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1. Introduction and main result

The aim of this paper is to establish the existence and the uniqueness of entropy solution for the
following nonlinear parabolic problem

O v (®(u— () + [P u o) = i Qr =)0, Tx0

)Y & (Vu—0@) n+w) =g on Tr=]0,T[xd0,

u(0,) =up in €,

where €2 is a bounded open domain of R, (d > 3) with Lipschitz boundary 99 and T is a fixed positive
number. Furthermore, we will specify that u is a bounded Radon measure supposed to be independent
on time, «, v, © are continuous functions defined on R and verify some assumptions which will be
given later, n denotes the unit vector normal to 02 and

o(¢) = ¢P@2¢, Ve e RN,

Moreover, our main ideas and methods to study this problem come from [1,2]. More precisely, we apply
a time discretization of given continuous problem by the Euler forward scheme and study existence,
uniqueness and stability questions. Let us recall that this method has been used in the literature for
the study of some nonlinear parabolic problems, we refer for example to [2—4| for some details. This
scheme is usually used to prove existence of solutions as well as to compute numerical approximations.

The motivation of this paper contains several aspects. The first one is that in general parabolic
problems have important applications in a wide range of fields such as physics, biology, ecology, and
other. In mathematical modeling, parabolic equations are used together with boundary conditions
specifying the solution on the boundary of the domain. Dirichlet and Neumann conditions are examples
of classical boundary condition.

The second interesting aspect of this paper is the nonstandard growth setting. Such setting arises
for example by studying certain classes of non-Newtonian fluids such as electrorheological fluids which
are characterized by their ability to change the mechanical properties under the influence of the exterior
electromagnetic field (see [5]). Further, porous medium type equation with variable exponents is also
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studied in [6]. These physical problems are facilitated by the development of Lebesgue and Sobolev
spaces with variable exponent.

The third interesting aspect of the investigation of problems (P) is motivated amongst others by
the following observations: In [2] (for the case p(-) = const, and u € L'(Q7)), the authors proved
existence and uniqueness of entropy solution, and the approach used in the stationary case, where the
authors in [7] prove that every diffuse measure p i.e. a measure which does not charge the sets of null
p-capacity belongs to L'(Q) + W1 (Q), that permit them to prove the existence and uniqueness of
entropy solution for the following problem

Au) =p in €,
{ u=0 on Of.
Therefore, the study of problems related to problem (P) are also of interest, since these problems is
a very active field (see [8-12]). In these papers, the authors consider on the one hand a Leray—Lions
type operator, which permit them to exploit the growth condition, the coerciveness condition and the
monotonicity condition of the operator and the other hand in these papers the boundaries conditions
are homogeneous Dirichlet type, which allows them to exploit a result of decomposition of diffuse
Radon measure which is suitable for this type of situation (cf. [11,13]) to achieve their work.

Unfortunately, in this work, due to the term © in the operator and since we consider a Neumann
boundaries conditions, we don’t have such Leray—Lions conditions for the operator — div(®(Vu—0(u)))
and we can’t use the result of decomposition of measure established in [11,13]|. Therefore the techniques
developed in these articles are note suitable for the study of the problem (P). To overcome these
difficulties we make some assumptions on initial data p and on the domain 2.

We define M;(X) as the space of bounded Radon measure in X, equipped with it standard norm

| My (x0)-
In the context of variable exponent, the p(-)-capacity of any subset B C X is defined by

Capy) (B, X) = nf { /X (Ju@ + |Fuf) d;n} ,

with Sy (B) = {u € W Lp( )(X): u > 11in an open set containing B and v > 0in X }.If S,(y(B) = @,
we set Capp(,)(B X) = +o0.

For 1 € My(X), we say that u is diffuse with respect to the capacity W1P()(X) (p(-)-capacity for
short) if pu(B) = 0 for every set B such that Cap,, (B, X) = 0.

The set of bounded Radon diffuse measure in variable exponent setting is denoted by ./\/lg(')(X ).

Let us recall that in the context of variable exponent, the Dirichlet boundary valued problem with
measure data was investigated in [14-16]. In [16], the authors proved that every measure u € ./\/lg(')(Q)
admits a decomposition in L'(Q) + W‘l’p/(')(Q) and used it to prove the existence and uniqueness of
entropy solutions. In the case of Neumann boundary condition we work in general in Wl’p(')(Q), SO we
cannot use directly the argument of decomposition of measure, since the second part of the measure is
in W=5'"0)(Q) (the dual of Wol’p(')(ﬂ)). To overcome this difficulty, in [17] the authors assumed that
) is an extension domain (see [18]) that permit them to work with a space like VVO1 P (')(Q) and return
after to the space Wl’p(')(Q). With a view to use the same ideas we suppose that € is a bounded
domain in RY with boundary 99 of class C*. Then, it has an extension domain (cf. [18]), so for any
fixed open bounded subset Ug of RY such that Q C Uq, there exists a bounded linear operator

E: wO(Q) - Wit (Ug),

for which
i) E(u) =u a.c. in Q for each u € WP (Q),
ii) B, 100 g < Cllully1p0)(q)» Where C'is a constant depending only on €.
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We introduce the set img(')(Q) ={p e Mf(') (Ugq) : p is concentrated on Q}. This definition is
independent of the open set Ug. Note that for u € WP (Q) N L>(Q) and u € WZ(')(Q), we have
1. Bw) = [ wd.

On the other and, as p is diffuse, there exist f € L' (Ug) and F € (LPU) (Up)
f—div(F) in D' (Ug).

Therefore, we can also write

)N such that p =

(u, E(u))y = fE(u)dx —I—/ F-VE(u)dz.
Uq Ua
The rest of the paper is organized as follows: in Section 2, we introduce some basic results regarding
the variable exponent spaces and notations. In Section 3, we introduce the Euler forward scheme
associated with the problem (P). Finally, in Section 4, we analyze the stability of the discretized
problems and we study the existence of an entropy solution to the parabolic problem (P).

2. Preliminaries

In this section, we recall some basic definitions, inequalities and the properties of the generalized
Lebesgue and Sobolev spaces with variable exponents. However, for more detailed theory, one can
refer [19].

We assume that

p(:): Q@ = R is a continuous function such that 1 <p_ <py < 400, (1)

where p_ = essinf,co p(z) and p; := esssup,cq p(x).
We denote the Lebesgue space with variable exponent LP(®)(Q) (see [19]) as the set of all measurable
function u:  — R for which the convex modular

o) = [ o

is finite.
If the exponent is bounded, i.e., if p4 < 400, then the expression

[ullp@ey = mf {A > 0 ppey (u/A) < 1}

defines a norm in LP(*)(), called the Luxemburg norm.
The space (LP®)(Q), [-lpc)) is a separable Banach space. Moreover, if 1 < p_ < py < +oo,
then LP(*)(Q) is uniformly convex, hence reflexive and its dual space is isomorphic to L' (*)(Q), where
1 1
e . o
Finally, we have the Holder type inequality

1 1
uvdr| < —+—>u 210 (2 2
/ (p = o el @)

for all u € LP®)(Q) and v € LV ®)(Q).
Let WP@)(Q) := {u € LP@(Q): |Vu| € LP@(Q)}, which is Banach space equipped with the

following norm

[ull1p(2) = Nullpe) + VUllp@)-

The space (WHPE)(Q),]| - [1,p(z)) 18 & separable and reflexive Banach space.
An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the
modular py,,) of the space LP0)(Q). We have the following result.
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Proposition 2 (see [20,21]). If u,,u € LP®)(Q) and p, < oo, the following properties hold true:
) ullpe) > 1= lull%2) < oy () < ull%%):

1) Nullpy < 1= [ullZF) < ppiay () < [l
i) |ullp) < 1(respectively = 1;> 1) < py)(u) < 1 (respectively = 1;> 1);
1V) Huan — 0 (respectively — +00) < pp()(un) < 1 (respectively — +00);

For a measurable function u: 2 — R we introduce the following notation:

P1.p() /\u]p(x da:+/ \Vu]p(x

Proposition 3 (see [22,23]). If u € W'P®)(Q), the following properties hold true:

) Jullp > 1= 0l < proe (@) < lul%;
i) Nl < 1= [0l20 ) < p1pe (@) <l
i) |ull1pez) < 1(respectively = 1;> 1) < py pa )(u) < 1(respectively = 1;> 1).
Put
oy oo | el i p(a) < N
p(z) = (p(x))” = :
oo, if p(x) > N.
Proposition 4 (see [23]). Let p € C(Q) and p_ > 1. If ¢ € C(09) satisfies the condition 1 < g(z) <
pP(z) Vo € 8Q, then, there is a compact embedding W'P@)(Q) < L) (90).
In particular, there is a compact embedding W1P0)(Q) < LP(®)(5Q).
Let us introduce the following notation: given two bounded measurable functions p(x), ¢(x): Q —
R, we write q(z) < p(z) if essinfzeq(p(z) — q(z)) > 0.
For the next section, we need the following lemmas.

Lemma 1 (see [24]). Let &,n € RY anlet 1 < p < co. We have %|£|p - %|77|p < [€P2¢ - (€ —n).

Lemma 2 (see [25]). Let (v,)nen be a sequence of measurable functions in Q. If v, converges in
measure to v and is uniformly bounded in LP®*)(Q) for some 1 < p(z) € L>®(Q), then v, strongly
converges to v in L'(£2).

For a measurable set U in RY, meas(U) denotes its measure, C; and C will denote various positive
constants. For a Banach space X and a < b, L9(a, b; X) is the space of measurable functions u: [a,b] —

X such that )
b q
([ 1ultete) =l < 8
For a given constant k > 0 we define the cut-off function 7;: R — R by
o s if |s| <k,
Ti(s) = { ksign(s) if |s| >k
with
1 if s>0,
sign(s) = 0 if s=0,
-1 if s<0.

Let J,: R — R™ defined by
Ji(@) = / Ti(s) ds
0

(J is a primitive of Ty). We have (see [26])

<%,Tk(8)> = % (/Q Ji(v) dl’) in - L'()0,T7),
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[ (Gmo) = [ ee i [ o)

For all u € WHP(*)(Q) we denote by 7(u) the trace of u on 9 in the usual sense.

In the sequel, we will identify at the boundary, v and 7(u).
Set T1P(®)(Q) = {u: Q — R, measurable such that Tj(u) € WP)(Q), for any k > 0} .

Proposition 5 (see [27]). Let u € T'P@)(Q). Then there exists a unique measurable function
v: Q@ — RY such that VT (u) = UX{|u|<k}, for all k> 0. The function v is denoted by Vu. Moreover,

if w € WHP()(Q) then v € (Lp(x)(Q))N and v = Vu in the usual sense.

which implies that

We denote by ’Ei’p(m)(ﬂ
sequence (Up)pen C Whp(@)

) (cf. [28-30]) the set of functions u € T'P(*)(Q) such that there exists a
(Q) satisfying the following conditions:
i) up, — u a.e. in Q.
i) VT(un) — VI (u) in (Ll(Q))N for any k£ > 0.
iii) There exists a measurable function v on 92, such that u,, — v a.e. on 9.
The function v is the trace of u in the generalized sense introduced in [28,29]. In the sequel,
the trace of u € ﬁi’p(x)(Q) on 9Q will be denoted by tr(u). If u € WP)(Q), tr(u) coincides with
7(u) in the usual sense. Moreover u € ’7;},"7’(')(9) and for every k > 0, 7(Tx(u)) = Ti(tr(u)) and if

¢ € WHP@(Q) N L=(Q) then (u — ¢) € TP(Q) and tr(u — @) = tr(u) — tr(yp).

3. The semi-discrete problem

In this section, we study the Euler forward scheme associated with the problem (P). We make the
following hypotheses:

(H1) « and v are continuous functions defined on R such that there exists two positive real numbers
My, My with |a(x)] < M, |y(z)] < Ma, a(z) -z > 0, y(x) -z > 0 for all z € R and
a(0) =(0) = 0;

(H2) pem(Q), g e LY(Sr) and ug € L1 (Q);

(H3) ©: R — R¥ is a continuous function such that ©(0) = 0 and |0(x) — O(y)| < Co|z — y| for all

p_,)1/p, 7 (za;)l/p+)

xz,y € R, Cy is a positive constant such that Cy < min <( 5 5

Since p € MZ(-)(UQ), then p = f — div(F) in D'(Ug) with f € L'(Ug) and F € (Lp/(')(UQ))N,
where Ugq is the open bounded subset of RY which extend 2 via the operator E.

We regularize p as follow: Vo € Ug we define f,,(z) = T,,(f(x))xa(x).

We consider Fr = xoF and p" = f, — div(FR).

For any n € N, one has p" € im‘z(')(ﬂ) N L>*(Q) and p™ — pin ./\/lg(') (Uq). Furthermore, for any
k>0 and any & € TP (Q),

/Q T (&) du”

Now, we consider the following approximated problem

U" — 7div (9 (VU™ — OU™))) + 7 |UP@2U" + 7 (U™) = 7" + U™ in Q,
(Pn) § @ (VU™ —=O(U")) 0+~ (U")=g" on 99,
UO = Uug in Q,

< kC(p, Q).

where NT=T,0<7<1,1<n<N,

nTt

gn(-) = —/ g(s,-)ds on 0.

T (n—1)7
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Definition 1. An entropy solution to the discretized problems (P,) is a sequence (U™)o<n<n such
that U° = ug and U™ is defined by induction as an entropy solution to the problem

U™ — rdiv (® (VU — O(U™))) + 7|UPE 20" 4 7o(U") = 7" + U™ ' in Q,
O (VU —O(U™) -n+~+(U") =g" on 90

in the sense that U™ € TAP0(Q), [UPPO-2U" € LY(Q), a(U™) € LY(Q), v(U™) € LY(99Q) and
. / B(VU" — OU") VT (U" — o)de + 7 / U P2 T (0 — ) da
Q Q

+/ (Ta(U")+U")Tk(U"—<,0)d:E—|—T/ U™, (U™ — ¢)do
Q o0

g/TTk(U"—go)d,un+/U”_lTk(U”—gp)daz—l—T/ 9T (U™ — @)do (4)
Q Q o0

for any o € WhP)(Q) N L>®(Q) and every k > 0.

We have the following result.
Theorem 1. Let hypotheses (H1)—(H3) be satisfied. Then
1) if (U™)o<n<n is an entropy solution of problems (P,), then U™ € LY(Q) for alln =1,...,N;

2) for all N € N, the problems (P,) have an entropy solution U™ € T,, Le() ()N LY(Q) for all n =
1.....N.

Proof. (1) Taking ¢ = 0 in (4), for n =1 we have

T/Q(I)(VTk(Ul)—G(Tk(Ul)))VTk(Ul)da:—H/Q%\@(Tk(Ul)Hpmdx—l—T/ﬂ\Ullp(x)_zUlTk(Ul)dx
—l—/Q(Ta(U) UhTp(U )da:—i—T/ ~A(UYT(UYdo

g/QTTk(Ul)d,ul—l—/QuoTk (Uh) dm—l—T/ aT(UY) d0+7-/Q

By the Lemma 1, we get

VTL(U") — O(To(U") [P (VIL(TY) — O(T(UY)) - VT (Te(UY)) + (1)!@(%(1]1))!”“)

% VIO - e (T ) [

Therefore

T/ B(VTW(U") — O(TH(UY)) VTW(U") da +T/ Lo PPz > 0.
Q o p(x)

Moreover, we have

/ |U1|p(w)_2U1Tk(U1)d:p :/ |Tk(U1)‘p(w) da +/ ‘U1‘p(r)—2 UM (UY) da
Q (lUt[<k] (|U*[>]

> / T (Y de + / ) d
U< 014

>/ T (0P d:c+/ T ([P da
U |<k) (It >]
> [ mawnpta

Mathematical Modeling and Computing, Vol.9, No. 4, pp. 977-998 (2022)



Existence and stability of solutions to nonlinear parabolic problems with perturbed gradient . .. 983

From the assumption (H1), we have
T </ Ta(Ul)Tk(Ul)da:—i—/ 'y(Ul)Tk(Ul)da> > 0.
Q oN
Thanks to assumption (H3) and the fact that 7 < 1, p(z) > 1 for all z €  we get
1 T
7'/ —|@(Tk(U1))|p( Vdz < /(Cok)p+dx < (Cok)P+ meas(2).
o p(z) Q

Since, we have

<O(p, Q)

/ T (U1 dpt
Q

and
N

> Tllgnllrr 0y < gl oo)-

n=1

Therefore, the inequality (5) becomes

/ U (UY)dz < kTC(Q, 1) + k7l|lg1llz1a0) + Elluollr + (Cok)P+ meas($2)
Q

N N
<k Y Cpm) +k Y 7llgnllrian) + klluoll + (Cok)”+ meas(2)
n=1 n=1
<ENTC(Q, 1) + kllgllr o0) + Elluolls + (Cok)P+ meas(€)
S KTC(Q, 1) + kgl o0) + klluollr + (Cok)P meas(£2). (6)
We have .
lim UlMda; = U
k—0 k
Then dividing (6) by k and letting & — 0, we deduce by Fatou’s lemma that
Ul < C, (7)

where (' is a constant depending on k, g, u, ug, Co, T and €.
(2) The problem (P;) is equivalent to

—7div (®(Vu — O(u))) + 7|ulP®~2u 4+ @(u) = w in Q, (8)
®(Vu—0O(u)) - n+v(u) =g on 99,
where
a(s) = als)+s, w:=r1f1+a —7div(Fg)
with 2° defined on Ug by

0, | ug(x) ifzeQ,
w(w) = { 0 else.

Therefore (w,g1) € mﬁj()(Q) x L1(0R2), and using (H1), we obtain @ is continuous, @(0) = 0 and
@(s)s = 0 for all s € R. Hence, using [1, Theorem 3.4|, we have the existence of an entropy solution;

in the sense of [1, Definition 3.2] i.e. U € ﬁi’p(')(Q), a(UY) € LY(Q), v(U') € LY(09) and

T/ (VU - 0(UY) VT (U' - ¢)da —1-7'/ U P20 T3 (U — o) da
Q Q

+/ (Ta(U1)+U1)Tk(U1—cp)da:+T/ ’y(Ul)Tk(Ul—gp)da
Q o0

g/TTk(Ul—cp)dw—FT/ QT (U - ) do,
Q o0

for any ¢ € WHP)(Q) N L>(Q) and every k > 0, which ends the proof of existence of the entropy
solution for the problem (P).
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Since U™~! € L'(Q), by induction, we deduce that for n = 2,..., N, the problem

u — div(®(Vu — O(u))) + 7|ulP® 2y + ra(u) = 7f" + U"! — 7div(Fg) in Q, ()
®(Vu—0(u)) -n+~y(u) =g" on 0
has an entropy solution U" € ﬁi’p(')(Q) N LYQ), a(U™) € LYQ), v(U™) € L'(09). Moreover if
1 < p_ < ps <2 from [31, Theorem 1] this entropy solution is unique. [
4. Stability

In order to obtain the convergence results for the Euler forward scheme, we will establish some a priori
estimates for the discrete entropy solution (U™)1<n<n-

Theorem 2. Let hypotheses (H1)-(H3) be satisfied. There are positive constants C(T,$, p, ug, g)
and C(T,Q, p, ug, 4, 0+, f,g) depending on the data but not on N such that for alln =1,..., N, we
have the following assertions:

Assertion 1. || U™||1 < C(T,Q, p, uo, g);

Assertion 2. 7S, la(Uh) |1 + 730 [7(UA) | + 7 X0y U P20y < C(T, 2, w0, )

Assertion 3. Y0, [|[U* — U]y < C(T,Q, p, ug, 9);

Assertion 4. 7 Y11 py p(a) (Tk(U")) < k C(T, 2, p, uo, py, f19)-

Proof.
Proof of Assertion 1 and 2. We take ¢ = 0 as a test function in (4), to obtain

T

k (/Q@(VTk(Ui) — O(T},(U")) VI (U") dz + /Q ]%@(Tk((]i))‘p(x)dlq)

v [ipo2 PO gy o [T gy o@D gy [T 4
0 k Q k 0 k o9 k

T . . . 1 .
< - T i i i—1 ; T i\ |p(z) )
© [ T 10 Tl + 7 [ IO

We know that

/ (VT,(U") — O(T((U"))) VT (U")dx +/ L|@(Tk(Ui))|p(m)dx >0
Q p(x)

Q
and
| 0 | < k9.
Q
Consequently
T/ !U"\”(“’”)_QL Tk(U)der/ UiiTk(U)daj—i-/Ta(Ui)iTk(U)dx-i-T/ ’Y(Ui)LC(U)dU
0 k Q k Q k a9 k

<TC(, Q) + 7llgill 1oy + U], + K2+ 71 CB* meas(€).
Then letting k — 0 and using Fatou’s lemma, it follows that
TP+ [0+ 7 [l U]+ 7 @O < 7O Q)+ 7 llgill oy + U], (10)
Summing (10) from i = 1 to n we obtain
10473 @)+ V@ 73 TP, < nrC(, D) + gl ony + luoll
- - - < NTC(, Q) + 119l 2o + ol
= TC (1, 2) + gl 11 o + ol - (11)

which give the inequalities 1 and 2.
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Proof of Assertion 3. We assume that k > 1, and we take ¢ = T, (U’ —sign(U* = U 1)), (h > 1)
as a test function in (4). Then letting h — oo, we obtain,

r lim Z(k,h) + loi— v, <7 (C(M,Q) +lgill 11 o0y + @], + [ @H]], + H’Ui‘p(m)—1H1>

with
Z(k,h) := / (VU — O(UN)VT, (U = Ty (U' —sign(U" — U"™1)))dx
Q
= / (VU -e(U"))VU'dx

Qg nN2(k)
and

th = {’UZ — Th(Ui - sign (UZ - Ul_l))’ < k} 5

Q(k) = {|U" —sign (U' = U""")| > h}.
Since

QpNQk) C {k—1<|U <k+h},
Following the proof of [32, Lemma 3.6], one obtain

lim Z(k,h) = 0.
h—o0
Therefore
[0 = U, < b (€09 + Dol oy + 0@, + @), + IPO,) . a2)

As nt < N7 = T, then summing (12) from ¢ = 1 to n and by the stability result 2, we obtain the
stability result 3.
Proof of Assertion 4. Taking ¢ = 0in (4), we get

T (/Q !VTk(Ui) — @(Tk(Ui)) ‘p(x)—2(VTk(Ui) - @(Tk(Ui)))VTk(Ui)dx I /Q |Tk(Ui)|p(x)d£E>
< kr(Cu, Q) + llgill 1oy + [|[@H||, + |v@H,) + kU = U,

Thanks to Lemma 1 and the fact that
(a+bP <27 HaP +0P) Va,be R, 1< p< oo,

we obtain the following inequalities

VT (UF) — O(To(UH)) [P 2 (VT(UY) — O(TH(UY))) VT (Te (U*))
%‘VTIC(UZ') — @(Tk(Ui)) ‘p(m) _ ﬁ‘@(Tk(UMP(m)

and
|VTk(Ui)|p(m) < 2p(m)—1(|VTk Ui) _@( Uz )|:n(:v 4 |@( Uz ‘p
Then, by the assumption (H3) we deduce that
VT (U) — ©(To(U)) [P (VTL(UT) — O(Th(U))) VTR (U?) + |Tk(Ui)|p(m)

> 2p(w>—1mWTk(U )P 4 T (U )— |@ P
1

1 ; x 1 T i x)
> W]:\VTk(U’)|p( )+ (1 - ch( >> |Tk(U [P

Consequently, the assumption on the constant Cy in (H3) gives the existence of a positive constant C
such that

/Q (VT (U") — O(T(U))P@=2(VU* — 0(U))VT1L(U) + [Ti(UY)[P@)) dx >

. 1 1 il i 1 1 i
mln{wp }(/ VT (U )|P( d:n—i—/ T3 (U") |p d:n> mln{2p —+ C’} Pl,p(x)(Tk(U ))
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From where we have,

Z‘ 1
TP1,p(x) (Tk(U )) <

min{p7+2;+,1,0} ' '
+kUt U, a3)
Then, summing (13) from ¢ = 1 to n and using the stability results 1, 2, 3, we get

szlp (TW(U") < 1 }[k(a )+H9HL1(89+TZHC¥UZ I+ 73 h@dl, )

: 1
mln{W, i=1

(k7 (€01, + llgillzr @y + k@], + @)]],)

+kZHUZ_UZ_1H1] <kC(T7Q7g7u07p+)' |

5. Convergence and existence result

This section is devoted to establish the existence of an entropy solution for the problem (P).
We will work with the following spaces:

V = {ve P~ (0,T; WO(Q)): Vo € (IPV(Qr))}
and TP (Qr) = {u: Q x (0,T); measurable | T(u) € LP-(0,T; WP (Q)) with VTi(u) €
(Lf”(')(QT))d for every k > 0}. We give now the entropy formulation of the nonlinear parabolic
problem (P).

Definition 2. An entropy solution to problem (P) is a function u € T'*0)(Qz) N C(0,T; L*(Q))
such that

// (Vu —O(u))VIg(u—¢ dwds+// u) Ty (u — )docds—i—//aQ u) T (u — @) dxds
<—/0 <g >ds+/Jk p(O) dz = [ Tiult) = ¢(t) da
v /QTkw—so)du+/0t/mgn<u—eo>dads,

for all p € L®(Q)NV NnWHL(0,T; L' (Q)) for all k > 0 and t € [0,T].

The main result of this paper is:

Theorem 3. Let hypotheses (H1)—(H3) be satisfied. Then the nonlinear parabolic problem (P) has
an entropy solution.

Proof. We introduce a piecewise linear extension (called the Rothe function)

uN(0) := uo,
{ ’LLN(t) — Un—1+(Un Un— 1) —tn—1 (14)

T

for all t €]t~ ¢"], n=1,--- , N, in  and a piecewise constant function
ﬂN(O) = uop, (15)
av(t):=U", vtelt" "], n=1,...,N, in Q,

where t" := n7 and (U")1<p<n an entropy solution of (B,).
Thanks to Theorem 2, there exists a nonnegative constant C(7', €2, u,ug,g) not depending on N
such that for all N € N, we have

1
N HLI(Q NC(T7Q7,U7U079)7

C( Q u07g)7

7 -
N
[[u HLl(Q ) N
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HU C(T Q y b, U0, g )7

2@
H|EN|p < C(T,Q,M,UO,Q),

LY(Qr)
< C(T, 9, p,up, 9), (16)

LY(Qr)
(T7 Q7 M, Uo, 9)7

(T7 Q7 2 u07g)'

Let us us observe that by Proposition 2 and Young inequality, we have

T T P
/0 HTk(ﬂN) Hl;(m) dt < /0 max {pl,p(m) (Tk(ﬂN)); P1,p(x) (Tk(ﬂN)) P+ } dt

T T p—
</0 p1,p(x)(Tk(UN))dt+/0 P p(a) (T (@) 7+ dt

Ha(ﬂN)HLl(QT) <C
H'Y(EN)HLl(QT) <C

T T
< [ b @@ e+ /0 (i—;m,p@(n(ﬂ))+<1—fi>> dt

b+
N th—1 tn—1 + — D
< Z/ P1p@) (T (U™))dt + Z/ P1p() (T (U™))dt + TT
n=1"1n
N
n=1

Therefore, using the stability result 4, we obtain

HTk(ﬂN) HLP* (07T;W1,p(z‘)(g)) < kC(Ta Qa M, UQ, g7p+)7 (18)
where C(T, €, i1, ug, g, p+) is a positive constant depending only the data not on N. ]

Lemma 3. Let assumptions (H1)-(H3) be satisfied. Then the sequence (") yen converges in mea-
sure and a.e. in Q.
Proof. Let ¢, r, k be positive numbers. For N, M € N, we have the inclusion

{[@" —a"| > r} c {|@"| > k}u {|z¥| > k}
U{\uN] k, [aM| <k, [@ —uM]>7‘} (19)
On the one hand, we have

1 1
meas{|ﬂN| > k‘} < E HUNHLl Q1) < EC(Ty u07f7g)7
1 1
meas{|ﬂM| >k} < z HuNHL1 o) S EC(T,UO,f,Q)
Then, for k large enough, it follows that
meas ({[@1] > k} U {[@"] > k}) < 5. (20)

On the other hand, by the Proposition 2, we have

1

1
T . T o
HTk(ﬂN)HLP(I)(QT) < max (/0 /Q|Tk(ﬂN|p(x)daj dt> ; </0 /Q|Tk(ﬂN|p(m)d:Edt>

Since
T T
| [ ima e = [ o0 @@y

tn
Z/ 1P1,p(gc (Tx(U ZTpr(x T.(U™)).
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Consequently, by the stability result 4, we have

1 1 1 1
HTk(ﬂN)HLP(I)(QT) < (k‘)pi + kP ) max {C(’LL(],p+, fv g) Pt O(T7 Q7 K, u(]vp—l-?g)er } . (21)
Hence, that the sequences (Tj,(7"))nen is bounded in LP®*)(Qr). Then, there exists a subsequence,
still denoted by (T, (@"))nen, that is a Cauchy sequence in LP(*)(Qr) ) and in measure. Thus, there
exists Ng € N such that for all N, M > Ny, we have

maw{mN|<k,mMmgk;mN-uM|>r}<:g. (22)
Then, by (19), (20) and (22), (u")yen converges in measure. Therefore there exists an element
u € M(Qr) (the set of measure on Q7 ) such that @ — u a.e. inQr. [

As in the proof of (21), one show that

1 1 1 1
HVTk HLp(ac) (Qr) (k‘)pi —|—k‘7’+)max{C’(uo,p+,f,g)P+,C’(uo,p+,f,g)7’+}, (23)

i.e. the sequence (VT (@"))nen is uniformly bounded in (LP(®)(Q7))%.

Consequently, one can extract a subsequence still denoted by (VT(@"))nen such that
(VTk(ﬂN))NeN converges to an element V in LP(* (QT) As Ty, (@) converges to Ty (u) in LP*)(Qr),
then VTj (@) converges to VI (u) weakly in (LP®)(Qr))?. So from (18), we conclude that

Ti(u) € LP= (0, T; WHP@(Q)) for all k > 0.
Lemma 4. (@")yen converges a.e. in Y.

Proof. We know that trace operator 7TW11(Q) — L!(09) is compact from, then there exists a
constant C' such that

T T
B 0) = Tl oyt < € [ 1700 0) = Tae) g

Which implies that, Ty (@ (t)) — Ty (u) in L' (Y1) and a.e. on X7
Consequently, there exists A C Y7 such that Ty (@ (t)) converges to Ty (u(t)) on Y7 \ A with
meas(A) = 0.

Let us introduce the following set:

A = {(t,:E) € Xrp: |Tk(u(t))| < k’}, and B =2XYr \ UiozlAk for k> 0.
We use the Holder type inequality to obtain

meas(B) = %/B|Tk (u)| do

1 T
<E/‘/]ﬂWWJ
0 o0
1 T
< [ 1T oo
1 T
<E/HHWMWmdt (21)

/‘/|n )|+ [Ti(u)]) i dt

1 X
<E(;ﬁ~—ymwﬂ(@ﬂ@nwmmm%ywvnwmmm@mo.
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Combining (21) and (23), we get
a1 a1
HTk (ﬂN) Hm(w)(Q) + HVTk (EN) H(Lp@)(Q))d < 2(k‘p* + k‘p+)

1 1
XmaX{C(u07p+7fug)p+7C(u07p+7f7g)p+}' (25)
Applying the Fatou’s lemma in (25), we get

1 1 1 1
HTk(u)”LP(f)(Q) + HVTk(u)”(LP(f)(Q))d < 2(kp7 + kar) max {C(u07p+7 f7 g)er ) C(u07p+7 f7 g)er } )
and (24) becomes
1 1 1 1
meaS(B) < 2(;{:17 + W) max {C(u07p+7 f7 g) Pt 9 C(u07p+7 f7 g)p+ } . (26)

Hence, letting £ — oo in (26) we deduce meas(B) = 0.
We define the function v on 92 by

v(t,z) =T (u(t))(z) if (x,t) € Ag.

Taking (x,t) € X7 \ (AU B); then there exists k > 0 such that (z,t) € A and we have
w (t,2) —(t @) = @ () = Ti@" (H)()) + (Te@" (1)) (@) — Ti(u(t))(@)).
As (z,t) € Ay, we have |Tj,(@"(t))(z)| < k from which we deduce that T}, (uV(¢)) (z) = u(t,z).
Then
Y (t,x) — v(t,z) = (Te@" (t))(x) — Tr(u(t))(z)) =0 as N — oo,

i.e. us converges to v a.e. on 3. [
Lemma 5. The sequence (") yen converges to u in C(0,T; LY(Q2)).

Proof. Let (t" = n7y))_; and (™ = m7y)M | be two partitions of the interval [0,7] and let

(uN (@), aN (t)), (u™(t),u™(t)) be the semi-discrete solutions defined by (14), (15) and corresponding
to the respective partitions. Let ¢ € L>®(Q) NV N WHL(0,T; L1(Q)). From (4), we have

t auN t
/ <—,Tk(ﬂN — ¢)>ds+/ / o(vaY —o@V)) -  VI([@" — )dxds
0 s 0 JQ
t t t
+/ / \HN]p(x)_2ﬂNTk(ﬂN—cp)dxds+/ / a(ﬂN)Tk(ﬂN—gp)da:ds—i-// (@@ — ¢)do ds
0JQ 0J/Q 0 JoQ

t t t
g/ fNE(T (@M —cp))da:ds—i—// Fr-VTi(@" - gp)da:ds—i—// gNTi(@ — @)dzds (27)
0JUq 0JUq 0.JoQ

and
M
/t <%”—S,Tk(ﬂM — cp)> ds + /t/ o(VaM —o@@M)) - VI,@" — p)dxds
0 0 JQ
—i—/t/Q ]ﬂM]p(x)_zﬂMTk(ﬂM—gp)da: ds—k/t/Q (@ T, (TM - p)da ds+/t/m (@) T, (@ — p)do ds
0 t ) 0 t 0
</0 ; fuE(TL (@M — p))dxds + /O/U Fr-VT,@" — )dxds +/0/mgMTk(aM —)dxds, (28)
with
fN(tv‘T) = fn(x)v gN(tv‘T) = gn(x) vt E]tn_l7tn]7
fM(t7:E) = fm(:E)’ gM(t7:E) = gm(:E) vt e]tm_17tm]'

Let h > 1, we take ¢ = T},(@™) and ¢ = T},(u” ) respectively in (27) and (28). Adding both inequalities,
we obtain, for k =1,

t 8 uN—uM t p(x)—2 _ _ _
/0 <%,T1 (uN—uM)>ds+IN,M(h)+/O /QWN| @ 2uNT1 (uN—Th (’LLM))d:EdS
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+/Ot/|Mp(x oM @ - T (T ))dxds—ir/ot/ﬂ @) 11 (@ - T, (@) do ds

/O/Qa 7 Ty, (@) da ds

+/0/mfy o)1y (@ - T, (@) d+ @) Ty (@Y - Ty (@Y))] do ds
</Ot<a Do —uM)>—<%,T1(ﬂN—Th(ﬂM))>ds

_/O <§ T @ — T, (@ ))>d3—|—/0t [ e (@ 1 (@) dras
+/Ot/UQFR-VT1 (@ — T, (@) da ds

+/Ot B (Ty (@ — T, (u )))da:ds—i—/ot [ VT @ - T (@)

v /8 o (& = T3 (@) + g (8~ T (5))) o s

where

2

_l’_

~+

1N7M<h):/0t/gq>(wv_@(ﬂfv)) VT (@ — T, (@) da ds

t
+/ / o (Vi —e (@) - vni(@ - 7,@"))dx ds.
0 JQ
We have

/Ot <W’ﬂ (u¥ —uM)> s

and we have

HTl (“N - “M) HLOO(QT)
LY (Qr)
< 2C(T7 Qnug)u()) HTl (uN - uM

)HLOO(QT)

lim |7y (uY = 0.

M
N, M-00 —u) HLOO(QT)

t N _ M
lim lim <M,T1 (uN—uM)>d8:0.
0

h—o00 N,M —00 0s

Which implies that

Using the same process, one obtain the following convergences results
. . ou _N —M du M
il ([ (Gt @ =0 @) )+ (G @ - ) as) <o

t
Jim /0 /8 lonTy (7 =T, (@) + Ty (5 T, (5))] dds = 0

(29)

t
hli_)ngoN’Jl\i/In_l)OO/O /Qa(ﬂN) N Th dxds+/ / M—Th(ﬂN))da:ds:O,

and

lm lim /t/m[fy(UN)Tl(UN—Th(ﬂM))dJr'y( MYy (@ — T, (@))] dor ds = 0.

h—oo N, M—o0 [
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We have

/0 t /Q T ()T (@ — Ty (@) da ds
< [ [ @ =7 @) o

< llzrign 1T @ = Tn (@) || 10 -

/ t [ B (@ @ - ) doas

On the one hand, we have

LT ) =T )y = 10~ Ti0)

On the other hand,
([T (u) = T (u)] poe ) = 0-
Which implies that

lim lim ||y (@) - T), (@) = 0.

h—o0 N,M—0c0 HLOO(QT)
Therefore,

t
lim lim / NE (Ty (@) — Ty, (@) dzds = 0.
0 JUq

h—o0 N,M—o0
Similarly, one obtain

h—o0 N,M—oc0

lim lim /t/ fmE(Ty (@) =Ty, (@) dw ds = 0.
0 JUq

Concerning the terms with Fr, we use the Holder type inequality to get

t
//F-VTl (@ — T, (a™)) da ds
0 JQ
t
</ /m\vn (@ — T, (@"))| de ds
0 JQ

11 - .
<p_ i p_’> [l i@eye VT2 @ = Th (@) | zotor e -

/ [ B vE (T @) - T () do ds

N

Now, we use the fact that (V71 (@")) converges to VT}(u) in (LP(®)(Qr))? to obtain

A i = V7 @ = Th @D wror@rys = O

Then, it follows that .
lim lim / / Fg-VE(Ty (@ - T, (@))) dvds = 0
0 JUq

h—o0 N,M—o00

and
t
lim lim / Fr-VE (T, (@ — T, (7)) dr ds = 0.
0 JUq

h—o0 N,M—o00
By the Fatou’s lemma one show that [7V|P®*)=2aN converges to |u[P(®)=2y in L'(Qr), hence applying

the generalized Lebesgue convergence theorem, we have

t t
lim / / @ PO 2Ny @ -1, (@) da ds = / / P 2Ty (u — Ty, (@) da ds.
0 JQ 0 JOQ

N—oo

So from the Lebesgue convergence theorem we deduce that

t t
lim / / [uP@) =241y (u—Tp(@")) dz ds = / / [uP@ 24Ty (u — Ty (u)) da ds,
0 JQ 0 JQ

M—oo

t
lim / / [uP@ 24Ty (u — T, (u)) da ds = 0.
0 Jo

h—o00
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Then .
hli_)m NJI\I}I_l) / /Q !ﬂ”pm_z ﬂNTl (EN — T (HM)) drds = 0.
oo N, o Jo
Using the same method, we obtain
¢
lim _lim / / @M [P gM Ty (@ - T, (@) dads = 0.
Q

h—oo N,M—o00 Jg

Consequently, letting N, M — oo and h — oo, in (29) we get

h—o00 N,M— o0 Os h—o00 N,M— o0

t N _, M
lim lim <M,T1 (uN— )>ds+ lim lim Iy (k) <O.
0

We know that

(Grm@) =5 [ ae) £,

then (31) becomes

li li I h) > 0.
Jm i Iy (h) >0

We set A
In(h) = ZLi(h),
where =
Li(h) = t/ o(vay —oe@")) v (@ - T, (@")) dvds
// vt — e @) VT, (@ T, (@) de ds
Qi(h)
and
Qu(h) = {[@"] < h, @] <k}, Qao(h) = {|@"| < b, @] > R},
Qs(h) = {[@"] > h, @] < h}, Qu(h) = {|@"| > h, @] > h}.
Firstly, we have
(b _/ /Q o (va¥ -0 @) - @ (Ve — e (@))] -V @ - a) dx ds

B / /m @ (va¥ —e @) - (va¥ - @"))] - ve (@, 7) duds
/ / o(va' - 0@") - o(vat - e@"))] - (6 (@) - © (@) dvds

> [ Ly 12 (570 ()= (T (1)) = (V73 () 6 (73 (7)))] - b (7"
where
Ve (@, @) = va" — e (@) - (va" - e (@),
b (2.7) = 6 (1, (7)) - © (7 (7).
al(h) = {[a] < b [1¥] < b [V~ "] <1}
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We have
O (1) (UN)) -0 (Th(ﬂM)) — 0 strongly in (Lp(x)(QT))d
and

(VT (@) = © (Tn (@))) = @ (VT (@) = © (T, (@")))

converges weakly in (Lp (QT))d, then it follows that the integral

[ oy 12 (V70 (5) =0 (7 (7)) — @ (VT3 (7) = © (1 (1)) - A () s

tends to zero. Therefore

lim lim Lji(h) > 0.

h—o0 N,M—o00

Secondly, by the assumption (H3), we have

h_//m o (Ve — o @) VuNda:ds+//Qz o (Ve — o (@) v (@ —u) de ds
—/0 /Qg(h)cp(wM—e(ﬂM)) - vaNdz ds,

with

= {‘HN h, |u
— {[a| <h|u
Taking ¢ = T}, (u) in (27), we deduce that

t
lim lim // o (va" —e (@) - va" =o.
h—o0 N—o00 0 {h<|ﬂN|<h+k}

@) <1},
aM| <1}

| <
| <

Which implies that

t
lim lim / / (vay — o@")["" dzds =0, k>0 (33)
h—o00 N—oo 0 {hé’ﬂN‘gh—i—k}
and
lim lim / / ‘Vu ‘ ) dx ds = 0, k>0. (34)
h—o00 N—o00 {h<|uN|<h+k}

Thanks to Young inequality, we have

t
// o (vaV —e@@")) - vu'dx ds
0 JQ3(h)

t
<// (va — e@)|" ! [vaN| de ds
0 Jo3(n)

t t
< / / ,1 oM — @(HM)‘p(x) dx ds +/ / L ‘VEMVM) dx ds
0 J{r<[@M|<h+1} P'(x) {h— 1<\HN\<h} p(z

t
</ / L |va )P dxds+/ / L 9@ g ds.
0 J{n<[aM|<h+1} j {h—1<uN|<h} P—
Then, from (33)—(34), we have

t
lim / / o (vat — e (@) - va" =0,
N,M—)OO 0 Q%(h)

lim lim Ly(h) > 0.

h—o0 N,M—o00

therefore

Similarly, one obtain

lim lim (Lz(h) + La(h)) > 0.

h—o00 N,M —o00
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Consequently

= 0.
il Tvar(h) > 0

Hence, by (32) we get

N}\i/jn_l}oo A J1 (uN(t) - uM(t)) dx = 0. (35)

We have

1 W) — M 2 " W) — uM - N () — oM o
2/{IuN—uMél}| g e Jr/{|uN_uM>1}| g O] </le( ©) (1)) da

then

™ (t) —uM (t)| da = uN () — uM(t)| dz u () — uM(t)| do
/{u’\’—uMl>1}| g ] /{uN_uMKl}| g “l Jr/{uN_uM|>1}| " ®l

'Z,LN — UM 2 X % UN — UM X
s CQ ( /{|uN—uM<1} | (t) (t)‘ d > * /HuN—uM)l} ‘ (t) (t)| d

< Ch(Q) < /Q Ty (1) uM(t))dx> i /Q I (1) — ™ (1)) do. (36)

Combining (35) and (36), it follows that (u’¥)yen is a Cauchy sequence in C(0,7; L'(Q)). Hence
(u™N) yen converges to u in C(0,T; LY(9)).

Now, we prove that the limit function w is an entropy solution of the problem (P). We have
uN(0) = U = ug for all N € N, and u(0,-) = ug. The inequality (27) implies

[ (G =) -1 ¥ =) s [ [ @ (vaY -0 @) VI Y ) doas
+/t/ || P2 5N (ﬂN—w)d$d5+/0 /Qa(ﬂ ) T, (@ — ) dw ds
//m —90) do ds (37)

</<67 (uN_SD)_Tk(uN—QD)>dS—|—/QJk(uN(O) ())d:ﬂ—/Jk( ()—(p(t))dgj
+/0/UfNE(Tk(aM_¢))dxds+/ot [ oI (@ - d:nds—l—//aQNTk o) du ds.

Setting k = k + ||¢||co. Then, it follows that
/ t [o (v~ 0@) - VI @ - ) dras
0 JQ
= [ [0 (1)~ (1 @) - VT (75 (5) — o) dads
= [ 1@ (9T @) - 0 (1a)) - VT@) @ (9T (0¥) = © (7 (7)) - Vee] Lo,

with Q(N, k) {‘T ( ) 90‘ < k:} Hence, (37) becomes

/ <88L,Tk(ﬂN_ 0) — >ds—/ / (VI (@) — O(T(@ N)))'v‘plQ(N,k)
// [ =0 (T (@) - Vg (@ )+@|®(TE(ﬂN))‘p(x) 1ok

v f /QiﬂN\ N, (HN—gp)da:ds+/0t/Qa(ﬂN)Tk (@ — ) dads
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+/Ot/8Q’y(EN) Ty, (@ — ¢) do ds

< - /Ot <?;SD Ty (u >ds + / Ji (u — ¢(0)) dz — /Q Je (uN (@) —o(t))dz  (38)

t
+/ fNE(Tk(UM—gp))da:ds—k/ / Fg- VT (@" — ¢) dxds
0 JUq Uq

—I—/Ot/anNTk(ﬂ d:nds+//ﬂp 0 (T (@) do at.

o (T (ﬂN)) — © (T(u))  strongly in (Lp(m)(QT))dv (39)

VT (EN) — VTz(u) strongly in (Lp(x)(QT))d.

We have

Then,
) (VT— (_N) ] (TE (_N))) — O (VT—( )—© (Tz(u))) strongly in (Lp(x)(QT))d

Now, since Vlg(y k) converges in LP@(Qr) to Vplgk), we have
//q> (VI (@) - © (T (@))) - Velowa %// (VT(w) - © (T5(w))) - Vrlgu,

where Q(k {|T ‘ < k:} We know that

[¢<vvz<aN>—-@<z;<aN>>>-vv;afV>+}ig;mxzkaﬂV»vﬂw}1Qumk)>(1

Therefore, by (39), (40) and Fatou’s lemma,
/0 t /Q {cp (VTo(u) — © (Ty(w)) - VT, (u) + Zﬁ 1© (To(w) \”(x)} Lowde ds
< liminf /0 t /Q {cp (VI@Y) — (T (@) - VI; (@) + Iﬁ O (15 (aN))V’(x)] Loy k)de ds.
By the hypothesis (H3) we have
1o @ @) < (ch™.

which implies by (39) and the dommated convergence theorem that

// ‘(9 _N p( dxds—)// |p( dz ds.
QP QP

By Lemma5, we deduce that u” (t) — u(t) in L(Q2) for all t € [0 T, which implies that

/Jk(u (t) d:n—>/Jk o(t))dz Vte[0,T)]. (41)
Q
Following the method used in the proof of equality (30) to show that
lim Ou’t Ty (_N —¢) = Tj (uN —¢) )ds =0 (42)
N—oo 0 83 '

Let us show that

t t t
lim fNE(Tk(ﬁN—cp))dxds—ir// FR~VE(Tk(ﬂN—cp))dxds://Tk(UN—gp)duds.
0 JUq 0 JQ

N—oo 0 UQ

We have

t t
/ fNE(Tk(ﬂN—cp))dxds—i—// Fr-VE (T, (@ - o)) da ds
0 JUq 0 JUq
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t t
:/ / Tn(f)xeE (T (7 - ¢)) dxds+/ / Fa-VE (T (@ - ) deds
0 JUq 0 JUq

t t
:/0 /QTN(f)Tk (ﬂN—go)d:Eds+/0 /QF-VTk (ﬂN—go)dajds.

Thanks to the Lebesgue dominated convergence theorem, we have

]\}i_rgloo/ot/QTN(f)Tk (HN—cp) dxds:/ot/Qka(u—cp)da:. (43)

Since VT (u" — @) converges to VI (u — ) in (Lp(x)(QT))d, then using the Holder type inequality,
we have

F-VT (@ — ) — F-VTi(u— ) dzds

\//|F|‘VTk —) VTi(u—¢ ‘d:nds

1 1
S <;Z+(p) )”F”@Mz) @yt IVTs (@ =) = VTi(u = )| 1oy gpyye = 0 (44)

as N tends to oo.
Hence, passing to the limit and using (43)—(44), we obtain

t t
lim INE (T (7 — @) do ds + / Fr-VE (T (@ — ¢)) da ds
0

N—oo 0 UQ
t t
:/ /ka(u—go)daz+/ /F-VTk(u—gp)d:E
0 JQ 0 JQ

:/ FE(xo(Tk(u—9)dz+ [ F-VE (xoTk(u — ¢)) dz
0 JUq Uq

- /0 (. E (Ti(u — ))) ds

:/Ot/QTk(u—gp)duds. (45)

Finally, letting N — oo in (37) and using the above results and also the continuities of «, v and the
facts that

fn—f i LNQr),

gN — g in LI(ET),
Tp (@ —¢) = Trlu—g) in L¥Qr),
T3 (ﬂN —¢) > Tr(u—¢) in L*(Zp).

We deduce that w is an entropy solution of the nonlinear parabolic problem (P). ]
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|CHyBaHH$I Ta CTIWKICTb pOBB A3KIB HEJ'IIHII/IHI/IX I'Iap360f||‘-|Hl/IX 3aaa4y
3i 36ypeHV|M I'pa,D,IGHTOM Ta BVIMIpI'OBaJ'IbHVIMVI AdHNMMN

Ben6y6kep M. B.!, Tpaope V.2

! Buwa mexnoroziuna wroaa Cidi,
Vuisepcumem Moxameda Ben A6deanaxa, Pec, Mapokko
2 Jlabopamopia mamemamuru ma ingopmamuru (LAMI),
Vwisepcumem Jlowcosepa KI-3EPBO,
Vaeadyey, Bypxina-Daco

V it crarTi TOBOANTHCS iCHYBaHHSI €HTPOIIWHOTO PO3B’si3Ky HETIHIHHUX mapabosivaHux
piBHSHB 3 Judy3HUMU JAHUMU DPAJOHIBCHKOI MipH, KWl HE HABAHTAXKYE MHOXKWHU HY-
Jb0BOI p(+)-eMHOCTI Ta HEOIHOPIAHOT Kpaitosol ymoBu Helimana. 3a J0I0MOro0 MEeTOIUKI
qacoBOl JUCKPETHU3AI] aHAII3YIOThCS MUTAHHS iICHYBaHHs, €IMHOCTI Ta cTiKocTi. PyHK-
[[iOHaJIbHA IIOCTAHOBKA BKJO4Yae npocropu Jlebera ta CoboJieBa 31 3MIHHUMU [TOKa3HUKA-
M.

Knw4osi cnoBa: nesinitinag napabosiuna 3a0a4a, 3MiHHI NOKA3HUKU, €HMPONITHUL
p036°a30%, kpaiiosi ymosu muny Hetimana, nanisduckpemusayin, mipa Padona.
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