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Systems of nonsmooth equations are very useful in the study of nonlinear complementar-
ity problems, variational inequality problems, bilevel programming problems, and arise
in the mathematical modeling of many problems in chemical processing, mechanics and
engineering. In this paper, we introduce a hybrid method for solving systems of nons-
mooth equations, which combines the idea of Levenberg–Marquardt–type methods with
bundle techniques, while avoiding the hypothesis of differentiability of the least squares
merit function. Some numerical results comparing the proposed method with LP-Newton
method indicate that the improved Levenberg–Marquardt algorithm works quite well in
practice. As an application of the proposed algorithm, we consider the multi-stream heat
exchanger network problem, where a heat exchange network must be designed to meet a
specified exit temperature for a given set of streams.
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1. Introduction

Consider the following system of nonsmooth equations

F (x) = 0, (1)

where F : Rn → R
m is supposed to be locally Lipschitz continuous (not necessarily smooth nor con-

vex). There has been a growing interest in the study of nonsmooth equations, which arise from
many applications, such as nonlinear complementary problems, variational inequality problems, bilevel
programming problems, and arises for examples in process engineering, mechanics and equilibrium
problems in economics (see, for example, [1, 2] and references therein).

As a result, solving a system of nonsmooth equations has become one of most active research
directions in mathematical programming. There exist many methods for solving systems of nons-
mooth equations, such as Newton–type methods [3, 4], Trust–region–type methods [5–7], Levenberg–
Marquardt–type methods [8, 9]. However, there are some drawbacks in the first and second type of
methods, as pointed out in [6, 10]. We are interested in Levenberg–Marquardt algorithms for solving
nonsmooth equations, which are one of the most efficient methods, due to their superior numerical
performances and theoretical results.

It is well known that the system of nonsmooth equations is equivalent to a least squares problem,
whose minimizer is zero. In the case where the function F in the system (1) is nonsmooth but the
least squares merit function ‖F (x)‖2 is continuously differentiable, the works mentioned above can
be applied to solve this kind of nonsmooth system. However, in some cases such as solving semi-
infinite programming or variational inequality, the mapping F involved in the system (1) has not
this feature, hence the mentioned methods cannot be applied directly. To the best of our knowledge,
there are few papers devoted to this situation [11, 12]. To overcome this difficulty, in this paper, we
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propose a hybrid method for solving systems of nonsmooth equations, which combines the idea of
Levenberg–Marquard–type methods with bundle techniques. The basic idea of bundle techniques is to
use the information from the previous iterations. Therefore, this information is gathered into a bundle
providing an approximation for the subdifferential of the merit function.

One motivation to study systems of nonsmooth equations comes from the very important “multi-
stream heat exchanger network” problems. Multistream heat exchanger is a heat-transfer equipment
that allows multiple hot and cold streams to exchange heat simultaneously and is mainly used in
energy intensive cryogenic processes, including air separation, natural gas processing, liquid hydrogen,
petrochemicals and liquefied natural gas, etc; see, for example, [13–15].

The structure of the paper is as follows. In Section 2, we introduce the bundle Levenberg–Marquardt
method for nonsmooth equations. Preliminary numerical results are reported in Section 3. An ap-
plication to “multi-stream heat exchanger network” problems is given in Section 4. Finally, Section 5
concludes the paper and presents our perspectives.

2. Bundle Levenberg–Marquardt method

As mentioned in the introduction, when the system (1) has a solution, it is equivalent to the following
least squares problem, whose minimum is zero

minψ(x) :=
1

2
‖F (x)‖2,

s.t. x ∈ R
n.

(2)

It is worth noting that, since F (x) is nonsmooth, the problem (2) may still be nonsmooth. In this
case, gradient-based methods cannot be applied directly. Throughout this paper, we assume that the
merit function ψ is locally Lipschitz continuous but not necessarily smooth.

For a system of smooth equations, the Levenberg–Marquardt (LM) method is known to be an
efficient solution method. For an arbitrary starting point x0 ∈ R

n, the LM method generates a
sequence {xk} by setting xk+1 equal to the solution of the following subproblem

min qk(x),

s.t. x ∈ R
n,

with

qk(x) :=
1

2
‖F (xk) +Gk(x− xk)‖2 +

1

2
νk‖x− xk‖2

= ψ(xk) + 〈∇ψ(xk), x− xk〉+
1

2
〈(Qk + νkI)(x− xk), x− xk〉 ,

where ∇ψ(xk) = G⊤
k F (xk), Qk = G⊤

k Gk, Gk is the Jacobian matrix of F at xk and νk is the Levenberg–
Marquardt parameter. However, this approach cannot be applied in the nonsmooth case, as the
gradient of the merit function does not exist in general. The objective of this paper is the construction
of a nonsmooth Levenberg–Marquardt–type algorithm to solve the problem (1).

Let us consider the function ϕk(x) defined by ϕk(x) := ψ(xk) + 〈∇ψ(xk), x− xk〉. To deal with
nonsmoothness of the merit function ψ, we may redefine the function ϕk(x) as follows:

ϕk(x) := ψ(xk) + ψ◦(xk;x− xk)

= max
ξ∈∂ψ(xk)

{ψ(xk) + 〈ξ, x− xk〉} .
Actually, this can be impractical in the case where no explicit expression for the Clarke subdifferential
∂ψ is known [16].

To overcome this disadvantage, we may use subgradients from previous iterations. These subgradi-
ents are collected into a bundle providing an approximation for the subdifferential of the merit function.
In addition to the iteration points xk ∈ R

n, we assume that we have at our disposal some auxiliary
points yi ∈ R

n from past iterations and the corresponding subgradients ξi ∈ ∂ψ(yi), for i ∈ Ik, where
the index set Ik is typically a nonempty subset of {0, 1, . . . , k}. The auxiliary point yk+1 is determined

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 547–554 (2022)



An improved Levenberg–Marquardt method for nonsmooth equations with application . . . 549

by solving the following subproblem

min qk(y) := ϕk(y) +
1

2
〈(Qk + νkI)(y − xk), y − xk〉,

s.t. y ∈ R
n.

(3)

Here, Qk := G⊤
k Gk, with Gk is an element of the Clarke generalized Jacobian of F at xk [16], νk > 0

is the Levenberg–Marquardt parameter and ϕk(y) is defined by the following expression:

ϕk(y) = max
i∈Ik

{
ψ(xk) + 〈ξi, y − xk〉 − βki

}
.

The term βki is the displacement related to the auxiliary point yi defined as follows:

βik = max
{
0, ψ(xk)− ψ(yi) + 〈ξi, yi − xk〉, γ ‖yi − xk‖2

}
,

with γ > 0 is a parameter to be selected in the algorithm. It is worth observing that the problem (3) is
still nonsmooth. However, with an additional variable α ∈ R, the problem can equivalently be written
as

minα+
1

2
〈(Qk + νkI)(y − xk), y − xk〉,

s.t. ψ(xk)− βik + 〈ξi, y − xk〉 6 α, i ∈ Ik.
(4)

In the above subproblem, we choose the LM parameter as follows:

νk := µ‖F (xk)‖δ , where δ ∈ [1, 2], µ > 0.

After the new auxiliary point yk+1 is determined, we have to decide whether it should be accepted
as the new iterate xk+1 or not. For a fixed parameter 0 6 γ 6 1, the decision is as follows: if

ψ(xk)− ψ(yk+1) > η (ψ(xk)− qk(yk+1)) , (5)

then yk+1 is accepted to become xk+1. A step satisfying condition (5) is called a serious step. On the
other hand, if condition (5) is not satisfied, then yk+1 is rejected and such a step is called a null step.
In that case, we compute a new subgradient ξk+1 of the merit function ψ at yk+1, and add it to the
bundle in order to improve our working model.

The iteration is terminated if
ψ(xk)− qk(yk+1) 6 ε, (6)

where ε > 0 is a final accuracy tolerance supplied by the user.
We describe the complete algorithm of the proposed bundle Levenberg–Marquardt method as fol-

lows.

Algorithm 1 Bundle Levenberg–Marquardt method

Step 0. Choose a starting point x0, a final accuracy tolerance ε > 0 and parameters η, µ, δ such that η ∈ (0, 1),
µ > 0, δ ∈ [1, 2]. Set y0 = x0, ξ0 ∈ ∂ψ(y0), β0

0 = 0, I0 = {0} and k := 0.
Step 1. If ‖F (xk)‖ = 0, then stop. Otherwise, go to the step 2.
Step 2. Set νk = µ‖F (xk)‖δ and find a new auxiliary yk+1 by solving the following subproblem

minα+
1

2
〈(G⊤

k Gk + νkI)(y − xk), y − xk〉

s.t. ψ(xk)− βi
k + 〈ξi, y − xk〉 6 α, i ∈ Ik,

where Gk ∈ ∂F (xk) and νk is the Levenberg–Marquardt parameter.
Step 3. If ψ(xk)− qk(yk+1) 6 ε, then stop. Otherwise, go to Step 4.
Step 4. If

ψ(xk)− ψ(yk+1) > η (ψ(xk)− qk(yk+1))

set xk+1 = yk+1, and Ik+1 = J k ∪ {k + 1}, where J k ⊆ Ik (serious step). Otherwise, set xk+1 = xk and
Ik+1 = Ik ∪ {k + 1} (null step).

Step 5. Compute ξk+1 ∈ ∂ψ(yk+1) and βk+1
j for j ∈ Ik+1, and set k = k + 1. Go to Step 1.
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Remark 1. Note that, since the merit function ψ is assumed to be locally Lipschitz continuous in
this paper, then a arbitrary subgradient ξ of the merit function at point x is calculated as ξ = G⊤F (x)
for all G ∈ ∂F (x), by using the standard calculus rules [16].

3. Numerical results

In this section, we present some numerical results in order to confirm the effectiveness of the proposed
algorithm. We tested Algorithm 1 on some systems of non-smooth equations collected from the lit-
erature, and compared it with the LP-Newton presented in [17]. All implementations were done in
MATLAB R2016a. The parameters used were as follows:

η = 10−4, ε = 10−10, µ = 0.1 and δ = 2.

The subproblem to compute the auxiliary point yk+1 requires minimizing a quadratic cost function
subject to linear constraints. In order to solve this subproblem efficiently, the Matlab function fmincon
was used.

In our experiments, we considered the following seven problems (P1–P7), where P1, P2 and P3 are
taken from [18], P4, P5 and P6 are taken from [19], and Problem P7 is taken from [20]. Problem P7
is scalable in the sense that it can be defined with different numbers of variables n.

P1. Let F (x) = (F1(x), F2(x))
⊤, where

F1(x) = |x1|+ (x2 − 1)2 − 1,

F2(x) = (x1 − 1)2 + |x2| − 1.

P2. Let F (x) = (F1(x), F2(x))
⊤, where

F1(x) = (x2 − x1) ln[(x2 − x1)
2 + 1] + x2 − x1,

F2(x) =





− exp (−x1 − x2) + 1 for x2 > 0,
1− exp (−x1)

1− x2
for x2 6 0.

P3. Let F (x) = (F1(x), F2(x))
⊤, where

F1(x) = min{x1, 2x1 + x22 − 6},
F2(x) = min{x2,−x21 + 4x1 + 0.5x2 − 3}.

P4. Let F (x) = (F1(x), F2(x), F3(x))
⊤, where

F1(x) = min{x1, x1 − 2},
F2(x) = min{x2, x2 − x3 + x32 + 3},
F3(x) = min{x3, x2 + x3 + 2x33 − 3}.

P5. Let F (x) = max{x,Mx+ q}, where

M =




1 2 2 . . . 2
1 2 . . . 2

1 . . . 2
. . .

...
2




and q =




−1
−1
−1
...

−1



.

P6. Let F (x) = (F1(x), F2(x), F3(x), F4(x))
⊤, where

F1(x) = min{x1, 3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6},
F2(x) = min{x2, 2x21 + x1 + x22 ++10x3 + 2x4 − 2},
F2(x) = min{x3, 3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9},
F3(x) = min{x4, x21 + 2x22 + 2x3 + 3x34 − 3}.
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P7. Let F (x) = (F1(x), . . . , Fn(x))
⊤, where

Fi(x) = xi − sin |xi|, i = 1, . . . , n.

The numerical results for considered algorithms are listed in Table 1. With regard to this table, n
indicates the dimension of the test-problem, “iter” and “time” represent the number of iterations and
the elapsed CPU time in seconds, respectively.

Table 1. Number of iterations, CPU time in seconds and norm of the residual
at the stopping point for Algorithm 1 and the LP-Newton method.

Problem n
Algorithm 1 LP-Newton method

iter time ‖F (xk)‖ iter time ‖F (xk)‖
1 2 8 0.39 2.22e-16 10 1.16 1.02e-11
2 2 3 0.27 6.21e-14 7 1.09 8.37e-11
3 3 9 0.43 1.19e-16 10 1.19 4.44e-15
4 2 7 0.40 5.74e-12 9 1.16 2.57e-11
5 8 4 0.30 2.88e-15 16 1.23 8.05e-12
6 4 9 0.32 3.66e-13 12 1.19 4.53e-11
7 10 5 0.29 9.97e-12 7 1.17 2.63e-11
7 50 5 0.31 4.39e-12 7 1.18 2.63e-11
7 100 5 0.31 4.98e-12 7 1.21 2.63e-11
7 200 5 0.36 8.61e-12 7 1.20 2.63e-11
7 500 5 0.53 3.11e-16 7 1.41 2.63e-11

As seen in Table 1, the number of iterations and the CPU time of Algorithm 1 is less than that
of the LP-Newton method. This further confirms that the efficiency and robustness of our proposed
algorithm.

4. Nonsmooth multistream heat exchanger model

The nonsmooth multistream heat exchanger (MHEX) model developed by Watson et al. [21] is a
natural generalization of the classical two-stream countercurrent heat exchanger model. A schematic

MHEX

mCpH,1|T
IN

H,1

mCpH,nH
|T IN

H,nH

mCpH,1|T
OUT

H,1

mCpH,nH
|TOUT

H,nH

mCpC,1|T
IN

C,1

mCpC,nC
|T IN

C,nC

mCpC,1|T
OUT

C,1

mCpC,nC
|TOUT

C,nC

Fig. 1. A multistream heat exchanger with nH hot streams
and nC cold streams.

representation of its combined configu-
ration is shown in Fig. 1, in which nH
hot streams exchange heat with nC cold
streams. Here, each hot stream i ∈
{1, . . . , nH} has a constant molar heat ca-
pacity flowrate mCpH,i, enters at temper-
ature T IN

H,i, and exits at temperature TOUT
H,i

(with T IN
H,i > TOUT

H,i ). Similarly, each cold
stream j ∈ {1, . . . , nC} has a constant mo-
lar heat capacity flowrate mCpC,j, enters
at temperature T IN

C,j , and exits at temper-

ature T IN
C,j (with T IN

C,j 6 TOUT
C,j ).

The formulation of the nonsmooth MHEX model is given by Eqs. (7) and (8), which represent the
energy balance and the second law requirement that heat flows from hot to cold, respectively.

QH +

nH∑

i=1

mCpH,i
(
T IN
H,i − TOUT

H,i

)
−QC −

nC∑

j=1

mCpC,j
(
TOUT
C,j − T IN

C,j

)
= 0, (7)

min
p∈P

{
EBPpC − EBPpH

}
= −QC, (8)

where P is the index set of pinch point candidates, QH is the heat load of the heating utilities, QC is
the heat load of the cooling utilities, and EBPpH/C are the enthalpies of extended hot/cold composite
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curves for pinch point candidate p, evaluated from the following expressions:

EBPpH :=

nH∑

i=1

mCpH,i

[
max

{
0, T p − TOUT

H,i

}
−max

{
0, T p − T IN

H,i

}
−max

{
0, TMIN

H − T p
}

+max
{
0, T p − TMAX

H

} ]
, ∀p ∈ P,

EBPpC :=

nC∑

j=1

mCpC,j

[
max

{
0, (T p −∆TMIN)− T IN

C,j

}
−max

{
0, (T p −∆TMIN)− TOUT

C,j

}

+max
{
0, (T p −∆TMIN)− TMAX

C

}
−max

{
0, TMIN

C − (T p −∆TMIN)
} ]
, ∀p ∈ P,

where ∆TMIN is the minimum approach temperature and TMAX
H/C and TMIN

H/C are the maximum and

minimum temperatures of the hot/cold streams in the heat exchanger, respectively. All pinch point
candidates with temperatures T p are defined by their hot stream temperature:

T p :=

{
T IN
H,i, ∀p = i ∈ {1, . . . , nH},
T IN
H,j +∆TMIN, ∀p = j ∈ {1, . . . , nC}.

Note that Eq. (7) is clearly differentiable and Eq. (8) includes the max function which is nondifferen-
tiable. The resulting system is thus a nonsmooth system.

Case study. Consider the process data in Table 2 for two hot streams and two cold streams in a
MHEX. The minimum approach temperature ∆TMIN is specified as 10 ◦C. We consider the special case
of a MHEX where external utilities are not present (QH = 0 and QC = 0). We use Algorithm 1 to solve
the system consisting of Eqs. (7) and (8) with the unknown temperatures x1 := TOUT

H,1 and x2 := TOUT
C,2 .

From the starting point x0 = (80, 230). Algorithm 1 converges to the solution xopt = (120, 205) after
6 iterations, while the LP-Newton method converges to the same solution after 66 iterations. The hot
and cold composite curves at the solution xopt are depicted in Fig. 2.

Table 2. Data of process streams.

Stream Name T IN
H/C (◦C) TOUT

H/C (◦C) mCpH/C (MW ◦C−1)

H1 250 40 0.15
H2 200 x1 0.25
C1 20 180 0.20
C2 140 x2 0.30
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Fig. 2. The hot and cold composite curves at the solution.
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5. Concluding remarks

This paper discusses the solution of systems of nonsmooth equations. First, we have proposed a
hybrid method for solving nonsmooth equations, which combines the idea of Levenberg–Marquard–
type method with bundle techniques, while avoiding the hypothesis of differentiability of the least
squares merit function. Second, some numerical results are given indicating a good behavior of the
proposed algorithm compared to the LP-Newton method. Finally, we have applied the proposed
method to solve the nonsmooth multi-stream heat exchange model, guaranteeing the feasibility of heat
exchange.

There are several important issues worth studying in the future research, the first is to prove the
convergence rate of the proposed algorithm, and the second is to extend the algorithm for solving
systems of constrained equations. Also, applying the algorithm to simultaneous multiple resources
integration in process systems engineering is an interesting work. These points are subject to ongoing
research and will be addressed in a forthcoming paper.
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Удосконалений метод Левенберга–Марквардта для негладких
рiвнянь iз застосуванням до багатопотокових теплообмiнникiв

Ель Мудден М.1, Бенджеллон С.1, Чкiфа А.1, Фаузi Х.2

1Моделювання, симуляцiя та аналiз даних (МСАД),
Полiтехнiчний унiверситет Мохаммеда VI, Бенгерiр, Марокко

2Кафедра прикладної математики та теоретичної фiзики (КПМТФ),
Кембриджський унiверситет, Великобританiя

Системи негладких рiвнянь дуже кориснi для вивчення нелiнiйних задач доповню-
ваностi, варiацiйних нерiвностей, задач дворiвневого програмування та виникають
пiд час математичного моделювання багатьох задач хiмiчної обробки, механiки та
технiки. У цiй роботi вводимо гiбридний метод розв’язування систем негладких рiв-
нянь, який поєднує iдею методiв типу Левенберга–Марквардта з методами розшару-
вання, уникаючи при цьому гiпотези про диференцiйовнiсть оцiночної функцiї най-
менших квадратiв. Деякi чисельнi результати порiвняння запропонованого методу
з ЛП-методом Ньютона свiдчать про те, що вдосконалений алгоритм Левенберга–
Марквардта досить добре працює на практицi. Як застосування запропонованого ал-
горитму розглянуто задачу мережi багатопотокових теплообмiнникiв, де теплообмiн-
на мережа повинна бути спроектована так, щоб вiдповiдати заданiй температурi на
виходi для заданого набору потокiв.

Ключовi слова: системи негладких рiвнянь, метод Левенберга–Марквардта, ме-
тоди розшарування, багатопотокова теплообмiнна мережа, теплообмiн.
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