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In the present paper, we consider polynomially based Kantorovich method for the numer-
ical solution of Fredholm integral equation of the second kind with a smooth kernel. The
used projection is either the orthogonal projection or an interpolatory projection using
Legendre polynomial bases. The order of convergence of the proposed method and those
of superconvergence of the iterated versions are established. We show that these orders of
convergence are valid in the corresponding discrete methods obtained by replacing the in-
tegration by a quadrature rule. Numerical examples are given to illustrate the theoretical
estimates.
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1. Introduction

Consider the Fredholm integral equation defined on €[—1, 1] by

1
u(s) —/_ k(s,t)u(t)dt = f(s), —-1<s<1, (1)

1
where k is a smooth kernel, f is a real continuous function and w denotes the unknown function. The
projection, degenerate kernel and Nystrom methods are standard methods for finding numerical solu-
tions of equations of type (1) (see [1-3]). It is well known that to get better precision in these methods
in the case of piecewise polynomial approximation, the number of partition points should be increased.
Hence in such cases, we should solve a large system of linear equations, which is computationally
expensive.

The aim of this paper is to study the Kantorovich method and its discretized version to solve
equation (1) using global polynomial basis functions rather than piecewise polynomial basis functions
which reduces highly the size of linear system. In particular, Legendre polynomials can be used as
basis functions which have nice property of orthogonality and low computational cost.

In a number of recent papers, various polynomially based numerical methods for linear integral
equations were studied. The discrete Galerkin method using Legendre polynomials was introduced in
Golberg [4] and its iterated version was proposed in Kulkarni and Gnaneshwar [5]. The convergence
of the Legendre—Galerkin solution in the case of weakly singular kernels was considered in Panigrahi
and Gnaneshwar [6]. Moreover, the Legendre multi-projection as well as its iterated version were
studied in [7]. Other important results on the numerical solutions of nonlinear integral equations using
Legendre polynomials can be found in [8-10].

Now for a summary of the paper. In Section 2, the proposed method is defined and the linear
systems which need to be solved to obtain the approximate solutions are discussed. In Section 3,
the orders of convergence of the proposed method and its iterated version for both the orthogonal
projection and the interpolatory projection are obtained. In Section 4 we show that these orders of
convergence are preserved after taking into account the errors introduced by the numerical quadrature
rule. Numerical results are given in Section 5.

(© 2022 Lviv Polytechnic National University 471



472 Arrai M., Allouch C., Bouda H., Tahrichi M.

2. Method and notations

Let X, denote the space of all polynomials of degree < n defined on [—1,1]. Then the dimension of
X,, is n + 1, and the Legendre polynomials {Lg, L1, Lo, ..., L,} defined by
Lo(s) =1, Li(s)=s, se[-1,1],
(t+1)Lit1(s) = (2i + 1)sLi(s) —iLi—1(s), i=1,2,...,n—1
form an orthogonal basis for X,,. Since

2 . .
TN %i+1r =D
(L, L) { 0, i#)

then, an orthonormal basis for X,, is given by

{cpi(S) = /2 L(s):i=0,1,. n}

We use two types of projections from €[—1, 1] to X,.
Orthogonal projection. For u,v € €[—1, 1], the inner product is given by

1

1 1 1

(u,v) :/ u(t)v(t)dt and norm is |lul|z2z = </ u(t)zdt> .
~1 ~1

Let 7%u be the orthogonal projection operator defined from €'[—1,1] to X,,. Then for all u € €[-1, 1],

we have

n

WGUS: U, Pi)Pi\S),
(msu) (s) ZZ:; Pi)pi(s) -

<7r,?u,<p,-> = (u,;), 1=0,1,...,n.

Interpolatory projection. For u € €[—1,1], let w,? u denote the unique polynomial of degree n
satisfying

(7Su)(r) = u(m), i=0,1,...,m, (3)
where {70,71,...,7,} are zeros of the Legendre polynomial L, 1. In the Lagrange form, 7€ is
n
(mpu)(s) =Y ulm)l(s), s€l-1,1],
§=0

where /; is the unique polynomial of degree n that satisfies ¢;(7;) = d;;. Clearly, 7% is a linear operator
on €[—1,1], with the property (7¢)? = 7. It is therefore a projection, having as range the set X,.
Henceforth, we write W,Cf or ﬂg as 7y, and for the rest of the paper we assume that » > 1. The crucial

properties of 7, are given in the following lemma.

Lemma 1 (Golberg and Chen [11]). Let m,: ¥[—1,1] — X,, be the orthogonal or interpolatory
projection operator defined by (2) and (3). There exists a constant p > 0 independent of n such that
forn € N and u € €[—1,1],

[mnullr2 < pllul|zz, (4)
lu = mnul[r2 < (1 +p) inf flu— ¢z (5)
P€Xp
Moreover, for any u € €"[—1,1],
lu = mullz2 < ern”"lut | g2, (6)

<

lt = mnulloe < ern” T fu® o, (7)
3
4

where ¢; is a constant independent of n, 8 =
interpolatory projection.

for the orthogonal projection and = % for the
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Legendre—Kantorovich method for Fredholm integral equations of the second kind 473

The estimate (5) shows that ||lu — mul2 — 0 as n — oo for all u € €[—1,1], whereas the
estimate (7) imply that ||u — Tulle - 0 as n — oo, for any u € €"[—1,1].
Let J# be the integral operator defined by

1

(Hu)(s) = / K(s, ) u(t)dt, s € [-1,1]. (8)

-1

Thus, equation (1) can be writing in operator form as
(I—X ) )u=f. 9)
In the Kantorovich method [3,12], the integral equation (9) is approximated by
(I = T Jup = f, (10)
while the iterated solution is defined by
Up = H Uy + f (11)

and it converges to u at a faster rate than the approximation u,, does.
Writing the Kantorovich-collocation solution u$ obtained by using 7¢ as

= f+ Za, N —1,1],
equation (10) is equivalent to the following linear system of equations of size n + 1

Zaj/ k(Ti,t) €5 () dt = /1/€(Ti,t)f(t)dt, i=0,1,...,n. (12)

-1

Similarly, for the orthogonal projection, the Kantorovich—Galerkin solution of equation 10 is given by
=f+ Z biLi, se[-1,1]
and the coefficients b; are solutions of the linear system of equations

bz—ij<¢%/Lj,Lz>: <¢%/f,Lz>, z:O,l,,n (13)
7=0

In practice, the integrals in (2), (11), (12) and (13) are evaluated by an appropriate quadrature formula.
This issue will be treated more extensively in Section 4.

3. Convergence rates

Let p > 0 and k € €P[—1,1)2 then R(#) C ¢P[-1,1]. Thus, if f € ¥P[—1,1] then the exact solution
u of (1) belongs to €P[—1,1]. We set

i+ g

D" (s, t) = 4

5501 (s,t), |Ellpoc = max{|‘Di’j/<;|‘oo 14,5 =0,1,...,p}

and _
Jullpoe = masx {lu@ ooz j = 0,1,....,p}

The next theorem provides the error estimate between u,, and the exact solution w.
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Theorem 1. Assume that k € €"[—1,1]? and that the inverse of (I — ') exists and is uniformly
bounded. Then for a sufficiently large n, the operators (I — 7, # )" exist and

(1 —=mp )M < A (14)
for a suitable constant A independent of n. Moreover,

lu = | (2 = 702 )HI(T = 700) ]
< A|(1 = m,) A ul. (15)
Proof. Using the fact that ¢ is compact and ||.# — 7, % || — 0 pointwise in €[—1, 1], then from [1,

Lemma 12.1.4] the operator (I — 7, #")~! exists and is uniformly bounded.
For the estimate (15), multiply (I — % )u = f by m,, and then rearrange to obtain

(I —mp ) u=m,f + (u— mpu).
Subtract (I — m, 2 )u, = f to get

(I —mp X )(u—up) = (I —mp)(u— f),
= (I —mp)H u. (16)

Taking norms the result follows. ]

Throughout the paper, we assume that C' is a generic constant which is independent of n. Now,
we prove the theorem which establishes the rate of convergence of the approximation u,, to the exact
solution w.

Theorem 2. Assume that k € €"[~1,1]? and f € €[~1,1]. Let u, u, be the solutions of (10) and
(11) respectively. Then there exists a positive constant C' independent of n such that

u — tun|oo < CRP. (17)
Proof. From (7),
(2 — 7)o < 1”7 |(H 1) ®|oc,
< ern” |0 1o

Hence combining with (14) and (15) the estimate (17) is proved. n
The next theorem establishes the superconvergence of the iterated solution u, to the exact solu-
tion wu.
Theorem 3. Let @, be the iterated approximation of u. Assume that k € €"[—1,1]2. Then for n
large enough,
lu =@l <1 = A 7)1 (1 = 70)  u| (18)
Proof. From the definition of the solutions u,, 4, and estimate (16)

u— Uy =K (u—up)

= (T — 70, )71 — ) H w. (19)

Moreover, it is shown in [1, Chap. 3] that
(I — ) b =1+ (1 —mp ) '), (20)
(I —7mp )L =1+ 7, (1 — H ) A, (21)

which implies that

(I — 7))ty = (1 — Hmy) !
and therefore,

H (I =)V = (1 — Hm,) L x.

We now deduce the bound (18) from (19) and the above equality. [
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For the rest of the paper, we set
z=Hu and kKs(t) =k(s,t), s,tel-1,1].

Theorem 4. Let 715: ¥[-1,1] — X, be the orthogonal projection and let u§ be the iterated
Kantorovich-Galerkin solution defined by (11). Assume that k € €"[~1,1]2 and f € €[~1,1]. Then
there exists a positive constant C' independent of n such that

lu — @ oo < On2"

Proof. It follows from Theorem 3 that to estimate ||u — S| it is necessary to estimate |.# (1 —
7 ¢ u||. Using the fact that 7& is the orthogonal projection from €[—1,1] to X,,, we obtain for each
se[—1,1]

1

[ (1 — 7n) K u](s) = /_1 K(s,t)(z — Wgz) (t) dt,

= </€s - Wg"isyz —71'52;>,

Hence using the Cauchy—Schwarz inequality and (6),

|8 (1 = w Bl < s, = 2 = 182

< (™ g, I05all20 e

< 2(c1)? (1K llro0)* llullson ™"

This result, together with (18), completes the proof. |

Theorem 5. Let 7$: €[—-1,1] — X, be the interpolatory projection defined by (3) and let u§
be the iterated Kantorovich-collocation solution defined by (11). Assume that k € €"[-1,1]* and
f € €[—1,1]. Then there exists a positive constant C' independent of n such that

u =S loo <O (22)
Moreover, we have the following superconvergence estimate for uS at the collocation points

C —
(ax lu(mi) — uy, (13)| < Cn™".

Proof. Since .
[ (1 —78) Hu] (s) = / K(s,t) (z —7$2) (t)dt, se[-1,1],
-1
then, taking supremum and using the Cauchy—Schwarz inequality we get

Jo# (1= 7)< e lze = = 7

ClﬁHHHT’,OOHZ(T) | L2n™"

T

<
< 21 (|| llro0)? ulloon ™

Thus, by (18) the estimate (22) is proved.
Now, applying 7¢ to both sides of equations (10) and (11), we have that

7Cu, = 78S +7Cf
C~
= T, U,
and this yields

US(TZ) = ag(Ti)7 1=0,1,...,n.

Hence, the required result follows from (22). [
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Remark 1. According to (20) and (21), we can choose to show the existence of either (1 — 7, )~!
or (I — 2 m,)"t, whichever is the more convenient, and the existence of the other inverse will follow
immediately. Bounds on one inverse in terms of the other can also be given by using (20) and (21).

Remark 2. If the right hand side of the operator equation is less smooth than the kernel of the
integral operator, then it can be shown that the Kantorovich solution has a higher order of convergence
than the Galerkin/collocation solution. Also we can prove that the iterated Kantorovich method had
a faster convergence than the iterated Galerkin/collocation methods.

4. Discrete methods

In practice, the integrals in the definitions of .# and 7 involved in equations (2) and (8) are not
computed exactly. It is necessary to evaluate them by a numerical quadrature formula giving rise to
discrete and iterated discrete Legendre—Kantorovich methods, respectively. To introduce these discrete
methods, we consider a quadrature formula defined by

1 M
/ e wnf (1), (23)
- i=1

where the weights are such that
w; >0, 1=1,2,.... M

and the number of nodes is written simply M, with the dependence on n understood implicitly. We
suppose that this formula has precision 2n, that is

1 M
/1 Feydt =" wif(ti),
- i=1
for all polynomials of degree < 2n. As a consequence we have for any f € €"[—1,1], n > r (see [13])
1 M
/ 0= 3w ()
- i=1

where ¢ is a constant independent of n. Following Golberg [13]| and Sloan [14] the discrete inner
product is defined as

<en” |17

0o’

M
(foghwr =D wif(t)g(t), f.g€F[-1,1]. (24)
i=1
Let 2¢: ¢[-1,1] — X, be the hyperinterpolation operator defined by Sloan [14] as
250 =3 (u, o) rpi(s) (25)
=0

and satisfies

(2%, 01\ = (u, 0\, i=0,1,...,n.
The following crucial properties of 25 are quoted from Sloan [14] (see also [9]).
Lemma 2. Let 2% be the hyperinterpolation operator defined by (25). Then

HQSuHLQ < \/§||UH<>07
lu = 25l 12 < 2v2 jinf u = éllc.
Moreover, for any u € €"[—1,1],
Hu — QSuHLZ < cln_T’Hu(r)Hoo,

where ¢; is a constant independent of n and n > r.
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Note that for any u € €"[—1, 1], we have also (see [8])

Ju— 25, < crnH s > (20

where ¢; is a constant independent of v and n. Moreover, from [9] 2 satisfies
1
<u — ,@gu,u — Qg@fw < Cl\/in_THU(T)Hooy (27)

where ¢ is a constant independent of n and n > r.

¢ as 2,. Using the numerical

integration method (23), the Nystrom approximation of the integral operator .# is defined as

For our convenience, from now onwards we write 25 or 25 = =

M
(Hu)(s) =Y win(s,t;) u(ti).
i=1

The error bound (23) implies that for k € €"[—1, 1],
(" = Hn)ullo < C2n_TH"€”T’,OOHU(T)”007 (28)

where c5 is a constant independent of n. With the above notations, a discrete version of the approximate
equation (10) is defined by
(I — 2,20 = f, (29)

while the iterated discrete solution is given by
Zn = + f. (30)

Thus, the integral operator .# is replaced by %, and the orthogonal projection 7& is replaced by the

hyperinterpolation operator QS . Notice that in the case M = n + 1, and the quadrature points used
in discrete inner product (24) and the collocation nodes in (3) are the same i.e. 7,1 = t;, the operator
,@,Cf coincides with the interpolatory projection operator QS . Hence, to achieve the desired rates of
convergence of the regular solution ﬂg, we assume from now onwards that M > n + 1.

Now we establish the convergence rates for the approximate solutions.

Theorem 6. Assume that k € €"[-1,1)> and f € €[-1,1]. Let u, 2, be the solutions of (9) and
(29) respectively. Then there exists a positive constant C' independent of n such that

[u = zn[loo < Cn77, (31)

where v = 1 for the hyperinterpolation operator and ~v = % for the interpolatory projection.

Proof. We write
(I — 2, )u=2,f+ (u— 2yu)+ 2,(F — p)u.

Subtracting (I — 2, %,)z, = f, one can obtain

(u—zp) = (I — 2,26,) (I — 2,) X u+ 2,(H — J)ul,
= (I — 2,26)7 (I — 2,)Hu+ (K — Hp)ul. (32)

Taking norms, it follows from (15) that
[ = Znlloo < 2Amax {|[(1 = 2n)Hntloo, [|(H = Hn)ulloo} -

On other hand, since the quadrature formula has precision 2n > n > r > 1, choosing f(z) = 1 in (23)
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1 M
2= / ds = Zwi
-1 i=1

and using the fact that w; > 0, we obtain

M
87‘
()l = sup [(H) )] = sup (3w (s, tutt)
se[-1,1] se[-11] |7 ds
< 2|l 00 l2e]| oo (33)
Hence by (7) and (26), one can get
(2 = 2a) oo < c1n” " |(H1) ™ oo,
< 2en” [l oo [l oo- (34)
Now combining (28), (32) and (34), we obtain the error bound (31). [

Theorem 7. Let QS: €[—1,1] — X,, be the hyperinterpolation operator and let Z& be the iterated
discrete Kantorovich-Galerkin solution defined by (30). Assume that k € €"[—1,1]? and fe?[-1,1].
Then there exists a positive constant C' independent of n such that

u— 250 < Cn~2".
Proof. Using (30) and the fact that
u= (A — Jp)u+ Hpu+ f

we get

u—Zzp = (K — Jp)u+ Hp(u— zp).
Moreover, by (32)
U—Zn = (K — Hn)u+ Hn (1 — Dnitn) (1 — 2n) Hu+ (K — Hp)ul,
= (A = Jn)u+ (1 = 2o b)) ' [(1 = 2p) Hnu + (K — ).
Taking bounds,
lu = Zulloo < (14 24) max {|| A0 (1 — 2n) Anullco, (= Hn)ulloo, | (A = Hn)ulloc},  (35)

Using the orthogonality of 2%, Cauchy-Schwarz inequality and estimate (27), we obtain for s € [—1, 1]

| (I — 250 \— k(s,t;) (u — 25u) ()

< ")y

< -2 ms,u—QG >

(/18 — .,@g/is)(ti)(u — .,@nu) (t;)

- QS/{S, Kg — QSKQJ%M <u - QGu,u - QGu>

< 2(en)’n ™ oo |14l 00-
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Hence (33) implies that
|10 (1 = 20) ] < 2Aer)*n™"[| (Haw) 7 Il

<A(e)*n ™ (|6llr00)? - (36)

Again by (28) and (33) we get
[0 ( A = Hn)ulloo < 2[R 0,00 ll(HF = Hn)ulloo

< 2e2n ™" || lo,00 1]l o0 [ | oo- (37)

The result now follows immediately by combining (28), (35), (36) and (37). n

Theorem 8. Let 2¢: ¢[—1,1] — X, be the interpolatory projection and let Z& be the iterated dis-
crete Kantorovich-collocation solution defined by (30). Assume that k € €"[—1,1]? and f € €[-1,1].

Then there exists a positive constant C' independent of n such that

lu =27 lloo < Cn7"

Proof. To prove the above bound we need to estimate the first term in the right hand side of (35).

Then rewrite it as

(1 — 25 A = (o — H)1 = 25) Hu+ H (1 — 20) A

= (M — A ) Hu + (S — H) 2 Hu + H (1 — 25) A

yields

1 (1 = 20) oo < N(H — ) Hnull + |(H — H) 25 Hnulloo + |17 (1 = 27) Hull oo

According to [5], for any z, € X,, and n > r
1(# — Hn)anlloo < 2v2en7" (|l oozl 2,
where c3 is a constant independent of n. Using (4),
125 Al 12 < pllAnull e
< V2| o
< 2pV2| .00l
Thus, replacing x,, by 29 #,u in (38),
(A — )25 Ao < 8pesn™ ||Klr,so I 0,00l ullo-

As in the proof of Theorem 4, we have by (33),

1 (1 = 2n) Apulloo < max ||| L2 [|(1 = Zn)Hnul| >

se[—1,1]

< Cl\/EH’{Hr,ooH(f%/nu)(r) HLQn_T
< 261 V2([|llr00) [l con ™"

and therefore

1A (1 = 27) Ao < O

Now, the above estimate together with (28), (37) and (35) gives the desired result.
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5. Numerical results

In this section, numerical examples are given to illustrate the results obtained in the previous sections.
Note that, all required integrals were calculated by high precision with a 6-points Gauss quadrature rule.
Let X, denote the space of polynomials of degree < n. The computations are done for n = 2,3,4,5,6.
We give the errors obtained by the discrete version of the Kantorovich method and its iterated version.
In the case of interpolatory projection we give also the error at the collocation points

max
0<i<n

lu(m;) — z,(f(n)‘ = max |u; — 2C
7

n,i"

Example 1. We choose the following Fredholm integral equation

1
u(s) — / eSThu(t) dt =

-1

f(8)7 s € [_171]7

where f(s) is selected so that u(s) = s. The results are given in Tables 1 and 2.

Table 1. Kantorovich—Galerkin method.

lu — 2]l

= 2]l

n
2
3
4
5
6

5.899404 x 102
8.203238 x 1073
8.880388 x 1074
7.917584 x 107°
6.00258 x 106

1.097404 x 1073
1.697011 x 10>
1.685388 x 1077
1.164501 x 1072
5.918313 x 10~ 12

Table 2. Kantorovich—collocation method.

lu = 27l

m?X|Ui —zgi|

e = 27l

D U W N 3

6.379192 x 102
8.876835 x 1073
9.528347 x 104
8426608 x 107°
6.346108 x 106

1840809 x 1073
3.440448 x 1075
3.886120 x 10~ 7
2.957577 x 107°
1.624191 x 10~

2.306218 x 103
3.952963 x 107°
4.268367 x 1077
3.164201 x 107?
1.708989 x 101

Example 2. Consider

1
u(s) — / sinh (v2s — 1) cosh(t — 1) u(t)dt = f(s),

-1

se[-1,1], (39)

where f € ¥[—1,1] is so chosen that u(s) = v/s+ 1 is a solution of (39). The results are given in

Tables 3 and 4.

Table 3. Kantorovich—Galerkin method.

v — 2]l

= 2]l

D U W NS

8.451887 x 107!
1.317015 x 107!
2.433414 x 1072
2.430026 x 103
3.069451 x 104

1.354237 x 1072
2.925557 x 1074
4.076094 x 1076
3.959971 x 108
2.834041 x 10710
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Table 4. Kantorovich—collocation method.

il e = 27 lloo

1.204256 x 1070 2.718011 x 10~2 3.765520 x 102
1.983232 x 10~!  7.878248 x 10~* 9.625109 x 10~*
3.474807 x 1072 1.352189 x 10~° 1.547839 x 10~°
3.593606 x 1073  1.547379 x 107 1.705339 x 10~7
4.560129 x 10~%  1.269929 x 1079 1.366404 x 10~

e = 27 lloo max u; — 2,
1

S Otk w3

6. Conclusion

The above tables illustrate that a high precision is reached even when the polynomials are of low degree
and even when the right hand side f is only continuous. Note that the size of the linear systems is
only n+ 1 and to obtain an accuracy of comparable order by piecewise polynomials a very much larger
linear system are needed to be solved. It should be mentioned that the analysis given in this paper
can be extended to the case of Green’s kernels or weakly singular kernels.
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MeTtop Jlexxanpgpa—KaHTopoBuyia gnsa iHTerpasbHUX pPiBHSIHb
®dpenronbma Apyroro poay

Ay K1, Appai M.!, Boyaa X.!, Taxpiuai M.?

! Vuisepcumem Moxammeda I, Team MSC, FPN, Jla6opamopia LAMAQ, Hadop, Mapokko
2 Vuisepcumem Mozxammeda I, Team ANAA, EST, Jlabopamopis LANO, Yocda, Mapoxko

YV miit poboTi po3rIAmacTbest HoJiHOMIiaNBHUN MerTon KaHTOpoBHMYA IS IHCEBHOTO
pO3B’si3yBaHHs iHTerpajbHOro piBHsHHS DpenrospbMa Apyroro poiy 3 IVIAIKAM SIPOM.
BukopucroByBana mpoexiiisi € a00 OpTOrOHAJIBLHOIO ITPOEKITIEI0, a0 IHTEPIOMIIIHHOIO TTPO-
eKIIi€I0 3 BUKOPUCTAHHAM Oa3ucy noJrinomis Jlexkamapa. Beranosiieno mopsiok 36iKHOCTI
3aIIPOIIOHOBAHOIO METOJIY Ta MOPSIOK Cymep36izKHOCTI iTepariiitnnx Bepciit. [lokazamo, mo
11l TOPSAIKK 3012KHOCTI CIIpABEJINBI y BIITOBITHUX JUCKPETHUX METO/IaX, siki OTPUMAH] 3a~
MiHOIO iHTerpaJia KBaJaparyporo. s LrrocTparllili TEOpeTUIHNX OIIHOK HaBEJIEHO UHCJIOB1
[IPUKJIA .

Knto4oBi cnoBa: inmezpasvre pishanms Ppedeosvma, onepamop npoexmyearts, noii-
nom Jleotcandpa, cynep3bioicnicmy, keadpamypre npasuao, duckpemmnuts memod.
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