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In the present paper, we consider polynomially based Kantorovich method for the numer-
ical solution of Fredholm integral equation of the second kind with a smooth kernel. The
used projection is either the orthogonal projection or an interpolatory projection using
Legendre polynomial bases. The order of convergence of the proposed method and those
of superconvergence of the iterated versions are established. We show that these orders of
convergence are valid in the corresponding discrete methods obtained by replacing the in-
tegration by a quadrature rule. Numerical examples are given to illustrate the theoretical
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1. Introduction

Consider the Fredholm integral equation defined on C [−1, 1] by

u(s)−
∫ 1

−1
κ(s, t)u(t) dt = f(s), −1 6 s 6 1, (1)

where κ is a smooth kernel, f is a real continuous function and u denotes the unknown function. The
projection, degenerate kernel and Nyström methods are standard methods for finding numerical solu-
tions of equations of type (1) (see [1–3]). It is well known that to get better precision in these methods
in the case of piecewise polynomial approximation, the number of partition points should be increased.
Hence in such cases, we should solve a large system of linear equations, which is computationally
expensive.

The aim of this paper is to study the Kantorovich method and its discretized version to solve
equation (1) using global polynomial basis functions rather than piecewise polynomial basis functions
which reduces highly the size of linear system. In particular, Legendre polynomials can be used as
basis functions which have nice property of orthogonality and low computational cost.

In a number of recent papers, various polynomially based numerical methods for linear integral
equations were studied. The discrete Galerkin method using Legendre polynomials was introduced in
Golberg [4] and its iterated version was proposed in Kulkarni and Gnaneshwar [5]. The convergence
of the Legendre–Galerkin solution in the case of weakly singular kernels was considered in Panigrahi
and Gnaneshwar [6]. Moreover, the Legendre multi-projection as well as its iterated version were
studied in [7]. Other important results on the numerical solutions of nonlinear integral equations using
Legendre polynomials can be found in [8–10].

Now for a summary of the paper. In Section 2, the proposed method is defined and the linear
systems which need to be solved to obtain the approximate solutions are discussed. In Section 3,
the orders of convergence of the proposed method and its iterated version for both the orthogonal
projection and the interpolatory projection are obtained. In Section 4 we show that these orders of
convergence are preserved after taking into account the errors introduced by the numerical quadrature
rule. Numerical results are given in Section 5.
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2. Method and notations

Let Xn denote the space of all polynomials of degree 6 n defined on [−1, 1]. Then the dimension of
Xn is n+ 1, and the Legendre polynomials {L0, L1, L2, . . . , Ln} defined by

L0(s) = 1, L1(s) = s, s ∈ [−1, 1],

(i+ 1)Li+1(s) = (2i+ 1)sLi(s)− iLi−1(s), i = 1, 2, . . . , n− 1

form an orthogonal basis for Xn. Since

〈Li, Lj〉 =
{

2
2i+1 , i = j,

0, i 6= j,

then, an orthonormal basis for Xn is given by
{
ϕi(s) =

√
2i+1
2 Li(s) : i = 0, 1, . . . n

}
.

We use two types of projections from C [−1, 1] to Xn.
Orthogonal projection. For u, v ∈ C [−1, 1], the inner product is given by

〈u, v〉 =
∫ 1

−1
u(t) v(t) dt and norm is ‖u‖L2 =

(∫ 1

−1
u(t)2dt

) 1
2

.

Let πGn u be the orthogonal projection operator defined from C [−1, 1] to Xn. Then for all u ∈ C [−1, 1],
we have

(
πGn u

)
(s) =

n∑

i=0

〈u, ϕi〉ϕi(s),
〈
πGn u, ϕi

〉
= 〈u, ϕi〉, i = 0, 1, . . . , n.

(2)

Interpolatory projection. For u ∈ C [−1, 1], let πCn u denote the unique polynomial of degree n
satisfying (

πCn u
)
(τi) = u(τi), i = 0, 1, . . . , n, (3)

where {τ0, τ1, . . . , τn} are zeros of the Legendre polynomial Ln+1. In the Lagrange form, πCn u is

(
πCn u

)
(s) =

n∑

j=0

u(τj)ℓj(s), s ∈ [−1, 1],

where ℓj is the unique polynomial of degree n that satisfies ℓj(τi) = δij . Clearly, πCn is a linear operator
on C [−1, 1], with the property (πCn )

2 = πCn . It is therefore a projection, having as range the set Xn.
Henceforth, we write πGn or πCn as πn and for the rest of the paper we assume that r > 1. The crucial
properties of πn are given in the following lemma.

Lemma 1 (Golberg and Chen [11]). Let πn : C [−1, 1] → Xn be the orthogonal or interpolatory
projection operator defined by (2) and (3). There exists a constant p > 0 independent of n such that
for n ∈ N and u ∈ C [−1, 1],

‖πnu‖L2 6 p‖u‖L2 , (4)

‖u− πnu‖L2 6 (1 + p) inf
φ∈Xn

‖u− φ‖L2 . (5)

Moreover, for any u ∈ C r[−1, 1],

‖u− πnu‖L2 6 c1n
−r‖u(r)‖L2 , (6)

‖u− πnu‖∞ 6 c1n
β−r‖u(r)‖∞, (7)

where c1 is a constant independent of n, β = 3
4 for the orthogonal projection and β = 1

2 for the
interpolatory projection.
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The estimate (5) shows that ‖u − πnu‖L2 → 0 as n → ∞ for all u ∈ C [−1, 1], whereas the
estimate (7) imply that ‖u− πnu‖∞ 9 0 as n→ ∞, for any u ∈ C r[−1, 1].

Let K be the integral operator defined by

(K u)(s) =

∫ 1

−1
κ(s, t)u(t) dt, s ∈ [−1, 1]. (8)

Thus, equation (1) can be writing in operator form as

(I − K )u = f. (9)

In the Kantorovich method [3, 12], the integral equation (9) is approximated by

(I − πnK )un = f, (10)

while the iterated solution is defined by

ũn = K un + f (11)

and it converges to u at a faster rate than the approximation un does.
Writing the Kantorovich-collocation solution uCn obtained by using πCn as

uCn = f +

n∑

i=0

aiℓi, s ∈ [−1, 1],

equation (10) is equivalent to the following linear system of equations of size n+ 1

ai −
n∑

j=0

aj

∫ 1

−1
κ(τi, t) ℓj(t) dt =

∫ 1

−1
κ(τi, t) f(t) dt, i = 0, 1, . . . , n. (12)

Similarly, for the orthogonal projection, the Kantorovich–Galerkin solution of equation 10 is given by

uGn = f +

n∑

i=0

biLi, s ∈ [−1, 1]

and the coefficients bi are solutions of the linear system of equations

bi −
n∑

j=0

bj〈K Lj, Li〉 = 〈K f, Li〉, i = 0, 1, . . . , n. (13)

In practice, the integrals in (2), (11), (12) and (13) are evaluated by an appropriate quadrature formula.
This issue will be treated more extensively in Section 4.

3. Convergence rates

Let p > 0 and κ ∈ C p[−1, 1]2 then R(K ) ⊂ C p[−1, 1]. Thus, if f ∈ C p[−1, 1] then the exact solution
u of (1) belongs to C p[−1, 1]. We set

Di,jκ(s, t) =
∂i+jκ

∂si∂tj
(s, t), ‖κ‖p,∞ = max

{∥∥Di,jκ
∥∥
∞ : i, j = 0, 1, . . . , p

}

and
‖u‖p,∞ = max

{
‖u(j)‖∞ : j = 0, 1, . . . , p

}
.

The next theorem provides the error estimate between un and the exact solution u.
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Theorem 1. Assume that κ ∈ C r[−1, 1]2 and that the inverse of (I − K ) exists and is uniformly
bounded. Then for a sufficiently large n, the operators (I − πnK )−1 exist and

‖(I − πnK )−1‖ 6 A (14)

for a suitable constant A independent of n. Moreover,

‖u− un‖ 6 ‖(I − πnK )−1‖‖(I − πn)K u‖,
6 A‖(I − πn)K u‖. (15)

Proof. Using the fact that K is compact and ‖K − πnK ‖ → 0 pointwise in C [−1, 1], then from [1,
Lemma 12.1.4] the operator (I − πnK )−1 exists and is uniformly bounded.

For the estimate (15), multiply (I − K )u = f by πn, and then rearrange to obtain

(I − πnK )u = πnf + (u− πnu).

Subtract (I − πnK )un = f to get

(I − πnK )(u− un) = (I − πn)(u− f),

= (I − πn)K u. (16)

Taking norms the result follows. �

Throughout the paper, we assume that C is a generic constant which is independent of n. Now,
we prove the theorem which establishes the rate of convergence of the approximation un to the exact
solution u.

Theorem 2. Assume that κ ∈ C r[−1, 1]2 and f ∈ C [−1, 1]. Let u, un be the solutions of (10) and
(11) respectively. Then there exists a positive constant C independent of n such that

‖u− un‖∞ 6 Cnβ−r. (17)

Proof. From (7),

‖(I − πn)K u‖∞ 6 c1n
β−r‖(K u)(r)‖∞,

6 c1n
β−r‖κ‖r,∞‖u‖∞.

Hence combining with (14) and (15) the estimate (17) is proved. �

The next theorem establishes the superconvergence of the iterated solution ũn to the exact solu-
tion u.

Theorem 3. Let ũn be the iterated approximation of u. Assume that κ ∈ C r[−1, 1]2. Then for n
large enough,

‖u− ũn‖ 6 ‖(I − K πn)
−1‖‖K (I − πn)K u‖. (18)

Proof. From the definition of the solutions un, ũn, and estimate (16)

u− ũn = K (u− un)

= K (I − πnK )−1(I − πn)K u. (19)

Moreover, it is shown in [1, Chap. 3] that

(I − K πn)
−1 = [I + K (I − πnK )−1πn], (20)

(I − πnK )−1 = [I + πn(I − K πn)
−1

K ], (21)

which implies that
(I − πnK )−1πn = πn(I − K πn)

−1

and therefore,
K (I − πnK )−1 = (I − K πn)

−1
K .

We now deduce the bound (18) from (19) and the above equality. �
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For the rest of the paper, we set

z = K u and κs(t) = κ(s, t), s, t ∈ [−1, 1].

Theorem 4. Let πGn : C [−1, 1] → Xn be the orthogonal projection and let ũGn be the iterated
Kantorovich–Galerkin solution defined by (11). Assume that κ ∈ C r[−1, 1]2 and f ∈ C [−1, 1]. Then
there exists a positive constant C independent of n such that

‖u− ũGn ‖∞ 6 Cn−2r.

Proof. It follows from Theorem 3 that to estimate ‖u − ũGn ‖∞ it is necessary to estimate ‖K (I −
πGn )K u‖. Using the fact that πGn is the orthogonal projection from C [−1, 1] to Xn, we obtain for each
s ∈ [−1, 1]

[
K (I − πn)K u

]
(s) =

∫ 1

−1
κ(s, t)

(
z − πGn z

)
(t) dt,

= 〈κs − πGn κs, z − πGn z〉.

Hence using the Cauchy–Schwarz inequality and (6),
∥∥K (I − πGn )K u

∥∥
∞ 6 max

s∈[−1,1]

∥∥κs − πGn κs
∥∥
L2

∥∥z − πGn z
∥∥
L2 ,

6 (c1)
2n−2r max

s∈[−1,1]

∥∥κ(r)s
∥∥
L2

∥∥z(r)
∥∥
L2 ,

6 2(c1)
2 (‖κ‖r,∞)2 ‖u‖∞n−2r.

This result, together with (18), completes the proof. �

Theorem 5. Let πCn : C [−1, 1] → Xn be the interpolatory projection defined by (3) and let ũCn
be the iterated Kantorovich-collocation solution defined by (11). Assume that κ ∈ C r[−1, 1]2 and
f ∈ C [−1, 1]. Then there exists a positive constant C independent of n such that

‖u− ũCn ‖∞ 6 Cn−r. (22)

Moreover, we have the following superconvergence estimate for uCn at the collocation points

max
06i6n

∣∣u(τi)− uCn (τi)
∣∣ 6 Cn−r.

Proof. Since
[
K
(

I − πCn
)
K u

]
(s) =

∫ 1

−1
κ(s, t)

(
z − πGn z

)
(t) dt, s ∈ [−1, 1],

then, taking supremum and using the Cauchy–Schwarz inequality we get
∥∥K

(
I − πCn

)
K u

∥∥
∞ 6 max

s∈[−1,1]
‖κs‖L2

∥∥z − πCn z
∥∥
L2

6 c1
√
2‖κ‖r,∞‖z(r)‖L2n−r

6 2c1(‖κ‖r,∞)2‖u‖∞n−r.
Thus, by (18) the estimate (22) is proved.

Now, applying πCn to both sides of equations (10) and (11), we have that

πCn un = πCn K uCn + πCn f

= πCn ũn,
and this yields

uCn (τi) = ũCn (τi), i = 0, 1, . . . , n.

Hence, the required result follows from (22). �
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Remark 1. According to (20) and (21), we can choose to show the existence of either (I − πnK )−1

or (I − K πn)
−1, whichever is the more convenient, and the existence of the other inverse will follow

immediately. Bounds on one inverse in terms of the other can also be given by using (20) and (21).

Remark 2. If the right hand side of the operator equation is less smooth than the kernel of the
integral operator, then it can be shown that the Kantorovich solution has a higher order of convergence
than the Galerkin/collocation solution. Also we can prove that the iterated Kantorovich method had
a faster convergence than the iterated Galerkin/collocation methods.

4. Discrete methods

In practice, the integrals in the definitions of K and πGn involved in equations (2) and (8) are not
computed exactly. It is necessary to evaluate them by a numerical quadrature formula giving rise to
discrete and iterated discrete Legendre–Kantorovich methods, respectively. To introduce these discrete
methods, we consider a quadrature formula defined by

∫ 1

−1
f(t) dt ≃

M∑

i=1

ωif(ti), (23)

where the weights are such that
ωi > 0, i = 1, 2, . . . ,M

and the number of nodes is written simply M , with the dependence on n understood implicitly. We
suppose that this formula has precision 2n, that is

∫ 1

−1
f(t) dt =

M∑

i=1

ωif(ti),

for all polynomials of degree 6 2n. As a consequence we have for any f ∈ C r[−1, 1], n > r (see [13])
∣∣∣∣∣

∫ 1

−1
f(t) dt−

M∑

i=1

ωif(ti)

∣∣∣∣∣ 6 c2n
−r∥∥f (r)

∥∥
∞,

where c2 is a constant independent of n. Following Golberg [13] and Sloan [14] the discrete inner
product is defined as

〈f, g〉M =

M∑

i=1

ωi f(ti) g(ti), f, g ∈ C [−1, 1]. (24)

Let QG
n : C [−1, 1] → Xn be the hyperinterpolation operator defined by Sloan [14] as

Q
G
n u =

n∑

i=0

〈u, ϕi〉Mϕi(s) (25)

and satisfies
〈QG

n u, ϕi〉M = 〈u, ϕi〉M , i = 0, 1, . . . , n.

The following crucial properties of QG
n are quoted from Sloan [14] (see also [9]).

Lemma 2. Let QG
n be the hyperinterpolation operator defined by (25). Then

∥∥QG
n u
∥∥
L2 6

√
2‖u‖∞,∥∥u− Q

G
n u
∥∥
L2 6 2

√
2 inf
φ∈Xn

‖u− φ‖∞.
Moreover, for any u ∈ C r[−1, 1],

∥∥u− Q
G
n u
∥∥
L2 6 c1n

−r‖u(r)‖∞,
where c1 is a constant independent of n and n > r.
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Note that for any u ∈ C r[−1, 1], we have also (see [8])
∥∥u− Q

G
n u
∥∥
∞ 6 c1n

−r+1‖u(r)‖∞, n > r, (26)

where c1 is a constant independent of u and n. Moreover, from [9] QG
n satisfies

〈
u− Q

G
n u, u− Q

G
n u
〉 1

2

M
6 c1

√
2n−r‖u(r)‖∞, (27)

where c1 is a constant independent of n and n > r.
For our convenience, from now onwards we write QG

n or QC
n = πCn as Qn. Using the numerical

integration method (23), the Nyström approximation of the integral operator K is defined as

(Knu)(s) =
M∑

i=1

ωi κ(s, ti)u(ti).

The error bound (23) implies that for κ ∈ C r[−1, 1],

‖(K − Kn)u‖∞ 6 c2n
−r‖κ‖r,∞‖u(r)‖∞, (28)

where c2 is a constant independent of n. With the above notations, a discrete version of the approximate
equation (10) is defined by

(I − QnKn)zn = f, (29)

while the iterated discrete solution is given by

z̃n = Knzn + f. (30)

Thus, the integral operator K is replaced by Kn and the orthogonal projection πGn is replaced by the
hyperinterpolation operator QG

n . Notice that in the case M = n + 1, and the quadrature points used
in discrete inner product (24) and the collocation nodes in (3) are the same i.e. τi−1 = ti, the operator
QG
n coincides with the interpolatory projection operator QC

n . Hence, to achieve the desired rates of
convergence of the regular solution ũGn , we assume from now onwards that M > n+ 1.

Now we establish the convergence rates for the approximate solutions.

Theorem 6. Assume that κ ∈ C r[−1, 1]2 and f ∈ C [−1, 1]. Let u, zn be the solutions of (9) and
(29) respectively. Then there exists a positive constant C independent of n such that

‖u− zn‖∞ 6 Cnγ−r, (31)

where γ = 1 for the hyperinterpolation operator and γ = 1
2 for the interpolatory projection.

Proof. We write
(I − QnKn)u = Qnf + (u− Qnu) + Qn(K − Kn)u.

Subtracting (I − QnKn)zn = f , one can obtain

(u− zn) = (I − QnKn)
−1[(I − Qn)K u+ Qn(K − Kn)u],

= (I − QnKn)
−1[(I − Qn)Knu+ (K − Kn)u]. (32)

Taking norms, it follows from (15) that

‖u− zn‖∞ 6 2Amax {‖(I − Qn)Knu‖∞, ‖(K − Kn)u‖∞} .

On other hand, since the quadrature formula has precision 2n > n > r > 1, choosing f(x) = 1 in (23)
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2 =

∫ 1

−1
ds =

M∑

i=1

ωi

and using the fact that ωj > 0, we obtain

‖(Knu)
(r)‖∞ = sup

s∈[−1,1]

∣∣∣(Knu)
(r)(s)

∣∣∣ = sup
s∈[−1,1]

∣∣∣∣∣

M∑

i=1

ωi
∂rκ

∂sr
(s, ti)u(ti)

∣∣∣∣∣

6 2‖κ‖r,∞‖u‖∞. (33)

Hence by (7) and (26), one can get

‖(I − Qn)Knu‖∞ 6 c1n
γ−r‖(Knu)

(r)‖∞,
6 2c1n

γ−r‖κ‖r,∞‖u‖∞. (34)

Now combining (28), (32) and (34), we obtain the error bound (31). �

Theorem 7. Let QG
n : C [−1, 1] → Xn be the hyperinterpolation operator and let z̃Gn be the iterated

discrete Kantorovich–Galerkin solution defined by (30). Assume that κ ∈ C r[−1, 1]2 and f ∈ C [−1, 1].
Then there exists a positive constant C independent of n such that

‖u− z̃Gn ‖∞ 6 Cn−2r.

Proof. Using (30) and the fact that

u = (K − Kn)u+ Knu+ f

we get
u− z̃n = (K − Kn)u+ Kn(u− zn).

Moreover, by (32)

u− z̃n = (K − Kn)u+ Kn(I − QnKn)
−1[(I − Qn)Knu+ (K − Kn)u],

= (K − Kn)u+ (I − QnKn)
−1

Kn[(I − Qn)Knu+ (K − Kn)u].

Taking bounds,

‖u− z̃n‖∞ 6 (1 + 2A)max {‖Kn(I − Qn)Knu‖∞, ‖(K − Kn)u‖∞, ‖Kn(K − Kn)u‖∞} , (35)

Using the orthogonality of QG
n , Cauchy–Schwarz inequality and estimate (27), we obtain for s ∈ [−1, 1]

|Kn(I − Q
G
n )u(s)| =

∣∣∣∣∣

M∑

i=1

ωiκ(s, ti)
(
u− Q

G
n u
)
(ti)

∣∣∣∣∣

=
〈
κs, u− Q

G
n u
〉
M

=
〈
κs − Q

G
n κs, u− Q

G
n u
〉
M

=

∣∣∣∣∣

M∑

i=1

ωi
(
κs − Q

G
n κs

)
(ti)
(
u− Qnu

)
(ti)

∣∣∣∣∣

6

(
M∑

i=1

ωi
[(
κs − Q

G
n κs

)
(ti)
]2
) 1

2
(

M∑

i=1

ωi
[(
u− Q

G
n u
)
(ti)
]2
) 1

2

=
〈
κs − Q

G
n κs, κs − Q

G
n κs

〉 1
2

M

〈
u− Q

G
n u, u− Q

G
n u
〉1

2

M

6 2(c1)
2n−2r‖u(r)‖∞‖κ‖r,∞.
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Hence (33) implies that
∥∥Kn

(
I − Q

G
n

)
Knu

∥∥
∞ 6 2(c1)

2n−2r
∥∥(Knu

)(r)∥∥
∞‖κ‖r,∞

6 4(c1)
2n−2r(‖κ‖r,∞)2‖u‖∞. (36)

Again by (28) and (33) we get

‖Kn(K − Kn)u‖∞ 6 2‖κ‖0,∞‖(K − Kn)u‖∞
6 2c2n

−r‖κ‖0,∞‖κ‖r,∞‖u(r)‖∞. (37)

The result now follows immediately by combining (28), (35), (36) and (37). �

Theorem 8. Let QC
n : C [−1, 1] → Xn be the interpolatory projection and let z̃Gn be the iterated dis-

crete Kantorovich-collocation solution defined by (30). Assume that κ ∈ C r[−1, 1]2 and f ∈ C [−1, 1].
Then there exists a positive constant C independent of n such that

‖u− z̃Cn ‖∞ 6 Cn−r.

Proof. To prove the above bound we need to estimate the first term in the right hand side of (35).
Then rewrite it as

Kn(I − Q
C
n )Knu = (Kn − K )(I − Q

C
n )Knu+ K (I − Q

C
n )Knu

= (Kn − K )Knu+ (Kn − K )QC
n Knu+ K (I − Q

C
n )Knu

yields

‖Kn(I − Q
C
n )Knu‖∞ 6 ‖(K − Kn)Knu‖+ ‖(K − Kn)Q

C
n Knu‖∞ + ‖K (I − Q

C
n )Knu‖∞

According to [5], for any xn ∈ Xn and n > r

‖(K − Kn)xn‖∞ 6 2
√
2c3n

−r‖κ‖r,∞‖xn‖L2 , (38)

where c3 is a constant independent of n. Using (4),

‖QC
n Knu‖L2 6 p‖Knu‖L2

6 p
√
2‖Knu‖∞

6 2p
√
2‖κ‖0,∞‖u‖∞

Thus, replacing xn by QC
n Knu in (38),

‖(Kn − K )QC
n Knu‖∞ 6 8pc3n

−r‖κ‖r,∞‖κ‖0,∞‖u‖∞.

As in the proof of Theorem 4, we have by (33),

‖K (I − Qn)Knu‖∞ 6 max
s∈[−1,1]

‖κs‖L2‖(I − Qn)Knu‖L2

6 c1
√
2‖κ‖r,∞‖(Knu)

(r)‖L2n−r

6 2c1
√
2(‖κ‖r,∞)2‖u‖∞n−r.

and therefore
‖Kn(I − Q

C
n )Knu‖∞ 6 Cn−r.

Now, the above estimate together with (28), (37) and (35) gives the desired result. �
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5. Numerical results

In this section, numerical examples are given to illustrate the results obtained in the previous sections.
Note that, all required integrals were calculated by high precision with a 6-points Gauss quadrature rule.
Let Xn denote the space of polynomials of degree 6 n. The computations are done for n = 2, 3, 4, 5, 6.
We give the errors obtained by the discrete version of the Kantorovich method and its iterated version.
In the case of interpolatory projection we give also the error at the collocation points

max
06i6n

∣∣u(τi)− zCn (τi)
∣∣ = max

i

∣∣ui − zCn,i
∣∣.

Example 1. We choose the following Fredholm integral equation

u(s)−
∫ 1

−1
es+tu(t) dt = f(s), s ∈ [−1, 1],

where f(s) is selected so that u(s) = s. The results are given in Tables 1 and 2.

Table 1. Kantorovich–Galerkin method.

n ‖u− zGn ‖∞ ‖u− z̃Gn ‖∞
2 5.899404 × 10−2 1.097404 × 10−3

3 8.203238 × 10−3 1.697011 × 10−5

4 8.880388 × 10−4 1.685388 × 10−7

5 7.917584 × 10−5 1.164501 × 10−9

6 6.00258 × 10−6 5.918313 × 10−12

Table 2. Kantorovich–collocation method.

n ‖u− zCn ‖∞ max
i

|ui − zCn,i| ‖u− z̃Cn ‖∞
2 6.379192 × 10−2 1840809 × 10−3 2.306218 × 10−3

3 8.876835 × 10−3 3.440448 × 10−5 3.952963 × 10−5

4 9.528347 × 10−4 3.886120 × 10−7 4.268367 × 10−7

5 8426608 × 10−5 2.957577 × 10−9 3.164201 × 10−9

6 6.346108 × 10−6 1.624191 × 10−11 1.708989 × 10−11

Example 2. Consider

u(s)−
∫ 1

−1
sinh

(√
2s− 1

)
cosh(t− 1)u(t) dt = f(s), s ∈ [−1, 1], (39)

where f ∈ C [−1, 1] is so chosen that u(s) =
√
s+ 1 is a solution of (39). The results are given in

Tables 3 and 4.

Table 3. Kantorovich–Galerkin method.

n ‖u− zGn ‖∞ ‖u− z̃Gn ‖∞
2 8.451887 × 10−1 1.354237 × 10−2

3 1.317015 × 10−1 2.925557 × 10−4

4 2.433414 × 10−2 4.076094 × 10−6

5 2.430026 × 10−3 3.959971 × 10−8

6 3.069451 × 10−4 2.834041 × 10−10
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Table 4. Kantorovich–collocation method.

n ‖u− zCn ‖∞ max
i

|ui − zCn,i| ‖u− z̃Cn ‖∞
2 1.204256 × 10−0 2.718011 × 10−2 3.765520 × 10−2

3 1.983232 × 10−1 7.878248 × 10−4 9.625109 × 10−4

4 3.474807 × 10−2 1.352189 × 10−5 1.547839 × 10−5

5 3.593606 × 10−3 1.547379 × 10−7 1.705339 × 10−7

6 4.560129 × 10−4 1.269929 × 10−9 1.366404 × 10−9

6. Conclusion

The above tables illustrate that a high precision is reached even when the polynomials are of low degree
and even when the right hand side f is only continuous. Note that the size of the linear systems is
only n+1 and to obtain an accuracy of comparable order by piecewise polynomials a very much larger
linear system are needed to be solved. It should be mentioned that the analysis given in this paper
can be extended to the case of Green’s kernels or weakly singular kernels.
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Метод Лежандра–Канторовича для iнтегральних рiвнянь
Фредгольма другого роду

Аллуч К.1, Арраi М.1, Боуда Х.1, Тахрiчi М.2
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У цiй роботi розглядається полiномiальний метод Канторовича для чисельного
розв’язування iнтегрального рiвняння Фредгольма другого роду з гладким ядром.
Використовувана проекцiя є або ортогональною проекцiєю, або iнтерполяцiйною про-
екцiєю з використанням базису полiномiв Лежандра. Встановлено порядок збiжностi
запропонованого методу та порядок суперзбiжностi iтерацiйних версiй. Показано, що
цi порядки збiжностi справедливi у вiдповiдних дискретних методах, якi отриманi за-
мiною iнтеграла квадратурою. Для iлюстрацiї теоретичних оцiнок наведено числовi
приклади.

Ключовi слова: iнтегральне рiвняння Фредгольма, оператор проектування, полi-
ном Лежандра, суперзбiжнiсть, квадратурне правило, дискретний метод.
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