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The chaos attractor is a system of ordinary differential equations which is known for
having chaotic solutions for certain parameter values and an initial condition. Research
conducted in the current work establishes a backward difference algorithm to study these
chaos attractors. Different types of chaos mapping, namely the Lorenz chaos, ’sandwich’
chaos and ’horseshoe’ chaos will be analyzed. Compared to other numerical methods,
the proposed backward difference algorithm will show to be an efficient tool for analyzing
solutions for the chaos attractors.

Keywords: applied mathematics, backward difference, chaos attractor, variable order
step size.
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1. Introduction

A chaotic attractor is a type of attractor which shows to be sensitive to the change of initial conditions.
One of the most prominent chaotic attractors is Lorenz attractor. The derivation of Lorenz attractor
dates back to 1963, when an American mathematician and also meteorologist, Edward Lorenz in [1]
constructed system of ordinary differential equations (ODEs) for modeling atmospheric. Due to a
slight round-off error in his effort to simulate weather patterns, Lorenz learned that the smallest of
changes in the initial conditions can produce massive changes in the long-term outcome. This concept
later lead to the coined phrase, “butterfly effect”. Since then, many researchers have been studying
the effects parameters and initial conditions have on chaos attractor. Among them includes finding
analytical solutions by authors such as [2-8] and numerical solutions in works of [9-13].

The analysis presented in [1] provides the following system of ODEs which is now widely known as
Lorenz attractor:

f1(t) = o(fa(t) — f1(t)),
fo(t) = pfr(t) — fr(t) — f1(t) f3(t),
f3(t) = f1(t) f2(t) — Bf3(t).

The general parameters provided in Lorenz attractor o, p, and 3, where ¢ are Rayleigh numbers,
p are Prandtl numbers and 8 parameters greater than 0. The equations of Lorenz attractor generally
relates to the properties of a two-dimensional fluid layer. This takes into account that its uniformly
warmed on the top and cooled at the bottom. Specifically, these equations denote three different rates
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of changes with respect to time. fi(¢) is proportional to the rate of convection, f5(¢) is horizontal
temperature variation, f4(t) is vertical temperature variation.

The current study analyses different types of Lorenz attractor using a multistep method. Here, a
variable order step size (VOS) algorithm adopted from Krogh [14] and formulated using a backward
difference variation of the Adam—Bashforth—-Moulton predictor—corrector formula will be used to ap-
proximate and analyze Lorenz attractor. Following the works, of [15], this study uses an order step
size criteria that will be elaborated in the upcoming sections. For recent studies that adopts variable
order step size algorithm, readers may refer to the following articles [16-21].

2. Predictor—corrector formulation

Adams Bashforth method was conceived in [22] when Adam proposed using multiple approximated
previous solution to approximate the current solution. This was followed by an observation made
by Moulton in [23| which revolutionized the multistep method. This inspired evolution of multistep
numerical methods for solving ODEs. In this research, we refer to the works of Suleiman [24]. In [24],
Suleiman developed of direct method solving higher order ODEs directly which then initiated the wave
of research conducted by Malaysian researchers such as [25-30].

The current research refers to Rasedee [29] variable order step size (VOS) algorithm. In [29],
the established a variation the VOS algorithm formulated using backward difference method. The
foundation of the proposed VOS algorithm backward difference formulation is a predictor—corrector
method modeled by Adams—Bashforth—-Moulton’s method using a set of explicit and implicit coeffi-
cients. Adams—Bashforth—-Moulton method was conceived by Moulton in [23], when he realized that
the explicit and implicit set of coefficients could be used together in tandem.

To formulate the predictor-corrector algorithm, consider a general initial value problem (IVP) in
the form of a non-stiff ODE which is denoted by

fr=0(tf) (1)
with initial condition,
fla) =mn.

Equation (1) is integrated from 0 to 1 and —1 and 0 for predictor and corrector respectively as
follows:
e predictor:

1
fyltns) = £(ta) + 1 [ 6t ).
0
e corrector:

0
fc(tn+1) = f(tn) + h/_l ¢(t, f) dt.

This is then followed by approximating ¢(¢, f) by Newton Gregory polynomial

k—1
(5 oy t—ti
Pl(t) = Z (_1)j < '8> VJQSZ'? s = B 1=n,n+ 17

j=0 /

when 7 = n denotes the predictor polynomial and ¢ = n + 1 denotes the corrector polynomial. This
yields the following approximation,
k—1

f(tnsr) = f(tn) + hZial,jvj¢ia t=n,n+1,
=0

where the integration coefficients can be represented by the following integrals:
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wang =1 () ¢
vy =7 [ () s )

The set of coefficients can be obtained by solving the integrals in (2) and (3). Techniques used for
solving these integrals and obtaining the coefficients, are similar to those in [32,33] and [34].

e explicit:

e implicit:

3. Varying the order and step size

There are various techniques for varying the order and step size of a numerical. When developing
a variable order and step size algorithm, certain restrictions must be consider because the drawback
of unchecked increasing of order or step size is the loss of accuracy. Hence, the key for a successful
VOS technique is knowing when to increase or decrease the order or step size without effecting the
accuracy. In this case, an effective acceptance criteria is crucial. An effective acceptance criteria
will allow for changes in the order and step size but within the required accuracy. Here, we refer
to the works of Rasedee [29] where the estimated error, Errp must satisfy the local requirements
@n+1\ErrZ_p | < TOL, where © — W&rl” where A and B the type of error test whether it is absolute,
relative or mixed error test.

Varying the order in a multistep method is relatively simple. Note that implementing a variable
order algorithm directly correlates with the number of back values stored. Changing the order of
methods is done by simply discarding back values of the precious step to reduce the order and adding
the number of back values to increase the order. As mentioned in Suleiman [24], when dealing with
non-stiff ODEs the optimum amount of back values is limited to k = 12.

As shown in previous literatures, there are a few techniques to a variable step size algorithm. For
the purpose of the current work, authors adopted techniques designed by Krogh [31].

Doubling the step size in the algorithm might seem unnecessary since the previously computed
values @(,—2), P(n—a); - - - » P(n—2k+2) can be used as the new back value but, [31] mentioned that the
practice of such technique is less accurate compared to the technique proposed in this research.

Table 1. Doubling the stepsize.

| j=1 j=2 j=3
Al | Vi (2V = V2)g
A2 | V26 (V2 —V3)¢; (4V2 —4V3 + VH)pin
A3 | V3¢, (2V3 — V)¢, (4V3 — 4V4) ¢, (8V3 — 2V*4)¢;
Ad | Vg 2V4¢; AV4e; 8V, 16V4¢;

Table 2. Halving the step size.

| Jj=1 j=2 ji=3
AL Vo 3Vie (Ve Lvig, Lvig,
A3 | Voo GVP+EVhe (VP +§VYe (V3 + HVe:
A2 | V2o 3V + V3 + Ve, (AV? — 4¥3 + V)
AT Vo (3Y + V24 5V 4 V) o
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4. Numerical results and analysis

There are different types of possible chaotic flow in ODE system. In the 3-dimensional state of two
simple non-linear differential equations, given the first equation 2 variable, double focused sub system
that is complemented by a linearly coupled third variable produces the possibility of different types of
chaos map: Lorentzian chaos, “sandwich” chaos, and “horseshoe” chaos. Two figure-8 shaped chaotic
maps, running through each other like inter linked chains simultaneously are possible in Lorenz chaos
whereas, a transition of 2 different horseshoe chaos is possible which may result in a spiral chaos and
screw chaos. As for the sandwich chaos, it is the most genuine strange attractor.

In previous research, authors successfully adapted the variable order step size backward difference
formulation (VOSBF) for solving orbital problems with periodic solutions (see [35-39]). After the
success of tackling ODEs with periodic solutions, we initiated this study to attempt approximating
chaos attractors which proven to be a more challenging type of ODE. The current work approximates
chaos solutions in the form a system of 3 differential equations which are variation of Lorenz equation.
Analysis will be conducted on the impact of different parameters and initial conditions have on the
chaotic behaviours. We will analyze 3 different chaos attractors. The first two attractors will be used to
validate the accuracy of the proposed VOSBF method. These attractors will be denoted as Problem 1
and Problem 2 respectively. Next, Problem 3 is the infamous Lorenz attractor which will be analyzed
using various set of parameters and initial conditions (IC).

4.1. Accuracy of the VOSBF

First consider the following problems with parameters and initial conditions as provided in Table 3.
Problem 1: source [2]

f1(t) = = fa(t) = f1(t),
fo(t) = f1(t) + o fa(t),
f3(t) = B+ fi(t) f3(t) — pfa(t).

Problem 2: source [13]

fit) = o(falt) = f1(t)),
Fa(t) = =f1®) f3(8) = pfa(t),
f3(t) = =B+ Ai(t) fa(®),
Table 3. Parameters and Initial Conditions for each Problem.
Problem ‘ fi(to) fa(to) fa(to) ‘ o 1G] p

1|1 1 1| 055 2 4

2 | 10 —0.2 075 | 10 15 15

3 1 1 1 01,055 01,05 0.1,05,5, 145

1.00001 1.00001 1.00001 | 10, 50, 100 8/3, 5, 10 14.6, 28, 50, 100

Tables4 and 5 compare accuracy between the proposed VOSBF method, and the pre-set ODE
solver in Mathematica, NDSolver (NDSVR). Table4 consists of approximations by VOSBF method
and NDSVR together with a comparison of two methods specifically for Problem 1. Approximated
solutions of the chaos attractor in Problem 1 are taken at 5 separate points (when ¢t = 5,10, 15, 20, 25).
The approximated values of all three solutions (f1(t), f2(t), f3(t)) for the selected points are provided.
Using a TOL of 1075 the VOSBF provides an accuracy of no larger 10~% as shown in Table 4, with an
approximated value to NDSVR for f;(¢) at the point ¢ = 5. Whereas Table 5 provides the approximated
solutions for Problem 2. The approximated values obtained for Problem 2 seem to be less accurate
compared to the approximated values of Problem 1. The difference in accuracy can be attributed by
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factors such as the larger parameters that were selected and the difference in the initial values. Overall,
the VOSBF still show to provide an acceptable difference in accuracy considering the larger TOL level
selected.

Figures 1 and 2 show a graph plotted by points approximated by the VOSBF for Problem 1 where
Fig.3 provides a graphical illustration of approximated points for Problem2. Tables4 and 5 are
comparison of plotted solutions between VOSBF and NDSVR for Problems 1 and 2 respectively. These
figures clearly exemplify just how similar the approximated solutions are for both methods.

Table 4. Numerical Approximation for Problem 1.

‘ t=5 t =10 t=15 t =20 t=25

VOSBF f1(t) 5.6674927 —0.2963577 3.2839178 4.5661918 2.0602180
fa(t)  —4.0585760 0.8804171 —0.4250430 —7.1576077 —3.0587966

f3(t) 3.8176687 0.5082170 2.5502862 1.2211374 1.4762721

NDSVR f1(t) 5.6674927 —0.2963830 3.2839801 4.5661886 2.0600583
fa(t)  —4.0586052 0.8805503 —0.4250525 —7.1576401 —3.0586124

f3(t) 3.8175391 0.5082090 2.5503792 1.2210547 1.4760954

|[VOSBF — NDSVR| | fi(t) 0.0 2.53409E — 5 6.22855F —5 3.19015F —6 1.59817F — 4
fa(t) 2.91824E —5 1.33158E—4 9.48940E — 6 3.24949F —5 1.84161FE —4

fa(t) 1.29602E —4 7.98000E —6 9.30247E—5 8.26916E —5 1.76656F — 4

Table 5. Numerical Approximation for Problem 2.
‘ t=20 t =40 t =060 t =280 t =100

VOSBF fi(t)  —0.8804112 —0.6570211 —0.5940342 —0.3237326 —0.3258435
fa(t)  —0.2003694 0.0659988 —0.0292136 0.1820463 0.0680855

f3(t) 4.9887068 5.4420459 4.3388373 4.6129549 3.4992942

NDSVR fi(t)  —0.8817985 —0.6585153 —0.5952770 —0.3249436 —0.3267907
fa(t)  —0.2012901 0.0653110 —0.0297657 0.1817747 0.0678814

f3(t) 4.9919277 4.3423130 4.3423130 4.6165454 3.5032128

[VOSBF - NDSVR| | fi(t) 1.38721E—3 1.49414F —3 1.24276FE—3 1.21098E—3 9.47218FE —4
fa(t) 9.20645E —4 6.87796E —4 5.52068E —4 2.71639F —4 2.04071FE — 4

f3(t) 3.22098E —3 3.11826E—3 3.47576FE —3 3.59044F —3 3.91868F —3

Fig.1. Comparison of the approximated solution f1, fo and f3 by VOSBF for Problem 1.
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Figurel and 2 are illustration of ap- °
proximated solution for Problem1. Fig-
ure 1 compares solution of all three equa-
tions of the system whereas Fig. 2 is a 3D
parametric plot. As seen in Fig.2, the
system produces an ordinary “spiral” type s
horseshoe chaos due to having only a sin-
gle nonlinear term. The most-outer re-
gion of the unwinding spiral can be seen 5
interjecting toward the unstable focus. Fig. 2. A 3D parametric plot of Problem 1.

As for Fig. 3, different angles illustrate different types of chaos mapping, namely “sandwich chaos”,
“intertwined limit cycles” and the “double horseshoe chaos”. The figure illustrates the existence of
a simple Poincare map. The trajectories crossing the plane are re-injected through a roundabout
excursion point in a manner explained as the “sandwich” map (refer [2]).

W‘“"W 10

-10 0 10

10

i -'.‘.'"_f:ln: 14ty
hLE T L

0 10 " u
10 -10 0 10

Fig. 3. A 3D parametric plot of Problem 2 from different angles.

4.2. Analysis of Lorenz attractor

The current section will use various conditions and parameters to analyze the effects it has on Lorenz
attractor.
Problem 3: source [1]

f1(t) = o(fa(t) — f1(t)),
fot) = pfr(t) — f2(t) — fr(t) f3(t),
f3(t) = f1(t) f2(t) — Bf3(2).

Since the accuracy of the proposed
method was validated by comparison for o=10, B=8/3, p=28
Problems 1 and 2, the VOSBF is then used ' = ! e =
to analyze the chaos attractor of Prob- ; £ P
lem 3. Problem 3 is the well-known Lorenz
attractor [1] as shown by Fig.4 where,
original parameters (o = 10, § = 8/3, s . 10
p = 28) and initial conditions f1(0) = DT S | = !
f2(0) = f3(0) = 1 will be used as the foun- U

dation for our analysis. Fig. 4. Lorenz attractor.

140
130
20
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Figure 5 consists of 3 plots for solutions for Problem 3. The top left image plots the solution for
f1(t), the top right plots the solution for fo(¢) and the bottom image of Fig.5 plots the solution for
f3(t). Images here clearly show that even a slight difference of 0.0001 made to any initial conditions
has great effects on the trajectory of the attractor. This is more evident at f3(t), when the changes
were made to the initial condition f3(0).

30

20

H “' i ,”u, 'v”w MI'H i W-
W Ml Wel TG

Bl *.H i LU Jlk

| Al M\WI ‘ W\u ‘ x u ‘ J! l \ll L”l '\M

Mg ‘““ i ’[ M‘ 'm [\ 1‘ .M”“ ‘H ﬁ""\l WW

-20

\M( \\

“\H H il
i H M/,(0=10, £(0)=10, f(0)=10
|| W£(0)=1.00001, £(0)=10, £;,(0)=1.0

‘m
N W BI£(0)=1.0, £(0)=1.00001, f£;(0)=1.0

.f1(0)=1~0, £(0)=10, f3(0)=1.00001
Fig. 5. Comparison of approximated values f;, fo and f3 for Problem 3 using different initial conditions.

HH t ,1 ’ ol H. m

-20]

As illustrated by Figs.6-10, changes made to either parameters o, # or p shown to have a major
impact on the trajectory of the attractor. This becomes more obvious in Fig.7, when any changes
made to p does not only effect the chaotic behaviour of the attractor but also the positioning of the
trajectory on the fo(t)—plane. From these figures, it can also be extrapolated that the trajectory of
Lorenz chaotic becomes super chaotic when the parameters used approaches o = 10, 5 = 8/3, p = 28.

Fig. 7. Comparison of a 3D Parametric Plot for Problem 3 using different 5.
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Fig. 8. Comparison of a 3D Parametric Plot for Problem 3 using different p.

Figures8 and 9 highlight specific changes of p that have great effect on the trajectory. Plots
presented in Figs.8 and 9 consider the initial conditions f1(0) = f2(0) = f3(0) = 1. Figure8 specifies
effects when p = 14.5 and p = 14.6. At p = 14.5, the trajectory of the attractor remains on an elliptical
like orbit, but by changing the p parameter by 0.1 it begins shift outwards to a pre-chaotic, less stable
orbit. Another pivotal point is when p is changed from 23.7 to 23.8, from a pre-chaotic to a chaotic
trajectory.

c=10, B=8/3, p=145

QQ.. S

o=10, f=8/3, p=14.6

aE TRy

10

eeraw w w 9 B A8
AN gt o s a® at &

Fig.9. Comparison of a 3D Parametric Plot for Problem 3 when p = 14.5 and p = 14.6.

0=10, B=8/3, p=23T 0=10, f=8/3, p=238
1 -10

20

Fig. 10. Comparison of a 3D Parametric Plot for Problem 3 when p = 23.7 and p = 23.8.

5. Conclusions

The research conducted shows that a VOS algorithm can still accurately approximate solution for the
difficult problems such as the chaos attractors. Due to the appropriate conditions in managing the
order and a rapidly increasing step size provides not only an accurate but cost-effective approximation.
Order and stability of the backward difference method can be referred to [40].
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HucenbHuii aHani3 aTpakTopiB XaoCy 3 BUKOPUCTAHHAM
chopmyntoBaHHSA 3BOPOTHOI Pi3HUL

Pacemi A. @. H.', A6aya Carap M. X.2, Moxa Hapxu6 H.', Bour T. dx.3, Koo JI. @©.3

! Exonomiunuts daxyavmem i Myamanam,

Ynisepcumem icaamcoruxr Hayrx Manratisii,

71800 Hinati, Heeepi Cembinan, Manatizis

2Ilenmp Pyrdamenmarvrur 0ocaidicend CiabCbr020cn00apCHROT HAYKU,
Vnisepcumem Ilympa Manatizii
3 Kagedpa nayku i mexnonoeit,
Daxysomem 2yMaHiMapHuT HaAYK, MEHEOHCMEHMY MaE HAYKU,
Ywisepcumem Ilympa Manatisii,
Binmyay Capasax Kamnyc, 97008, Binmyay, Capasar, Manratizis

ATpakTop xaocy — Iie cucreMa 3BUYaiiHuX jiudepeHIiaabHuX PIBHSIHb, 5K, K BiJIOMO, Ma€
XAOTHUIHI PO3B’SI3KU JIJIs ITEBHUX 3HAYEHD IMapaMeTpiB i movuaTkoBol ymMoBH. JloctimKeH s,
poBeJieHi B IMiif pobOTi, CTBOPIOIOTH AJTOPUTM 3BOPOTHOI PI3HUIN IS JTOC/TII2KEHHS ITTUX
aTpakTOpiB xaocy. ByayTb nmpoanasizoBaHi pi3Hi Tunu BiTOOparKeHHsT Xa0Cy, & caMe Xaoc
Jlopenria, xaoc “cennpia”’ i xaoc “migkosa”. [lopiBHSIHO 3 IHITUMU YNCETLHUMA METOIAMH,
3aIPOTIOHOBAHUIT AJTOPUTM 3BOPOTHOI PI3HUI MOKaXKe, 10 € ePEeKTUBHUM IHCTPYMEHTOM
JI7IS aHAJIi3y PO3B’SI3KiB /IJIsT AaTPAKTOPIB XaocCy.

Kntouosi cnoBa: npukiadia Mamemamuka, 360pOMHa PisHULA, AMPAKMOP TAOCY, KPOK
3MINH020 NOPAOKY.
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