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In the paper, the possibility of the Appell hypergeometric function Fy(1,2;2,2; 21, 22)
approximation by a branched continued fraction of a special form is analysed. The corre-
spondence of the constructed branched continued fraction to the Appell hypergeometric
function Fjy is proved. The convergence of the obtained branched continued fraction in
some polycircular domain of two-dimensional complex space is established, and numerical
experiments are carried out. The results of the calculations confirmed the efficiency of
approximating the Appell hypergeometric function Fy(1,2;2,2; 21, 29) by a branched con-
tinued fraction of special form and illustrated the hypothesis of the existence of a wider
domain of convergence of the obtained expansion.
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1. Introduction

Systems of linear differential equations are used in mathematical models for many problems in physics
and astrophysics. The hypergeometric functions of one or many variables appear naturally in the
solutions of these equations [1-3]. Thus, the Appell function Fj appears in the analytic expressions
of scalar integrals corresponding to the Feynman diagrams in some connected regions of independent
kinematic variables [4]. The hypergeometric functions are presented as a power series in its convergence
domain. However, in each case, the convergence domain of the hypergeometric series is a small limited
domain in complex or multidimensional complex space. Therefore, the corresponding integrals are
often used when calculating the values of such functions [5-7]. A continued fraction is an alternative
approximant of the hypergeometric functions of one variable [8-10]. Multiple hypergeometric functions
are a natural generalization of the hypergeometric functions of one variable [1,5,11]. In the middle
of the 60s (XX century), V. Skorobohatko proposed a multidimensional generalization of continued
fractions for several variable functions [12]. He named it Branched Continued Fraction (BCF). There
are numerical and functional BCFs. The elements of the functional BCF are the function of one or
more variables. In the 1976, D. Bodnar introduced and applied the functional BCF to approximate
the functions of several variables [13,14]. The advantage of using BCF is a small accumulation of
computational errors [15] and a wider convergence domain compared to the convergence domain of
hypergeometric series [16]. Therefore, when we research the approximation of the multiple hypergeo-
metric functions by the branched continued fraction, we should construct the expansion of the multiple
hypergeometric function into BCF; investigate the convergence of this expansion; prove that the BCF
converges to the function, which is an analytic continuation of a multiple hypergeometric function in
some domain.
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There are some new papers dealt with the problem of constructions and investigation of BCF
expansions of special functions of several variables [15-18|.

The BCF expansions of Appell functions Fy were constructed in general case [13], but the question
about its convergence still is opened. This paper is first step in this direction. We investigate the
approximation of the hypergeometric Appell function Fy(1,2;2,2;21,29) into a branched continued
C-fraction of special form. After introduction, in Section 2, we give some terms and results connected
with our investigated object. In Section 3, we construct the expansion of the hypergeometric Appell
function Fy(1,2;2,2;21,29) into a branched continued fraction of a special form and we obtain the
explicit formulas for the coefficients of constructed expansion. The elements of these BCF are functions
of several variables in a certain domain of two-dimension complex space. The correspondence of the
obtained BCF to the hypergeometric series for the function Fy(1,2;2,2; 21, 22) we prove in Section 4.
The convergence of the obtained BCF we investigated in Section 5. We proved the theorem about its
convergence in some limited domain. This is the first result about the convergence of BCF in which
the hypergeometric Appell function Fy(1,2;2,2;21,29) is expanded. To confirm the result about the
convergence of the BCF, we have done the calculation analysis. The values of the suitable fractions and
the corresponding partial sums of the hypergeometric series at different points of the two-dimensional
complex space are calculated. A comparative analysis of the obtained values is carried out, the results
of which confirm the efficiency of using branched continued fractions to calculate the values of the
hypergeometric function Fy(1,2;2,2; 21, 29) in two-dimension complex space. In Section 6, we present
a result of our calculations, which confirm the result of our theoretical investigation.

2. Branched continued C-fraction with N = 2

D. Bodnar [14] introduced the branched continued C-fraction. This is a functional BCF, and its
elements in the numerator are complex function that linearly depend on variables, and the elements
BCF equal 1 in the denominator. We consider the BCF with two branches (N = 2). This BCF in
general structure has the form:

; (1)

2
Ci(1)%iy
1+
1'12::1 14 22: Ci(2)%ia
14

io=1

2
Z Ci(k) %y,
1+

ir=1

where (21, 20) € C2, i(k) = i1,i2,...,i are multi-indices and i(k) € I, I = {i(n),i; = 1,2, j = 1,n,
n=1,2,...}. This type of BCF is usually defined in more convenient form:
-1

Ci(k)%i

DY 2)

k=14,=1
The n-th approximant of BCF (2) is the limit BCF with n levels and it has the following expression:

) -1
_ N N\ Cilk) Zin B
pem= (1D A e @)
=1,

where (z1,22) € C2, i(k) € I.
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The correspondence of the sequence of meromorphic functions plays an important role in the theory
of continued fractions. Some methods of expansion of the function into the continued fraction are based
on the correspondence between the formal power series and the sequences of n-th approximants of the
continued fraction.

We consider correspondence of the sequences of two-variable rational functions to formal double

series at the origin. Let us consider a sequence {R,,(z1, 22)} of rational functions R,,(z1,22) = %,

where P, (21, 22), Qi(21,22), (21,22) € C?, n = 1,2,..., are polynomials with complex coefficients of
degrees m = m(n), | = I(n) respectively. Note, that it is necessary and sufficient for the denominator
Qi1(z1, z2) to be nonzero at the origin (i.e. Q;(0,0) # 0) in order to build an expression of the function
R, (21, 22) into a formal double power series at the origin.

A formal double power series (FDPS) is

o
Z O‘khkzzflzgz’
k1 ,ka=0
where ag, x, are some complex numbers, (21, 22) € C2.

Let P denote the set of FDPS.

Let P(R,) = P(Rn(z1,22)) be expansion of function R,(z1,22) into FDPS. The sequence
{R,(z1,22)} of rational functions, holomorphic at the origin, is said to correspond to the FDPS at
(z1,22) = (0,0) if nh_}rrgo AP — P(R,,)) = oo, where \: P — NyU{oo} is the function defined as follows:
if P =0 then A(P) = oo, if P # 0 then A(P) = m, where m is the lowest power of the homogeneous
polynomial with ag, r, # 0, m = ki + k.

The order of the correspondence of R, (z1,22) is defined to be v, = AP — P(R,)). Thus, if
{R)(z1,22)} corresponds to P, it can be seen that P(R,) and P agree on term by term up to and
including the degree v, — 1.

The sequence {R,(z1,22)} of rational functions converges uniformly on the compact subset of
domain D, D C C2, if to satisfy the following conditions for every compact subset K of the domain D:
1) it exists the natural N(K), and functions R,,(z1, z2) are holomorphic in some domain which include
K for all n > N(K);

2) for e > 0 exists N > N(K) for which sup,, .,)ex [Rntk(21, 22) — Rn(21,22)| <eforn > N, k > 0.

The sequence {R,(z1,22)} of rational functions are bounded uniformly on the compact subset of
the domain D if for every compact subset K of domain D there exists the number M (K) and B(K)
for which supy;, .,yex [Rn(21,22)| < B(K) for n > M(K).

BCF converges uniformly on the compact subset of domain D, D C C2, if the sequence of its
approximants {f,(z1,22)} converges uniformly on the compact subset of domain D. BCF is called
corresponding to FDPS P, if the sequence of its approximants { f,(z1, 22)} correspond to P.

Thus, the sequence of approximants { f,,(z1,22)} correspond to FDPS, which is an expansion for
the Appell hypergeometric functions.

Theorem 1 (Principle of correspondence [19]). Let BCF be corresponding to the two-dimension
formal power series at the origin. Let the domain D (D C C?) consist of the origin. Then

A) BCF converges uniformly on the compact subset of the domain D if and only if the sequence of
the approximants of BCF are uniformly bounded on the compact subset of the domain D;

B) If BCF' converges uniformly on the compact subset of the domain D to some holomorphic
function f(z1,z2), then the series P = P(f) is the Taylor series for them at the origin point.

3. The expansion of the multiple hypergeometric function Fy(1,2;2,2; 21, 25) into BCF

Let us consider the Appell hypergeometric function Fy. This function is defined in [1,11]

ZOO (@)1 (D) 4y 252
F b: /. — + +1 ~1~2 4
4(&, y G, C azlyz2) o= (c)k(c/)l k'l' ) ( )
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where parameters a, b, ¢, ¢ are complex numbers, ¢, ¢ are not equal to 0,—1,—2,..., (a)r = a(a +
D(a+2)...(a+k—1), (a)o=1,k=1,2,..., (21, 22) € C2. The series (4) converge if |z1 ++/|z2] <1

For the function Fj, the following recurrent relations hold [13]:

Fy(a,b;c,ds21,22) = Fy(a+ 1,b;c+ 1,5 21, 29)

—a)b b
— %zl “Fyla+1,b+ e+ 2,5 21, 29) — gzg “Fyla+1,b+ e+ 1, +1;21,29), ()
Fy(a,b;c,ds21,22) = Fy(a, b+ 1;¢+ 1,5 21, 29)
e bt e 2, ) — o Fala4 b+ Lie+1,¢ + 121, 20), (6)
C(C+1) ) b) b b) ) c/ ) b) ) b) b )

Fy(a,b;c,ds21,22) = Fy(a+ 1,b; ¢, + 1; 21, 29)

b " — a)b
—221-F4(a+1,b+1;c+1,c’+1;21,zg)—%22'F4(a+1,b+1;c,c'+2;21,zg), (7)
Fy(a,bye,d;21,20) = Fy(a,b+ 1;¢,d + 1;21, 22)
d —b)a

- gZl-F4(a—|—1,b—|—1;c+1,0’—1—1;2:1,,22)— 20 Fyla+1,b+1;¢,¢ +2;21,20). (8)
c

d(d+1)
D. Bodnar used the recurrent relations (5)—(8) for building the expansion for the ratio of hypergeo-

metric functions z (I; ‘fﬁcfzzflzcl,z)zz) into the BCF [13]. Obtained BCF has 2n elements c;()z;,, where
i(k) € I, in the n-th level. The authors is announced (without proving) the theorem about expansion
for hypergeometric function Fy(1,2;2,2; 21, 22) into the branched continued C-fraction of the specific
form in the paper [20] . We will prove this theorem and will analyze the structure obtained BCF in

this paper.

Theorem 2. The hypergeometric function Fy(1,2;2,2;21,29) expands into the branched continued
C-fraction of the special form

1
2 ) (9)
Ci(1)%iy
1+
ilzz:l 14 22: Ci(2)%ia
io=1,in#i1 2 Ci(3)%i3
SARE DD 5

i3=1 14 Z Ci(4)%iy

wa=liaFis | 4
and the coefficients of the fraction are calculated by the formulas:

ciy =1, i1=1,2

n
Ci(2n) = _n—+1’ (10)
1 . .
YRR on = Z2n+17
c; = n+l? , 11
i2n+1) { =1,  ion # f2n41, (11)

n=12,..., where i(k) € Iy U Iy,
L= {i(2n),i1 # ia,i3 # ia,. .. iop—1 # i, ij=1,2, j=1,n, n=1,2,...}

I, = {i(2n + 1), where i(2n) € I, iop41 =1,2, n=10,1,2,...}.
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Proof. We set the parameters of the hypergeometric function Fy a =0, b =2, ¢ =1, ¢ = 2. Then,
from the recurrent relations (5), we obtained the next expression:

Fy(0,2,1;2; 21, 29) = Fy(1,2,2;2; 21, 22) — 21 - Fu(1,3,3;2; 21, 20) — 22 - Fy(1,3,2;3; 21, 22).

Because Fy(0,b;¢,¢';Z) = 1, we can write the other form and obtain the first step of the expansion (9):
~1

. . pr— Zl 22
F4(1, 2’ 27 2’ 21,22) = 1-— F4(1,272§2§21’Z2) - F4(1,2,2§2321722) (12)
Fu(1,332z1,22)  Fu(1.3,2371,22)
Thus, the formulas (10) for elements BCF (9) have place for multi-indices iy = 1,2 (¢;, = 1).
We put
Funn 4 Lt Tin+ 121, 2)
N | _ ’ 13
n(21,22) Fi(n,n+2,n+42;n+ 1521, 22) Y
Finn + Lo+ 1o+ 121,52
. _ 14
n(21,22) Fy(n,n+2,n+1n+ 2521, 29) Y
Fainn+2,n+2in + 1521, 29
Vn(z1,22) = : ) "

CFE(n+1ln+2n+2n+2;2,2)

Fy(n,n+2,n+ 1;n+ 2; 21, 29)
. _ 16
n(21, 22) Fin+1,n+2n+2;n+2;21,2) 1o

where n =1,2,....
Since the recurrence relations (5)—(8) hold for any values of parameters of the hypergeometric
function Fy, we assume that the recurrence expressions of the following form holds:

n n

Lz 722
Xn(z1,20) =1 — 2 =g nt : 17
(e, 22) Va(21, 22) 1oz __m® {17)

Xnt1(21,22)  Yai1(21,22)
n n

oz 2
Y (21,20) =1 — =10 q nt . 18
L) = G T - "

© Xat1(z,22)  Yagi(zi,22)

These recurrence expressions (17) and (18) are easy to prove using of mathematical induction
method. Next step is applying the expressions (17) and (18) into the formula (12). We obtain tree
levels expansions of the function Fy(1,2,2;2; 21, 22) into the BCF form (9), where the elements c;(;(2)

are calculated by the explicit corresponding expression (10)—(11). [
Using (13)—(16), we can denote:
~ V, (Zl ZQ) if ign =2
R. _ n ) R ) 19
Z(2n)(Z1’ 2) { Wn(zla 22), if 2, =1, (19)
A | Xu(z1,22), if dopgr =1,
Rz(2n+1) (z17 22) - { YTL(Zb 22)’ if i2n+1 —9. (20)
The function Fj is the finite expansion the following type:
1
F4(1,2,2;2;Zl,22) = 2
1 + Z Ci(1)%iq

1+

i1=1

Ci(k)Zig,

ir=1 R;(k)(21,22)
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Note that BCF (9), in the case some values of parameters for hypergeometric function Fy, is not
equal to BCF, which Bodnar obtained [13]. The general structure of branched continued C-fraction
with N = 2 is given in Fig. 1.

Fig. 1. Branched continued fraction (1) with N = 2.

The question about convergence of BCF, which obtained D. Bodnar in [13], remains open till now.
Using the algorithm for function expansion into the BCF, we expand the function Fy(1,2,2;2; 21, 22)
into the BCF of another structure (Fig. 2).
Some branches at the odd
level do not exist. There-
fore, their branching disap-
pear at the next level of BCF.
Therefore, BCF (9) has two
branches at the even level,
and one at the odd level,;
r1972 the number of its branches
at the n-th level is equal to

e =0 ol(n+1)/2]  Additionally, the
elements of this BCF have the
multi-indices with equal num-
ber of the digits one and two
and their values (digits 1 and
2) are alternated.

1 -y =0
C12121

C12222

211222

ci21121 =0 C121222

clo20 =0 ca112 =10

Fig. 2. Branched continued fraction (9).

4. The correspondence of BCF and hypergeometric series for the function
F4(1,2;2,2;21,22)

The analogue method is for the expansion of a function into the BCF based on the correspondence of
the expansion to this function into the formal power series and the set of the n-th approximants of
BCF. Using Theorem 1, we prove the correspondence of the approximants of BCF (9) to the partial
sum of hypergeometric two-dimension power series (4).

Theorem 3. BCF (9) with coefficient (10)—(11) corresponds at the origin to the FDPS (4) of the
Appell hypergeometric function Fy(1,2;2,2;21,29) with the order of correspondence v, = n + 1 for
every n-th approximant.

Proof. Let us denote the next terms of approximants of the BCF (9):
Qi (z1,22) =1, i(m) € LU,
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Z
Q,(gn (21,22) =1+ Z &7 n<m, n=012.., i0)=0;
2n41= 1Q 2n+1)(zlyz2)

2
Qz(2n+1 (21,22) =1+ Z W, 2n+1<m, n=0,12...,
12n+2=1 Qi(2n+2) (Z17 Z2)
1202712041
where multi-indices i(2n) € I1, i(2n + 1) € Is.
Thus, the n-th approximant of the BCF (9) can be written as follows:
1

falor, ) = ——

QE(O))(ZL Z2)

Using (19) and (20), denote the next tails of the BCF (9):
Qi (21,22) =1+ Z

ion4+1=1

A(2n Ci(2n+2) Rion +2
Q(Q +1) (21,29) =1+ —
) Z Riony2) (21, 22)

i(2n+1) Zion

2n+1) (21, 22) ’

[\

d2nt2=1
22n+23ﬁZ2n+1

Ci(2n+1)Fiont1

QE( ZL)(ZLZz =1+ Z PN I m>2n, n=12,....
ion4+1=1 Qz(2n+1)(21722)

2
~ C; Zi
Q) =1+ Y AR o1 n=0,1,2,...

(m)
) i2n+2':1 Qi(2n+2) (217 22)
i2n+27i2n+1

We can write
F4(17 2) 27 2a Z17Z2) =

So,
Fy(1,252,2; 21, 29) — fn(21, 22) = -

n+1 Z Z Z H:L+11 Ci(r)Zir
i1=1 iz=1 int1 2(n+1) H:} 0 (Q(( ))(21,22)62((7, (21722))

o1
1, if i, =2
2, if i, =1

Since QEZ?)(Zl’ 29), QEZ))(zl, z9) and R. (n+1)(z1, z9) are nonzero at the origin they differ from zero

where i1 = 1,2, for n +1 — even and 4,411 = { for n +1 — odd.

in some neighborhood of the origin as well. Expansions of (Ql(r (Zl,Zg)) (Ql(r (21,z2))_1 and

~

(Ri(n_l’_l)(zl, 22))_1 into FDPS exists and
(@)
F4(172;272;217Z2)_fn(21722) - Z ’Ykl’kQZlegQ,

k1,k2=0
k1+ko>n+1

where 7, r, are some complex numbers.

Thus, the sequence of approximants {f,(z1,22)} corresponds to FDPS, which is an expansion for
the Appell hypergeometric functions Fy(1,2;2,2; 21, 29) with the order of correspondence v, = n + 1
for each n-th approximant n =1,2,.... [
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5. The convergence of expansion of hypergeometric function Fy(1,2;2,2; z1, 23) into
BCF

We consider the BCF (9) with coefficients (10), (11). We prove the convergence of BCF (11) in some
limited domain.

Theorem 4. The BCF (9) with elements (10), (11)
A) uniformly converges to a holomorphic function Fy(1,2;2,2; 21, z2) in the domain

Gt:{(21722)€(321 !Zilét(l;t), i:1,2} (21)

with constant t and 0 <t < %;
B) the value of function Fy(1,2;2,2; 21, z9) and the value of f,(z1, z2) — n-th approximant BCF (9)

1)(3]()I1g to lhc d()ma]n
w w 1 D) B 3

1—1¢2
C) the following estimates of the truncation error hold

(1= 208™(1 — )™ [(1 — £y — =]
(1 —¢)yn+l — 1] [(1 — tymtL — gmt1]”

|fn(zlyz2) - fm(zlaz2)| < (23)

if0<t<%,n>m,
2(n —m)

(n+1)(m+1)’ (24)

|fn(zl’z2) - fm(zlaz2)| <
ift=3.

Proof. Let the arbitrary number that 0 < ¢ < 3. BCF (9) with elements (10), (11) is a BCF with

elements, which satisfy the conditions |c;(,)zi, | < t(12—t) of Theorem 3.14 [14, th. 3.14 p. 93-94] in the
domain (21). Thus BCF (9) converges at a fixed point (21, 22) from domain Gy, the estimates (23),
(24) hold, the values of BCF (9) and all n-th approximants belong (22).

Therefore the sequence {f,(21,22)} is a sequence of the rational functions and for all n =1,2,...,
fn(0,0) = 1. Thus, there is some neighborhood of origin where every { f,,(z1, 22)} is holomorphic.

Since the values of n-th approximants satisfy (22)

1 - t
1—¢2| T 1—¢¥

In(21, 22) —

then for all n, we obtain
1
< —.
|[falz1, 22)| < T
Hence the sequence {f,,(z1, 22)} is uniformly bounded.
Using Theorem 1, we obtain that the sequence {f,(z1,22)} converges uniformly to the function

F(z1, z9) into the domain Gy and F(z1, 29) = Fy(1,2;2,2; 21, 22). [ ]

6. A numerical analysis of an expansion of hypergeometric function Fy(1, 2;2, 2; z1, 22)
into BCF

A numerical analysis was performed in complex space. The values of the approximants (3), branched
continued fractions (9), and the values of the corresponding partial sums of the hypergeometric series (4)
at different points of the two-dimensional complex space were calculated.

We calculated the values of the approximants f,, of BCF (9), where
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-1

and the values of the corresponding partial sums of the hypergeometric series (4)

o (@) gy (B) gy 2428
Sn — +1 k+1 <172 k l< .
: kzz::o (@), kI s

The calculations were performed with a specified accuracy

|fra+1 — farl <& [Sngt1 — Snal <e.

We took some points in the BCF convergence domain (21), and some points in the convergence series
domain, and some points outside both of these convergence domains.

The results of the calculations with all points within the fraction converge domain are in Table 1
(all points are inside the Worpitski circle).

Table 1. All points are inside the Worpitski circle, calculation accuracy € = 1076.

No (21, 22) fra ny Shns ng
o rs ovwn | b o
> | oos—oosi—00si) | P 6 | 0 D rrsnansad | 11
IR AR
ICEETETE anE i
5 | (0.045 4 0.0354;0.025 + 0.14) 10"01?71%%‘;%%& 6 B.%Z%T(’)%i 10

You can see that in all points the number of approximants f,,, of BCF (9) is less than the number of
the corresponding partial sums of the hypergeometric series (4) Fy(1,2;2,2; 21, z2) necessary to satisfy
the specified accuracy.

The results of the calculations with all points within the hypergeometric series converge domain
but outside the fraction converge domain are in Table 2.

Table 2. All points are outside the Worpitski circle, but satisfy the condition +/|z1| + /|22| < 1,
calculation accuracy € = 1076,

No (21, 22) Fra n1 Sha ng
1 (0.165 + 0.165 4 0.06 + 0.05 %) %g;g;%z%g 8 %)27546?%‘;86455625 19
[ o ommromn | et | e
3 | (00895 —002i5-008-030) | [0 acec | 8 | Doommigentes | 2
AR A e
5 | (0.2421 + 0.20634;0.0376 + 0.1876 1) %952%%2?89%2; 11 %952%%%2%16‘5 204

In the case 1, z; is outside the Worpitski circle, but zs is inside this circle. In the cases 2 and 3,
zo is outside the Worpitski circle, but z; is inside this circle. In the cases 4 and 5, all values z; and 2y
are outside the Worpitski circle. You can see that in all this points the number of approximants f,,
of BCF (9) is less than the number of the corresponding partial sums of the hypergeometric series (4)
Fy(1,2;2,2; 21, z2) necessary to satisfy the specified accuracy too.
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The example of the step-by-step calculation of the value of approximants f,, and partial sums 5,
for z; = 0.165 + 0.1654, 2o = 0.06 4 0.054 is in Table 3. Calculation accuracy is 1072

Table 3. Value of approximants f,, and partial sums S, for z; = 0.165 + 0.1651%, zo = 0.06 + 0.051,
calculation accuracy € = 10712,

No fnl ny Sn2 Uy
1 1.1981139367705 4 0.33237999536214 % 1 1.225+0.2154 1
2 | 1.18308216655368 4 0.357902074192197¢ | 2 1.20064575 + 0.36593025 ¢ 3
3 1.1746274859495 + 0.357782177408691 % 3 1.1725603489375 + 0.3627330417125 i )
4 | 1.17421877698175 + 0.3570620850690077 | 4 | 1.17442551827464 + 0.3565137254217037 | 9
) 1.174347428498 + 0.356881429459171 % 6 | 1.17438289459818 4 0.356928604626161¢ | 12
6 | 1.17435018873324 4 0.356886091500792¢ | 7 | 1.17434669986005 + 0.356883610733279¢ | 16
7 | 1.17434988476155 + 0.3568866465084187 | 8 | 1.17435040636446 + 0.356886569415434 ¢ | 19
8 | 1.17434974155155 4+ 0.3568866510002667 | 9 | 1.17434976569644 + 0.3568868305573267 | 21
9 | 1.17434973220923 4 0.356886636282207¢ | 10 | 1.17434967597966 + 0.356886645995159¢ | 23
10 | 1.17434973394622 + 0.3568866328658337 | 11 | 1.17434973966295 + 0.3568866310564557 | 27
11 | 1.17434973442505 + 0.356886632835742+ | 12 | 1.17434973419555 + 0.35688663285329517 | 32
12 | 1.17434973447768 4 0.356886632932914 | 14 | 1.17434973450257 + 0.356886632936973 ¢ | 36
13 | 1.1743497344749 + 0.3568866329331867 | 15 | 1.17434973447195 4 0.356886632932775¢ | 40
14 | 1.17434973447472 4+ 0.356886632932824 7 | 20 | 1.17434973447473 4+ 0.3568866329328257¢ | 54

Note that the point is outside the converge domain (21). This result numerically confirms the
hypothesis about existing a wider convergence domain for BCF (9), and serves the confirmation of the
better BCF convergence rate (9) than the hypergeometric series.

We calculated the values of approximants f, outside the hypergeometric series convergence domain
too. The values of the corresponding partial sums of the hypergeometric series (4) Fy(1,2;2,2; 21, 22)
do not exist if \/m + v/|22| > 1, but the approximants f,,, of BCF (9) are converging with specified
accuracy. The results of this calculations are in Table 4.

Table 4. All points satisfy the condition \/|21] + 1/|22] > 1, calculation accuracy € = 107°.

No (21, 22) fnl ny

1 | (0.2421+0.20631; 0.0376+0.18761) | 0.9841979067+0.54389093151 | 12
2 (0.315+0.24751; 0.12+0.2751) 0.8312022079+0.73446335181 | 15
3 (-0.2-0.41; —0.455-0.3051) 0.5486969884-0.19095858661 | 15
4 (-0.2+0.41; —0.54+0.31) 0.5406801122-0.18061435091 | 12
5 (0.25-0.451; 0.15-0.251) 0.6780635749-0.67674325141 | 12

The results of our calculations confirm the efficiency of using branched continued fractions to
calculate the values of the hypergeometric function Fy(1,2;2,2; 21, 22) in complex space C? and confirm
the existing unbounded domain of convergence of BCF (9).

7. Conclusions

The expansion for hypergeometric Appell function Fy(1,2;2,2; 21, 2z2) into the branched continued frac-
tion is constructed. The correspondence of this fraction to two-dimensional hypergeometric series is
proved. The convergence of the obtained branched continued fraction is investigated. The converge in
the two-dimensional Worpitski circle domain is proved. A numerical analysis trough the calculating
n-th approximants for obtained branched continued fraction and partial sums of two-dimension hyper-
geometric series are performed. This analysis confirms the effectiveness of using branched continued
fraction to approximate the value of the hypergeometric Appell function Fy(1,2;2,2; 21, 22).
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Mpo 36i>kHicTb po3BuHeHHsa dyHkuiT Fy(1,2;2,2; 21, 22)
B MINSACTUIA NaHulorosuii apib

Inaays B. P.1, Toenxo H. I1.2, Manziit O. C.!, Benrux JI. C.!

! Haygonanrvruti ynisepcumem “JIveiecvra noaimexnixa’,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina
2 Inemumym npuxaadnux npobaem mexanixu i mamemamury im. 5. C. ITidempuezave HAH Yrpainu,
eya. Hayxosa, 3-6, 79060, Jlveis, Ykpaina

V poboTi npoaHai30BaHO MOXKJIUBICTh HAOJIMXKEHHsI IillepreoMeTpudHol (pyHKIHT Aresis
Fy(1,2;2,2; 21, 22) TI/UIACTIM JIAHIFOTOBUM JPOOOM CIIEIaIbHOTO BUIJIsiy. JloBeneno Bij-
MOBITHICTH TOOYIOBAHOTO MJLISICTOTO JIAHITIONOBOTO JIPO0OY /10 TillepreoMeTpuvHOl (byHKIT
Annens Fy. Beranosseno 36iKHICTb OTPUMAHOTO TMJLISICTOrO JIAHIIOIOBOTO JIPO0Y Yy Jies-
Kiif TOJIIKPYTOBiil 00J1aCTi TBOBUMIPHOTO KOMILIEKCHOT'O IIPOCTOPY Ta IMIPOBEIEHO UNCEIbHI
eKkcrepuMeHTH. Pe3yiabraru 069HCIeHDb MiATBep uIn epeKTUBHICTh alpOKCUMAaIlil rimep-
reomerpuanoi GyHKIGT Anmens Fy(1,2;2,2; 21, 22) 3a IOMOMOrOM0 IILISICTOTO JIAHIFOIOBO-
ro Apo0y CIeiaJbHOTO BUJISLY Ta IMPOLTIOCTPYBAJIHU TioTe3y iCHyBaHHS IIUPINO] 00J1aCTi
30i?KHOCTI OTPUMAHOT'O PO3BUHEHHSI.

Knrouosi cnosa: zinepzeomempuunutl pad, zinepzecomempuuna Gynkuis Anneas, pexy-
peHmHte 8I0HOWEHHSA, Henepepsrull dpio, zisrscmull AaHyo208ul 0pib, obaacmv 36ixcHOC-
mi, 6i0nosidnicms.
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