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Bézier based parametrisations in shape optimization have the drawback of using high
degree polynomials to draw more complex shapes. To overcome this drawback, Non-
Uniform Rational B-Splines (NURBS) are usually used. But, by considering the NURBS
weights, in addition to the locations of the control points, as optimization variables, the
dimension of the problem greatly increases and this would make the optimization process
stiffer. In this work we propose, then, an algorithm to adapt the weights of NURBS in
the parametrization of shape optimization problems. Unlike the coordinates of the control
points, the weights are not considered, in this case, as variables of the optimization process.
From the knowledge of an approximate optimal shape, we consider the set of all NURBS
parametrizations of the same degree that approximate the shape in the sense of least
squares. Then, we elect the parametrization associated with the most regular control
polygon (least length of the control polygon). Numerical results show that the adaptive
parametrization improves the performance of the optimization process.
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1. Introduction

Non-uniform rational B-splines (NURBS) are generalization of non-rational B-spline forma as well as
rational and non-rational Bézier curves and surfaces. They have become the de facto industry standard
for computer representation and processing of curve and surface geometry. They are commonly used
in computer-aided design (CAD), manufacturing (CAM), and engineering (CAE). Tools for creating
and editing NURBS surfaces are found in various 3D graphics and animation software packages. The
popularity of NURBS is primarily due to the following, among others, facts [1, 2]:

• NURBS offer extra degrees of freedom (the weights), which can be used to generate a large variety
of shapes;

• NURBS are particularly useful for designers since they have clear and easy-to-understand geometric
interpretations;

• NURBS curves and surfaces are invariant under common geometric transformations, such as rota-
tion, translation, parallel and perspective projections;

Shape optimization problems try to find the shape which is optimal in that it minimizes a certain
cost functional while satisfying given constraints, see [3–5]. To improve a shape optimization process,
authors, in [6], use the adaptation of Bézier parametrizations. They consider the x-coordinates of
the control points as design variables to optimize a physical criteria and adapt the y-coordinates by
minimizing a geometrical criteria. However, the drawback of Bézier curves in drawing more complex
shapes is the use of high degree polynomials and the joining of more than one curve together to
satisfy the so called G1 continuity. But, maintaining this G1 continuous condition may be tedious and
desirable [7]. NURBS (and in particular B-spline curves) are generalizations of Bézier curves to use
lower degree curve segments without worrying with this condition. So, in our work we will focus on
the parametrization of NURBS curves.
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In NURBS based shape optimization, see [8, 9], the NURBS basis functions are used to represent
the geometry in the design model, and also as basis functions in the analysis model (for example in an
isogeometric study), see [10–12]. In [13], Song et al. consider the NURBS weights, in addition to the
locations of the control points, as optimization variables. Taheri et al. proposed in [14] an improved
method by decoupling the weights associated with control points along physical coordinates and they
obtained then a generalization of NURBS curves. However, in these cases, the dimension of the problem
greatly increases and this would make the optimization process stiffer. It is thus appropriate to adopt
a procedure to reduce the dimension of the considered problem.

By fixing a priori the NURBS weights, and only considering the locations of the control points as
variables, we can reduce substantially the cost of the optimization process, but this restriction would
affect its convergence. In fact, very irregular control polygon corresponds to the early stage of the
convergence [15, 16]. To increase the regularity of the NURBS control polygon, this reduction of the
dimension is usually combined with an adaptation of the parametrization. This adaptation is based
on the optimization of a purely geometrical criterion (total variation or total length of the control
polygon) with a marginal cost.

As a step towards this, we consider firstly a problem of curve fitting of a given curve (to be replaced
subsequently by the subsequent updates of the optimized shape) and then a problem in calculus of
variations. In both problems the NURBS weights are recomputed to minimize a regularity violation
measure, such as, in our study, the total length of the control polygon.

2. NURBS basis functions

NURBS are based on B-spline basis functions, see [1, 2]. Consider a knot vector Ξ in one dimensional
space, which is a set of coordinates ξi in a parametric space:

Ξ = {ξ1, ξ2, . . . , ξn+p+1},
with ξ1 6 ξ2 6 . . . 6 ξn+p+1. Here p and n are the degree and the number of the basis functions,
respectively. The n univariate B-spline basis functions of degree p are defined recursively, see [17–19],
by

Ni,0 =

{
1 if ξi 6 ξ < ξi+1,
0 otherwise,

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), i = 1, . . . , n+ p+ 1. (1)

We will use in this paper non-uniform open knot vectors where the first and the last knot are repeated
(p+ 1) times.

B-spline curves of degree p are obtained from the linear combination of B-spline basis-functions of
degree p and the corresponding control points Pi, i = 1, . . . , n:

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi. (2)

NURBS are rational B-spline curves which are the projection of a non-rational B-spline curve Cw(ξ)
defined in (d + 1)-dimensional homogeneous coordinate space back onto the d-dimensional physical
space Rd. Homogeneous weighted (d+ 1)-dimensional control points are

Pwi = (wixi, wiyi, wi)
T .

The non-rational (d+ 1)-dimensional B-spline curve Cw then reads

Cw(ξ) =
n∑

i=1

Ni,p(ξ)P
w
i .

Projecting onto Rd by dividing through the additional coordinate yields the rational B-spline curve:
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C(ξ) =

∑n
i=1Ni,p(ξ)wiPi∑n
i=0Ni,p(ξ)wi

=

n∑

i=1

Ri,p(ξ)Pi, (3)

where Pi, i = 1, . . . , n are the control points, wi > 0, i = 1, . . . , n are the weights, and Ri,p(ξ) are the
rational basis functions.

The weights affect the influence of the control points on the curve. Piegl and Tiller, in [2], explore
the geometric meaning of these weights, i.e. the weights are not pure numbers but real geometric
quantities, and they also quantify the pull-push effect of the weights on shape. In fact, the effects of
modifying a single weight of a NURBS curve are:

• By increasing (decreasing) the value of the weight wi the curve will be pulled (pushed) toward
(away from) the corresponding control point Pi;

• If the value of wi becomes infinity, then the curve passes through control point Pi;
• When wi is zero, then the control point Pi does not have impact on the curve.

3. Coupled shape optimization with adaptive NURBS parametrization

Experiments show that the quality of the optimization of a physical criterion like the compliance in
the case of a structural shape optimization (for prescribed NURBS weights and optimized coordinates
of the control points), is strongly dependent on the values of the prescribed weights, see [20].

Suppose that we optimize a shape represented by a NURBS parametrization, where the weights
W = (w1, . . . , wn)T are a priori fixed and the iteration will be on the coordinates of the control points
to minimize an objective function J(X,Y ) with X = (x1, . . . , xn)T and Y = (y1, . . . , yn)T . Our aim
is to devise an adaptive parametrization to be coupled with an optimization loop. We propose that
the control points coordinates {xk} and {yk} are classically optimized with respect to some physical
criterion (for fixed {wk}), and the weights are alternatively optimized regarding a geometric regularity
criterion. In our work, in order to get a more regular control polygon L, we propose that the weights
{wk} are redefined to minimize its length:

min
W

L
(
X(W ), Y (W )

)
= min

W

n∑

k=2

√
(xk − xk−1)2 + (yk − yk−1)2. (4)

By using NURBS we would like to approximate a single curve Γ = (X,Y ,W ) (to be replaced sub-
sequently by the updates of the optimized shapes). All the parametrizations of the same degree
Γ = (X,Y,W ) are considered, each of them is associated with a particular weights vector W and
approximating Γ in the sense of least squares. The vectors X and Y containing the coordinates of the
control points are obtained by solving the minimization problem

min
X,Y

1

2

N∑

k=1

∥∥∥∥
n∑

j=1

Rj(tk)Pj −
n∑

j=1

Rj(tk)Pj

∥∥∥∥
2

, (5)

where Pj = (xj , yj)
T , Pj = (xj, yj)

T and (t1, . . . , tN ) is a distribution of the interval [0, 1]. The vectors
X and Y are solutions of the following normal systems:

{
ATAX = ATX,

ATAY = ATY ,
(6)

where Aij = Rj(ti), i = 1, . . . , N , and j = 1, . . . , n. For X and Y obtained from (6), the new vector
of weights W ∗ is defined by minimizing the length of the control polygon of Γ. This optimization-
adaptation coupling can be summarized in Algorithm 1.

Since the optimal shape is not known a priori, the initial parametrization in Algorithm 1 is often
difficult to estimate. It is recommended, in this case, to try several arbitrary choices of initializations
and to take the one with better optimization process.
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Algorithm 1 Shape optimization coupled with an adaptive NURBS parametrization.

1: Initialize the parametrization Γ(0) =
(
X(0), Y (0),W (0)

)
.

2: for k = 0, 1, . . .,
3: Do (some) r iterations to minimize J . Let

(
X

(k)
r , Y

(k)
r

)
≡ arg min

X,Y
J(X,Y ).

4: Define the target curve Γ
(k)
r =

(
X

(k)
r , Y

(k)
r ,W (k)

)
.

5: Adaptation and regularization: Find the best approximation, in sense of least squares, to the curve Γ
(k)
r ,

and which has the most regular control polygon (least length):

• Solve the normal equations {
ATAX(k+1) = ATX

(k)
r ,

ATAY (k+1) = ATY
(k)
r ,

where Aij = Rj(ti), i = 1, . . . , N , and j = 1, . . . , n.

• Optimize the length L of the control polygon min
W

L
(
X(k+1), Y (k+1)

)
in order to get W (k+1).

In order to reduce to cost of the extra optimization problem in the adaptation and regularization,
we can only perform some iterations to minimize L.

4. Numerical results

Let us apply the process of coupling an optimization process with an adaptation of the NURBS weights.
MATLAB software to implement Algorithm 1 is used.

Our results are compared to those obtained by optimization without adaptation, like in [13], where
the weights are considered as design variables as well as the control points.

4.1. A curve fitting problem

We focus on the case of a shape defined by a single curve:

y = yT (x), 0 6 x 6 1. (7)

In fact, we have a certain number of points Qi = (x̃i, ỹi), i = 1, . . . , N , and aim to find a NURBS
parametrization of the same curve:

P (t) =

(
x(t)
y(t)

)
=

n∑

j=1

Rj(t)Pj =

n∑

j=1

Rj(t)

(
xj
yj

)

with a control polygon which does not vary too much, where Rj(t) =
wjNj(t)

∑n
i=1 wiNi(t)

. There are thus
points Qi, i = 1, . . . , N and we seek a NURBS curve passing close to these points under the constraint
that its control polygon varies the least possible. One can express this by an adaptation of NURBS
weights coupled with the following least squares problem:

min
X,Y

J(X,Y ) =
N∑

k=1

‖P (tk) −Qk‖22, (8)

where (t1, . . . , tN ) is a distribution of the interval [0, 1].
As an example, let us consider the curve represented by the analytical equation:

yT (x) = cxa(1 − x)b + dx(1 − x), x ∈ [0, 1], (9)

where a = 0.5, c = 0.15, b = 1 and d = 0.01. We apply Algorithm 1 to test the adaptation of the
NURBS weights in order to find the best parametric approximation to this curve. The curve (9) is
evaluated at N = 100 points, the parametric approximation is defined by n = 20 control points and
NURBS basis functions of degree p = 10.
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As mentioned above, the choice of the initial parametrization affects the optimization process.
Figure 1 presents the reduction of the objective function for three choices of the initial vector of the
weights.
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Fig. 1. Reduction of the objective function for different choices of the initial
vector of the weights. Choice 1: W (0) = (1 1 1 . . . 1)T ; Choice 2: W (0) =
(0.25 0.5 0.25 0.5 . . .0.25 0.5)T ; Choice 3: W (0) = (0.25 1 0.25 1 . . . 0.25 1)T .

Let W (0) = (0.25 0.5 0.5 . . . 0.5)T , the initial NURBS curve is given in Figure 2.
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Fig. 2. Initial NURBS curve.

The case, where the weights
are adapted within the opti-
mization loop, is compared to
the one where the weights are
considered as design variables.
For the case with adaptation,
we choose to use the adapta-
tion after each r = 5 iterations
during 7 iterations of optimiza-
tion. In Figure 3 we represent
the NURBS curve approximat-
ing yT (x) as well as the vari-
ation of the control polygon in
both cases. The obtained curve
is the same as in [16] where
the authors use an adaptation
of Bézier parametrizations. The
weights adaptation leads to a
more regular polygon control
and then improve the optimiza-
tion process as shown in Figure 4.

Since one has sought to solve the additional problem relating to the geometrical criterion with a
marginal cost, it is enough to carry out some iterations to minimize the length of the control polygon.
However, this reduction in the number of iterations may slightly affect the global optimization process
as shown in Figure 5.
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Fig. 3. The approximate NURBS curve.
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Fig. 4. Reduction of the objective function. Fig. 5. Reduction of the objective function with
different values of the number of iterations to mini-

mize the length of control polygon.

4.2. A calculus of variations problem

We deal with a shape optimization problem has been solved in the calculus of variations. Let us consider
an arc of a smooth curve connecting the origin (0, 0) to the point (1, 0) that can be represented by the
NURBS parametrization 




x(t) =
n∑
j=1

Rj(t)xj

y(t) =
n∑
j=1

Rj(t)yj ,

where 0 6 t 6 1, x(t) and y(t) are monotonically increasing, y(t) > 0, and
{
x(0) = 0, x(1) = 1,
y(0) = y(1) = 0.

Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be the coordinates vectors of the control points. It is well
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known that the length of the arc p and the area A between the arc and the x-axis are given by

p =

∫ 1

0

√
x′(t)2 + y′(t)2 dt, A =

∫ 1

0
y(t)x′(t) dt.

Let minimize the following shape functional

J(X,Y ) =
p2

A . (10)

It is well known, see [6,15], that the solution of this optimization problem is provided by the semicircle
with center (12 , 0) and radius 1

2 with the next optimal value

J∗ = 2π.

Unlike [6], we focus on the use of NURBS parametrizations. Instead of minimizing the function J with
respect to the NURBS weights, unlike in [13], the latter will be adapted automatically by minimizing,
the geometric criterion (4).
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Fig. 6. Optimal NURBS curve.
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Fig. 7. Reduction of the objective function.

With n = 7 control points, p = 6 and
W (0) = (1 0.25 1 0.25 1 0.25 1)T , Fig-
ure 6 represents the initial NURBS curve
and the optimal NURBS curves in both
cases of the optimization process (with
and without adaptation). For the case
with adaptation, we choose to use the
adaptation after each r = 5 iterations
during 40 iterations of optimization.

In Figure 7 we present the reduction of
the objective function for both cases with
and without adaptation. The adaptation
of the NURBS weights improve the whole
optimization process by regularizing the
control polygon of the parametrization.
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5. Conclusion

We presented a technique to adapt the NURBS weights, by regularizing the control polygon, in shape
optimization. Numerical experiments, by applying our algorithm to solve two benchmark problems,
show that by this coupled optimization-adaptation, significant profits in effectiveness of the optimiza-
tion process could be reached. However, an important task is to see how to automatically determine
when adaptation would be triggered in the optimization process.

A further work is to apply this technique to solve problems in two dimensional isogeometric struc-
tural shape optimization where the NURBS basis functions are used in analysis as well as representing
the geometry.
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До адаптацiї вагових коефiцiєнтiв NURBS для оптимiзацiї форми

Зiанi М.

LMSA, кафедра математики, факультет наук, Унiверситет Мухаммеда V у Рабатi, Марокко

Параметризацiя на основi Без’є в оптимiзацiї форми має недолiк використання полi-
номiв високого степеня для рисування бiльш складних форм. Щоб подолати цей
недолiк, зазвичай використовуються неоднорiднi рацiональнi B-сплайни (NURBS).
Але, розглядаючи NURBS–ваги, крiм розташування контрольних точок, як оптимi-
зацiйних змiнних, вимiрнiсть задачi значно збiльшується, i це робить процес опти-
мiзацiї бiльш жорстким. У цiй роботi пропонуємо алгоритм для адаптацiї вагових
коефiцiєнтiв NURBS у параметризацiї задач оптимiзацiї форми. На вiдмiну вiд ко-
ординат контрольних точок, ваги в цьому випадку не розглядаються як змiннi про-
цесу оптимiзацiї. Знаючи наближену оптимальну форму, розглядаємо множину всiх
NURBS–параметризацiй однакового степеня, якi апроксимують форму в сенсi най-
менших квадратiв. Пiсля того обираємо параметризацiю, пов’язану з найбiльш пра-
вильним контрольним многокутником (з найменшою довжиною контрольного много-
кутника).

Ключовi слова: ваговi коефiцiєнти нерiвномiрних рацiональних B-сплайнiв, адап-
тацiя, контрольний полiгон, оптимiзацiя форми.
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