and e correspond to the
indices t of the violated constraints (5,a), |ε| ≪ 1.

Suppose that at the beginning of the kth step of the method of successive approximations, the
vectors of Lagrange multipliers ξ̄k,s and control δ̄k,s are known (for s = 0, where s is the number of the
internal iteration of the search ξ̄(x), δ̄(x) at the kth step of successful approximations of solving the

optimal control problem), then, for known ūk, λ̄k, ξ̄k,s the Lagrange factors ξ̄k,s+1
t (xi) are determined

from (14), and the control δ̄k,s+1 is determined from the maximum condition

sup
δk,s+1∈D′

m

H∗ = sup
δk,s+1∈D′

m

(
− V

(
ūk, δ̄k,s+1, xi

)
+ λ̄T

k(
δ̄k,s+1, xi

)
ϕ̄
(
ūk, δ̄k,s+1, xi

))
+ ξ̄T

k,s
f̄
(
ūk, δ̄k,s+1, xi

)
,

(15)

solving a number of auxiliary nonlinear programming problems for fixed (nodal) points xi (i = 0, N )
of the integration interval [x0, xL].

For this purpose, a number of well-known methods of nonlinear programming for finding the ex-
tremum of functions can be used [14]. In many cases, the use of one-dimensional optimization methods
is sufficient. The method of scanning (simple search on a grid of values) and scanning with a variable
step is rather reliable at the same time as their definition gives rather high probability of finding of a
global extremum, and the costs associated with increasing the number of calculations of the objective
function are very small, as they need to calculate only the function (15) at the node point xi at known
(ūk, λ̄k, δ̄k,s+1, ξ̄k,s+1). To implement the problem (15), taking into account (14), the use of some al-
gorithms of the method of random search in the area D′

m defined by the constraints of the varied
parameters δ̄k,s(xi) in the form δ̄= 6 δ̄k,s(xi) 6 δ̄2 also proved to be quite effective. The expediency of
using this method is due to the possibility of a fairly simple choice of starting point using the values
of the varied parameters of the previous approximations and their gradual refinement as well as the
functional reliability of the algorithm as a whole, which is especially important for its repeated use in
nested internal iterative algorithms, where it is often better to give up some efficiency (the number of
calculations of the objective function (15)) for the sake of such reliability in general.
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In addition to calculating and constructing free members of the conjugate system (6,b), another
feature of solving the problem of optimal control with phase constraints is the need to find switching
points control output (on) and east (from) on the corresponding constraints.

With a known approximation for control δ̄k(x), the solution ūk(x) of the system of equations of
state of the optimization object on the interval [x0, xL] is determined.

The coordinates of the points x∗1, x
∗
2 are found by calculating the values of each of the constraint

functions in the nodal points of integration as points at which (when approaching from left to right)
after substitution ūk(x), δ̄k(x) the first (last) condition f t > 0 is met.

In the software implementation of the process of determining the sequence of control switching
points X̄∗, the method of gradual activation of restrictions is used, when the problem of optimal
control is considered first without taking into account all or some restrictions; and in case of their
violation additional control intervals are introduced and, thus, the coordinates of the control switching
points are adjusted. It is desirable that the initial approximation be such that all restrictions are met.

In the process of iterations, as we approach the solution of the optimal control problem, some of the
constraints on certain sections of the trajectory may be violated (activated), and some may be absorbed
by these constraints. Therefore, the control review (automated verification) of the implementation of
restrictions is carried out at each step of successive approximations, which are the basis of the developed
approach. Not only the vector of control functions δ̄(x) is determinate, but also the sequence of control
areas are corrected. That is, the boundaries from which and to which the switching of controls takes
place are identified (if there are more than two restrictions) and the coordinates of the exit points
X̄∗ of the trajectory at the boundaries of the allowable areas used in (14) and further in (6,b) are
determined.

The method of ξ̄k(x) change in the form of (14), together with the algorithm for determining
the switching points of controls X̄k and solving the maximization problem H∗ (15), form a single
computational search process δ̄∗(x), ξ̄∗(x) at the kth step of successive approximations and effectively
complements the algorithm of the simplest variant of the method of successive approximations [15] in
case of phase constraints.

The scheme of the algorithm as a whole is given in Fig. 1b. Here, a cycle A is similar to the simplest
variant of the method of successive approximations (Fig. 1a), but it is filled with algorithm B — the
joint use of the method of generalized Lagrange multipliers and nonlinear programming. The cycle
C is a possible extension of the boundaries of the cycle B for additional intermediate enumeration of
constraints and coordinates of control switching points for complex cases of the algorithm.

To assign control of the next step of approximations from the point of view of acceleration of
convergence, it is expedient (as the results of numerical modeling received at the decision of concrete
problems show) to use relations

δ̄k+1(xi) = δ̄k(xi) +
(
Φ(ūk, λ̄k, δ̄k, xi)− δ̄k(xi)

)
· γ̄T , (16)

where δ̄∗(xi) = Φ(ūk, λ̄k, δ̄k, xi) is the operator that compares the control δ̄k to a new control value
δ̄∗ that satisfies the conditions of the maximum k + 1st step, and the relaxing components of the
vector γ̄ (0 < γj 6 1) are taken from the requirements of the best convergence of the iterative
process [15, 17, 19, 20].

One of the methods of accelerating the convergence of the algorithm is also a gradual expansion of
the limits of “liberation” of control δ̄(xi) by changing the limit δ̄< from the upper allowable value δ̄2

to the lower δ̄=: δ̄= 6 δ̄< < δ̄2: in the form δ̄< = δ̄2 −
(
δ̄2 − δ̄=

)
I/M ,

(
I =M − 1, 1

)
and further

solution of a number of problems of optimal control at δ̄< 6 δ(xi) 6 δ̄2,
(
i = 0, N

)
in the general

scheme of the iterative process, where M is the number of degrees of change of the lower limit.
For the received control δ̄k+1 position of sites of an exit on limiting surfaces can change, therefore,

in the next step after the determination ūk+1, the coordinates of the control switching points are
adjusted also using the idea of the relaxation method

x̄k+1 = x̄k + ρ(x̄∗ − x̄k); (0 < ρ 6 1). (17)
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As noted above, the values ξ̄k(xi) obtained in the previous step of iterations (14) are used in solving
the conjugate system. Using dependencies similar to (16) for calculate ξ̄k+1(xi), make possible to
improve the convergence of the method of successive approximations, even in cases of high sensitivity
of the conjugate system to growth controls ∆δk+1

j (xi). In general, the use of dependencies in the
form (16), (17) can significantly “mitigate” the impact of abrupt changes in parameters on the course
of the iterative algorithm and prevent it from “yawing” when approaching the extremum.

The approximation process is repeated until the necessary optimality conditions are met and is
determined by finding the optimal control δ̄∗(E) with the required accuracy

N∑

i=0

m∑

j=1

∣∣∣δk+1
j (xi)− δkj (xi)

∣∣∣ 6W · ε0; W =

N∑

i=0

m∑

j=1

∣∣δk+1
j (xi)

∣∣. (18)

In order to reduce computational costs, the accuracy ε̄0 of satisfaction with the appropriate ratio of
the method increases with the depth of the iterative process εk+1

0 = εk0/α0, where α0 > 1.
The expediency of this technique is explained by the fact that the requirements of satisfaction with

the ratio of the required conditions of optimality with high accuracy at the beginning of the iterative
process can lead to a sharp change of control for two consecutive approximations and, as a consequence,
to slow down the convergence of the algorithm in the initial stages. Special methods for accelerating
the convergence of iterative algorithms are presented in [17, 19].

In the general case, the trajectory may have several areas of exit to the limiting surface, as well as
several such surfaces and control switching points. Various aspects of the algorithm, its capabilities,
convergence analysis and other features of the problem were researched on the results of numerical
experiments in solving specific problems of optimal design of structural elements [2].

5. Integral restrictions

For the case of the optimal control problem (1), (2), (4) with the additional presence of integral
constraints ∫ xL

x0

fj(ū, δ̄, x) dx = ηj, (j = 1, p) (19)

the extended Hamiltonian of problem (6,a) is written as follows

H∗∗ = H∗ +
p∑

j=1

cjfj, (20)

and the conjugate system has the form

dλi
dx

= −∂H
∗

∂ui
−

p∑

j=1

cj
∂fj
∂ui

, (21)

where cj (j = 1, p) must be determined from the conditions of satisfaction (19).
Finding the solution of the problem in this case is in the following sequence. ūk(x), λ̄k(x)(x) must

to find at a certain approximation for control δ̄k(x) and constant c̄k by solving the main and conjugate
systems, respectively.

The conditions of the Hamiltonian maximum (20) analogously to (9) give a connection

δ̄∗(x) = δ̄∗
(
ū∗(x), λ̄∗(x), c̄, x

)
. (22)

After substitution (22) into (19), the problem is reduced to solving the obtained system of p nonlinear
algebraic equations with respect to cj (j = 1, 2), which is given in the form

gj(c̄) = ηj, (j = 1, p), (23)

where

gj(c̄) =

∫ xL

x0

fj
(
ū(x), δ̄(c̄, x), x

)
dx.
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One of the effective algorithms for solving this problem is the algorithm of the Aitken–Steffensen
method [21], the computational scheme of the iterative process of which for this case has the following
form

(a) Y s+1
j = csj − α (gj(c̄

s)− ηj) ;

(b) cs+1
j = csj + α

(gj(c̄
s)− ηj)

2

gj(Ȳ
s+1
j )− gj(c̄s)

, (24)

where α is an arbitrary real nonzero number.
Sufficient conditions for the convergence of algorithm (24) depending on the value α are considered

in [21].
After satisfying the constraint (19) on the kth step of approximations with a given accuracy, the

control of the next step is determined similarly to (16).
To take into account integral constraints in the form of inequalities

∫ xL

x0

fj
(
ū, δ̄, x

)
dx 6 ηj , (j = 1, p), (25)

the transition to constraints in the form of equality is carried out using the Miele–Troitsky approach,
by introduction of new values υj

gj = ηj − υj , (j = 1, p). (26)

Now the necessary optimality conditions will be similar to those described above; if they are replaced
ηj by ηj −υj and the algorithm for finding the solution of the optimal control problem differs from the
previous one only in terms of taking into account the limitations (25).

If in the iterative process of solving the problem it turns out that any of the quantities υe > 0
(e ∈ {1, p}), then the corresponding constraint (25) falls out of consideration, and the corresponding ce
is zero. At this case, the algorithm for determining the unknown constants c̄ when finding the controls
δ̄k+1(x) of the next step of approximations is constructed as follows

ck+1
j =





ckj , υkj < 0, j = 1, p;

ρckj , υkj > 0, ckj 6= 0, 0 < ρ 6 1;

0, υkj > 0, ckj = 0.

(27)

In the practical implementation of the approach, the presence in (27) of the second line reduces the
probability of possible “yawing” of the algorithm, and the use (as initial values) of unknown constants
c̄ obtained in the previous approximation steps reduces the cost of finding a numerical solution to the
problem using (24). Similarly, the constraints (25) at given points x = x∗ are taken into account. The
numerical algorithm for solving the problem as a whole is carried out in accordance with the general
scheme of the method of successive approximations (Fig. 1c)

6. Restrictions on phase variables of general form

In the case of arbitrary phase constraints, which do not explicitly depend on control δ̄(x) ∈ Dm and
are functions of phase coordinates (5,d) only, the problem is significantly complicated due to the need
to satisfy additional conditions at the internal points x̄∗ (coordinates of which are previously unknown)
of the interval [x0, xL] of such a restriction.

As it is known [1], in the presence of restrictions on phase variables in the form of:

(a) S(ū, x) = 0, (b) S(ū, x) 6 0, (28)

where the function S is explicitly independent of control, the procedure of its differentiation with
respect to x and successive substitution of the corresponding equations dūi

dx = ϕ̄i(ū, δ̄, x) from the main
system (2) is performed until an explicitly dependent expression from δ̄ is obtained. If the differentiation
is performed q 6 n times, then the relation (28,a) is called the constraint of the qth order and plays
the role of the constraint (5,a) on control and phase coordinates in the form S(q)

(
ū, δ̄, x

)
= 0.
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In addition, a system of q equations must be satisfied on the surface of such a phase constraint

Ā(ū, x) =
∣∣∣S(ū, x), S′(ū, x), . . . , S(q−1)(ū, x)

∣∣∣
T
= 0. (29)

In this case, the relationship (6) and the optimality conditions take the form

(a) H∗ = H + ξ̄ · S(q)(E),

(b)
dλ̄

dx
= −∂H

∂ū
− ξ

∂S(q)

∂ū
, (30)

(c)
∂H

∂δ̄
+ ξ

∂S(q)

∂δ̄
= 0, S(q)

(
u, δ,E

)
= 0,

where ξ is determined similarly to (8).
If the constraint (28,a) is imposed at a given internal point x∗ of the phase trajectory, then such a

constraint has the form
Ā (ū(x∗), x∗) = 0, (31)

where x∗ is fixed point x0 < x∗ < xL, Ā is a vector-function of dimension q.
Thus, instead of a two-point boundary value problem in this case there is a three-point boundary

value problem, where the relations (31) play the role of intermediate (terminal) boundary conditions
for parts of the trajectory [x0, x

∗], [x∗, xL].
In addition, the relations must be fulfilled at the point x∗

(a) λ̄T (x∗ − 0) = λ̄T (x∗ + 0) + µ̄T
∂Ā (x∗)
∂ū

;

(b) H (x∗ − 0) = H (x∗ + 0)− µ̄B
∂Ā

∂x∗
. (32)

Here µ is a q-dimensional vector–column of Lagrange constant factors, the components of which are
found from the conditions of q equations (31).

For constraint (28,b), the trajectory may consist of three sections: [x0, x
∗
1] is before reaching the

constraint; [x∗1, x
∗
2] is on the surface of the restriction; [x∗2, xL] is after rising from the restriction.

The essence of the approach is still the conjugation (at each step of iterations) of sections cor-
responding to different (boundary and free) intervals of the trajectory, and the emerging multipoint
boundary value problem of the maximum principle for a conjugate system (30,b) with given boundary
and internal conditions (29) is reduced to a sequence of two-point problems on segments separated
by points x̄∗ of exit to the phase constraint (28,b). It should also bear in mind that the conjugate
variables λi (i = 1, n) at points x̄∗ can be discontinuous in accordance with (32,a).

For the conjugate system (30,b), at x = x0 and x = xL the boundary conditions p0 and pL
(p0 + pL = n) are given, respectively, and, to reduce the cumbersomeness of the calculations, there is
only one isolated point x∗1 boundary exit (28,b) in the interval [x0, xL], in which q equations (29) must
be additionally performed.

In this case, in addition to that specified in Section 4, there is a need to form boundary conditions
for a conjugate system for two-point problems on segments [x0, x

∗−
1 ], [x∗+1 , xL] in order to satisfy the

conditions (2), (4), (30,b), (7), (29), (32), (30,с).
The solution of the problem is carried out in the following sequence. Given the known control δ̄k,

the system of equations of state of the object is integrated on [x0, xL] and ūk(x) is determined.
The investigation of the behavior of constraint (28,b) (and if possible taking into account physical

considerations) finds the point x = x∗1 of greatest violation (28,b), which divides the interval [x0, xL]
into two subintervals [x0, x

∗
1], [x

∗
1, xL]. The application of transversality conditions (7) for relations (29)

as boundary conditions at a point x∗1 leads to a system of n linear algebraic equations with respect to
cj , which allows to form boundary conditions to the left and right at the point x∗1.

Let us first consider the case of formulating boundary conditions for a sequence of two-point prob-
lems at these intervals when q = n.
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On the interval [x0, x
∗
1] for the integration of the conjugate system there are known p0 boundary

conditions of transversality (at x = x0), and at x = x∗1 the boundary there are p∗L = q − p0 conditions
λ−j = c−j (j ∈ {1, n}) derived from the conditions of transversality for relations (29).

In the interval [x∗1, xL] on the left (at x = x∗1) the conditions p∗0 = q− pLλ+e = ce (e ∈ {1, n}, e 6= j)
are taken into account, and on the right (at x = xL) the given boundary conditions pL(p0 + pL = n)
are taken into account. Thus formed two-point boundary value problems for λ̄(x) at intervals [x0, x

∗
1],

[x∗1, xL] can be integrated, for example, by the run method.
Then, similarly as in the previous one, the control of the next search step is found, which is now

actually a function of the parameters c̄ of the boundary conditions at the point x = x∗1, i.e., δ̄ = δ̄(c̄, x).
It is natural to expect that for the selected values c−0

j , c+0
e of the initial approximation of constants, the

conditions (31) for the internal point x = x∗1 can be unfulfilled. Therefore, the next task (at this step
of approximations) is to find cj , ce, from the condition of satisfying the system of algebraic (relative
c̄) equations (31) after substitution δ̄(c̄, x).

This task is given as requirement the minimum of the objective residual function ψ(c̄, x∗1) in the
form

min
c̄
ψ (c̄, x∗1) , ψ =

q−1∑

r=0

(
S(r) (ū, x∗1)

S∗

)2

, (33)

where S(r) is the rth derivative of the function S (ū, x) defined at the point x = x∗1; S∗ =
max

∣∣S(r) (ū, x∗1)
∣∣ for x ∈ [x0, xL]. Unknown constants c̄ are sought on the principle

ckj = ck−1
j + εkj ·∆k

j , (j = 1, n), (34)

where εj is direction; and ∆j is the value of the search step, which are selected from the execution
conditions ψk < ψk−1. Gradient methods are used in solving the minimization problem (33).

The expediency of their use is explained by the fact that for specific tasks in mechanics it is often
possible to establish the direction ε̄kj of the search. This simplification is usually closely related to the
issue of increasing or decreasing the stiffness of structural elements on certain intervals.

The search for unknowns cj , ce and coordinates x∗1 is carried out in the general algorithm of
successive approximations. In the process of finding constant c, the position of the control switching
point x∗1 is specified by checking the implementation of the constraint (28,b). The magnitude of the
jump for conjugate variables λ̄ and the values of Lagrange multipliers µ̄ can be determined from (32,a),
if necessary.

Solving the problem of optimal control, as in the cases discussed above, is repeated until the
imposition δ̄(x) and implementation of the imposed restrictions with the required accuracy (18). The
general scheme of the algorithm is given in Fig. 1d.

In the more general case of the algorithm 0 < q < pL at the internal point x = x∗1 of exit to the phase
constraints (28,b), q is the boundary of the relations obtained from the conditions of transversality (7),
taking into account (29). This gives q values λ̄ (E∗

1) = A, to which the continuity n − q relations
obtained from (32,a) are added

λe (x
∗ − 0) = λe (x

∗ + 0) , e ∈
{
1, q
}
. (35)

The introduction of the generalized residual function, given in the form (33), to fulfill q condi-
tions (29) and n− q relations (35), allows us to obtain data for the formation of n boundary conditions
on the intervals [x0, x

∗
1], [x

∗
1, xL].

Thus, in the transition from the emerging multipoint problem to a sequence of two-point for the
formation of boundary conditions at the point of exit to the phase constraint and satisfaction of
conditions (29) at the intermediate point x = x∗1 we have to determine the unknown components q
of the vector c̄ by solving the auxiliary problem of finding the extremum of the quadratic deviation
function in the form of (33). This problem, as a rule, has a low dimension and is successfully solved
in the general scheme of the method of successive approximations.
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In general, the algorithm for finding unknown parameters of boundary conditions using, for example,
the method of quadratic approximation based on the results of previous steps (Powell’s method) [14]
or the Aitken–Steffensen algorithm [21] actually takes the form of a modification of the known method
of shooting by solving a boundary value problem with partially unknown boundary conditions that
require clarification. It should also be noted that when solving most specific problems of optimal
design, phase variables are limited, as a rule, only from the bottom/from above, which simplifies the
implementation of this fragment of the algorithm.

7. Application of the algorithm

In the problems of mechanics, the criterion of optimality is taken, as a rule, the requirements of reduc-
ing material consumption, maximum rigidity, minimum potential energy of shape change of structural
elements: plates, shells, frames, rods, their systems, etc.; function of control selects geometric param-
eters, physical properties of the material under conditions of restrictions on strength, rigidity, design
requirements, etc.

The problem of designing a hinged beam of the minimum weight of the material under transverse
loading is considered.

The quality criterion (1) in this case has the form

V = min

∫ L

0
F
(
δ(x)

)
dx, (36)

the equation of state is [20]
dw

dx
= ϑ;

dϑ

dx
=

M(x)

E
(
δ(x)

) (37)

with boundary conditions of fixing
w(0) = 0; w(L) = 0, (38)

where the deflection w(x) and the angle of rotation of the section ϑ(x) are components of the vector
of phase variables ū = ū(w,ϑ); bending moment M(x) is a given function, determined by the type of
loading and fastening conditions.

Limitations of strength, rigidity and design requirements are accepted, respectively, in the form

(a) σ(δ, x) =
|M(x)|
W (δ, x)

6 [σ], (b) w(x) 6 ∆, (c) I
(
δ(x)

)
> I0. (39)

Here, W (x), F (x) are the moment of inertia, the moment of resistance and the cross-sectional area,
respectively; ∆, I0 are given constants.

For the purpose of transparent demonstration of features of application of algorithm, the case of
a beam of rectangular cross-section with constant width b and variable on length of a beam height
(one varied variable) in the form of piecewise continuous function 2δ(x) is considered, which allows
part of the calculations to perform in analytical form. In this case I(x) = 2bδ3/3; W (x) = 3bδ2(x)/2,
F (x) = 2bδ.

The requirement (39,b) is a restriction on phase changes of the order q = 2 since the conditions
must be met on the points E∗ of exit to this restriction

(a) w(x∗)−∆e(x
∗) = 0, ϑ(x∗) = 0, (b) w′′(x) =

M(x)

EI
(
δ(x)

) = 0. (40)

The extended Hamiltonian of the problem is written as follows

H∗ = −F (δ̄) + λ1ϑ+ λ2
M(x)

EI(δ̄)
+ ξ1(x)

(
σ(δ̄, x)− [σ]

)
+ ξ2(x)

(
İ(δ̄)− I0

)
+ ξ3(x)w

′′, (41)

where ξj (j = 1, 2, 3) are Lagrange multipliers.
Taking into account (8), the control δ(E) at individual intervals x0 6 x 6 xL can be obtained from

the conditions of the Hamiltonian maximum (41) ∂H∗/∂δ = 0, ∂H/∂ξj = 0 in analytical form:
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(a) δσ(x) =

√
3 |M(x)|
2b[σ]

for σ = [σ],

(b) δI(x) =
3

√
3I0
2b

for I = I0, (42)

(c) δw(x) =
4

√
9 |M(x)λ2(x)|

4Eb2
for σ < [σ], I > I0. (43)

Optimal control δopt(x) is defined as the envelope of the functions (42):

δopt(x) = sup
x∈[x0,xL]

{δσ(x), δI(x), δw(x)} . (44)

The conjugate system has the form

dλ1
dx

= −∂H
∗

∂w
= 0;

dλ2
dx

= −∂H
∗

∂ϑ
= −λ1 (45)

with boundary conditions of transversality (7), which for the case of hinged fastening (38) gives

λ2(0) = λ2(L) = 0. (46)

The solution of the conjugate system (45) will be as follows

λ1 = a1; λ2 = −a1E + 02, (47)

where a1, a2 are constants of integration.
The relations (32,a) for the internal points of exit to the phase constraint (39,b) have the form

λi(x
∗ + 0)− λi(x

∗ − 0)− µi = 0. (48)

It should be noted that the case when the optimal trajectory lies on the phase constraint (39,b) is
clearly absent since from (40,b) it follows that whence or M(x)/ (EI(x)) = 0 or M(x) = 0. This does
not correspond to the statement of the problem because the first requirement can be met only when
the cross-sections of the beam (or part of it) have a significant (∞) stiffness, and the other corresponds
to the lack of load. Thus, if there is only an isolated point of exit to the constraint, the problem for a
conjugate system is two-point.

Boundary conditions for a conjugate system taking into account (46) and the conditions of transver-
sality (7) with respect to (40,a) are accepted as follows

[0, x3] : λ2(0) = 0; λ−2 (x3) = c2;
[x3, L] : λ+1 (x3) = c1; λ2(L) = 0.

(49)

The solution (47) taking into account (49) at these intervals will be as follows

x ∈ [0, x3] : a1 = −c2/x3, a2 = 0, λ2(x) = c2x/x3,
x ∈ [x3, L] : a1 = c1, a2 = c1L, λ2(x) = −c1(x− L),

(50)

where A1, A2 are unknown constants to be determined from execution (40,a).
The optimal distribution of the height of the rectangular cross-section of the beam, the design

scheme of which is presented in Fig. 2a, was calculated for the following parameters: q(x) = q0x/L,
q0 = 400N/m, M(x) = q0Lx

(
1− x2/L2

)
/6, b = 0.025m, L = 1m, E = 200MPa, [σ] = 0.24MPa,

δ(x) > δ0 = 0.01m, ∆0 ∈ [0.006; 0.014]m.
Graphs of the optimal control distribution δ(E), which is the envelope of the allowable controls (42),

for the case of limiting the maximum deflection (39,b) and the switching point xi (i = 1, 5) of the
controls are shown in Fig. 3, where the controls within the active constraint area are shown by a dotted
line.

Here, the optimal change of the varied function δ(x) consists of intervals belonging to different
boundary surfaces.

By investigation of the behavior of the functions (42), it is easy to establish that at the ends of the
beam we should wait exit to restrictions (39,c), (points x1, x5) curve 5 of Fig. 3.
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Fig. 3. Optimal distribution of the height of the
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Table 1. The results of weight optimization of
the beam under transverse loading.

No ∆ V x1 x2 x3 x4 x5 E (%)

1 0.6 1038.1 6 6 54 96 96 12.00

2 0.7 997.5 8 8 54 94 94 11.80

3 0.9 911.4 8 8 52 84 94 11.45

4 1.1 861.9 10 10 50 72 94 13.80

5 1.3 823.8 12 14 50 58 94 17.60

6 1.4 806.4 12 42 48 50 94 19.40

Further from the edges of the beam
with increasing bending moment, the
restrictions on normal stresses can be
violated: the intervals (x1, x2) and (x4,
x5). The point of maximum deflection
x3, where we can expect a violation of
the restriction (39,b), is in the middle
part of the beam (for the case when an
equally stressed beam has a deflection
greater than the allowable).

Thus, in this case there are 5 control switching points, the coordinates of the points x1, x2, x4, x5
are calculated as the points of intersection of the corresponding functions (42), and x3 is the point of
greatest violation (39,b).

Saving E % of the volume V of the material for the beam of the optimal variable stiffness, depending
on the value ∆ is 12÷19% compared to the beam of constant cross-section, calculated under the same
restrictions (Table 1, where the results of calculations for different ∆ are presented).

The application of the approach to the problem of weight optimization of the above beam is
demonstrated for the case where the maximum deflection must be provided at specified points: (а) x∗3 =
0.04m; (b) x∗3 = 0.06m, in contrast to the results of Table 1, where the coordinate of the maximum
deflection x3 depending on the value ∆ coincides with the middle of the beam x∗3 ≈ 0.5m.

In this case, there is a problem of optimal control with constraints on the phase variable at a given
internal point x∗3 of the trajectory, when the conjugate variables are discontinuous (48), (49) (Fig. 4),
and the deflections of the corresponding beams have the form shown in Fig. 5. The volumes of material
of the respective projects are Va = 951.5 · 10−6 m3, Vb = 943.4 · 10−6 m3.

For comparison (curve c in Fig. 2b) the project No 3 of Table 1 in the presence of restrictions
wmax 6 0.09m is presented. The weight of the beam in this case is Vc = 911.4·10−6 m3 at x∗3 = 0.052m.
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Thus Va > Vb > Vc, what is a “certain” fee
“forcing” the beam to provide maximum deflections
at a given point.

Further, the possibilities of the algorithm for
the case of weight optimization of a statically in-
determinate beam on an elastic basis are demon-
strated (Fig. 6a), when the four geometric dimen-
sions along the length of the I-beam cross-section
were selected as control variables, shown in Fig. 6b,
where the scheme of possible (in the process of op-
timization) transformation from rectangular to I-
beam profile is also given.

The quality criteria and restrictions were taken
in the form (36), (39), and the area, moment of
resistance and of inertia of the intersection are as follows:

F
(
δ̄
)
= δ1δ4 + 2δ2δ3; W

(
δ̄
)
= I

(
δ
)
/ (δ1/2 + δ3) ; I

(
δ̄
)
=

1

12

(
δ4δ

3
1 + 2δ2δ

3
3 + 6δ2δ3 (δ1 + δ3)

2
)

and are functions that are substantially nonlinear over the components δi(x)
(
i = 1, 4

)
of the control

vector.
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Fig. 7. The nature of the convergence of the ring plate
optimization algorithm.

Equation of state of the beam on an
elastic basis we obtain by adding to equa-
tions (37) the following equations:

dM

dx
= Q,

dQ

dx
= q(x)− k(x)w.

Boundary conditions for the formed system
have the form

w(0) = 0; M(0) = 0;

w(L) = 0; ϑ(L) = 0,

where Q is the transverse force, k(x) is the
coefficient of the elastic base.

In this case, the integration of the bound-
ary value problem for both the main and con-
jugate systems is carried out by the numeri-
cal method of run with orthogonalization according to S. K. Godunov [18].

Numerical results are obtained with the following numerical parameters: E = 2 ·105 MPa; L = 1m;
q = 0.85 kN/m; Kq = 5 kN/m; wmax 6 0.4 · 10−2 m; σ 6 [σ] = 1.6 · 102 MPa; 0.01 6 δ1 6 0.045;
0.01 6 δ2 6 0.035; 0.002 6 δ3 6 0.012; 0.002 6 δ4 6 0.01.

The distribution of each of the components of the control vector along the length of the beam is
shown in Fig. 6c, where it is possible to observe also points of transition (switching) of management
on various limiting surfaces, in particular, on restriction of management from below/from above.

The functions of changing the varied parameters δi(x) are found by finding the maximum Hamil-
tonian of the problem, as the functions of the four variables for each of the nodes points x ∈ [0, L].

The convergence process of the algorithm is demonstrated on the example of the problem of weight
optimization of a thin round annular plate under uniform transverse loading [22].

The distribution of wall thickness along the radius of the plate in the presence of restrictions on
radial and annular stresses and design requirements are shown in Fig. 7 by iterations (number of main
external cycles), starting from a constant thickness (curve 0) and then with the corresponding numbers
to the final result (curve 15). The number of such iterations can be reduced using the convergence
acceleration algorithms proposed in [17].
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8. Conclusions

The algorithm of sequential satisfaction of the optimality nessesery conditions of the maximum principle
L. S. Pontryagin for optimal control problems in the presence of arbitrary restrictions on phase variables
in the form of the method of successive approximations is constructed.

It is assumed that the optimal trajectory consists of intervals, some of which lie within the bound-
aries of acceptable domains and others lie within them. Constraints are taken into account using
generalized Lagrange functions. Solving the emerging multipoint boundary value problem for a conju-
gate system is reduced to a sequence of two-point problems by satisfying the residual functions at the
inner points of the trajectory, taking into account the necessary conditions of optimality.

The algorithm easily extends to cases of some intervals or isolated points of exit on the constraints.
The growing complexity of the computational problem is only in the need to determine a larger number
of unknown constants when reaching the constraint at each step of the approximations. At the same
time, in the presence of specially created or simply focused on solving the problems discussed here,
well-structured software, these difficulties are easily overcome even on the means of medium-capacity
computing, because the components of the proposed algorithm are well-designed, proven and tested
numerical methods.

The convergence and stability of calculations in individual blocks of the algorithm (set of blocks)
is justified by the convergence and stability of the methods used to find and numerically integrate
systems of differential equations, and for problems of mechanics is justified by convergence of known
algorithms of equivalent recalculation of designs. The convergence of the algorithm, in general, was
tested by the results of the system numerical modeling by the results of solving a wide range of specific
problems of optimal design.

The results of the conducted research have both theoretical and applied significance, which can be
applied in solving problems of optimal control in the creation of structures of new equipment in various
branches of modern mechanical engineering, mining and oil and gas industries, construction, etc. The
results of the application of the approach to solving real problems of mechanics are given.
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Алгоритм методу послiдовних наближень для задач
оптимального керування з фазовим обмеженням

для задач механiки
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Запропоновано алгоритм методу послiдовних наближень для задач оптимального ке-
рування за наявностi довiльних обмежень на керуючi та фазовi змiннi. Пiдхiд ба-
зується на процедурах послiдовного задоволення необхiдних умов оптимальностi у
виглядi принципу максимуму Понтрягiна. Продемонстровано застосування алгорит-
му для задач оптимiзацiї ваги силових елементiв конструкцiй за наявностi обмежень
мiцностi, жорсткостi та технологiчних вимог.

Ключовi слова: метод послiдовних наближень, принцип максимуму Понтрягiна,
фазовi та промiжнi обмеження, оптимальне проектування структур.
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