odeling
MATHEMATICAL MODELING AND COMPUTING, Vol.9, No. 4, pp.833-841 (2022) I\/I @P”ti"g

athematical

The solution of an infinite system of ternary differential equations

Ibragimov G.', Qo’shaqov H.2, Turgunov 1.3, Alias I. A4

YUniversity of Digital Economics and Agrotechnologies,
100022, Tashkent, Uzbekistan
2 Department of Mathematics, Andijan State University,
170100, Andijan, Uzbekistan
3 National University of Uzbekistan, University Street,
1000174, Almazar District, Tashkent, Uzbekistan
4 Department of Mathematics and Statistics, Universiti Putra Malaysia,

48400 UPM Serdang, Selangor, Malaysia
(Received 11 August 2022; Revised 9 October 2022; Accepted 10 October 2022)

The present paper is devoted to an infinite system of differential equations. This system
consists of ternary differential equations corresponding to 3 x 3 Jordan blocks. The system
is considered in the Hilbert space lo. A theorem about the existence and uniqueness of
solution of the system is proved.
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1. Introduction

Many real-life problems are reduced to the control problems described by partial differential equations
(PDE) (see, for example, [1-3]). It is well known that one of the main methods to solve such problems
for the PDE is the decomposition one (see, for example, [1,4-8]). As a result, we obtain a control
problem for infinite system of differential equations.

Indeed, let a controlled distributed system be described by the following parabolic equation
dy

a—l—Ay:w, y(z,0) =yo(z), €A, ylz,t)=0, xz€dA, 0<t<T, (1)

where y = y(x,t) is the unknown function, z = (z1,22,...,2,) € A C R", n > 1, A is a bounded
domain, and the boundary JA of the domain A is assumed to be piecewise smooth, ¢ € [0,7T], and T
is a given positive number, w = w(z,t) is the control function w(z,t) € La(Cr),

Cr={(z,t)|lx e A, 0 <t <T},

is an open cylinder in R" 1, yo(x) € Lay(A),

"9 oy
av=-3 5 (@32 ) oulo) = oo
a;j(x) is a bounded measurable function. Also, there exists positive number % such that

n

n
Z a;j(x)nin; = anZZ, forall (ni,m2,...,mn) € R" and =z € A.
ij=1 i=1
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Further, recall that W4 (A) is Hilbert space of elements of Ly(A) with first-order generalized deriva-
tives being square integrable on A, W21 ’O(CT) is the subspace of W4(A) where smooth compactly
supported functions form a dense subset, W21 ’O(CT) is Hilbert space of elements of Lo(Cr) with gen-
eralized derivatives %, 1 =1,2,...,n, being square integrable on Cr, and VV21 ’O(C'T) is the subspace

of VV21 ’O(CT) were smooth functions vanishing near Cr form a dense set. The inner products in La(A)
and W} (A) are defined by the formulas

(u,v)rL, :/ u(x)v(x) de, (u,v)Wg :/ (u(m)v(:n) +um(x)vm(x)) dz,
A A
respectively, and norms in these spaces are defined by the formulas

lullzs = Vi e, Tl = /Ot w)uwg,

respectively.
If the above-mentioned conditions are satisfied [9], then for any w(z,t) € Lao(Cr) and yo(z) €
La(A), problem (1) has a unique generalized solution y = y(x,t) in the class VV21 Y(Cr). Moreover, the

solution is in the form (see |9, III. 3|)

y(@, ) = yi(t)ei(x), (2)
i=1

where the functions y;(t), 0 <t < T, i =1,2,..., form a solution of Cauchy problem for the infinite
system of differential equations

A1, A2, ..., A, ... are the generalized eigenvalues of the operator A [4], all these eigenvalues are positive,
and \; — 400 as i — oo, the functions ¢ (x), p2(x),...,¢i(x),... form an orthonormal complete

system of generalized eigenfunctions of A in Lo(A), and w;(¢) and y;o are Fourier coefficients of w(x, t)
and yo(z), respectively, in the system {¢;(x)}, that is

w(z,t) = sz’(t)%(x)a Yyo(z,t) = Zyio(t)%’(x)-
i=1 i=1

In addition, the series (2) converges uniformly in Ly(Cr) and its sum y(z,t) belongs to the space
W1 (A) for each ¢ € [0,7T] and is a continuous function of the variable ¢ in the norm of Wi(A) [9].

Thus, there is close relationship between the control problems described by partial differential
equations (1) and infinite system of differential equations (3). For example, in [6,7,10,11], differential
game problems described by the linear partial differential equation of the next form

at 8:17@

ij=1

0z "9 0z
—=Az+u—v, Az=-— Z —(aij(az)%>,

where u and v are the control parameters of pursuer and evader respectively, z = z(z,t) is a scalar
function, were reduced to a differential game described by the following infinite system of differential

equations
Zr+ Apzp =up —vg, k=1,2,...,

where ug and vg, k = 1,2, ..., are control parameters of pursuer and evader respectively, zx, ug, vp € R,
and coefficients i, kK = 1,2,.. ., satisfy the condition

O< A< <., — .

The paper [12] also relates to such games.
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The papers [7,10, 11, 13, 14] suggested studying differential game problems described by infinite
system of differential equations (4) in one theoretical frame independently of partial differential equa-
tions assuming that A\, £ = 1,2,..., in (4) are any real numbers. Later on various differential game
problems described for infinite systems of differential equations were studied in the works [15-19].

So, there is a significant relationship between control problems described by partial differential
equations and those described by infinite system of differential equations.

We recall the vector space of all sequences of real numbers

ly = {52(51752,--',&”---) | i§i<00},
n=1

is Hilbert space with the inner product and norm defined by

En =St €l = VED.
n=1

In [20] existence and uniqueness theorem was proved for the infinite system (4) for any positive
numbers A;, ¢ = 1,2,..., in Hilbert space associated with the operator A. Later on such a theorem
was proved for the following infinite system of differential equations [21]

T = —ar; — Biyi +win,  24(0) = 4,

Ui = Bizi — iy +wia,  ¥i(0) = o,
in Hilbert space ly, where o, f3; are real numbers, «; > 0, (19, 20, - - .), (Y10, Y20, - -.) € l2, the function
w(t) = (wi(t), wa(t),...), t €[0,T], and components w;(t) = (w;1(t), wi2(t)) are measurable and satisfy
the condition

T o0
/ > (wh) +uwp®)dt < p’ 0<t<T,
0 _

T is a sufficiently large fixed number.
The general purpose of this paper is to study the following infinite system of differential equations:

T = —NT; + Yy + wi (t)7 :EZ(O) = T40,
Ui = —Ayi + 2 +wi(t), yi(0) = w0, i=1,2,..., (4)
i = —Nizi + wiz(t), zi(0) = zio,

in Hilbert space lo, where )\; is a given non negative real number,
zo = (T10,720,--.), Yo = (Yy10:Y20,---), 20 = (210, 220,---) € lo.

The class of functions w(t) = (wy(t), wa(t),...), w: [0,T] — la, with measurable coordinates w;(t) =

(wi1(t), wia(t), wiz(t)), 0 <t < T, i=1,2,..., satisfying the condition
00 T

> [ (k) + ) + whis) ds <
i=1
we denote by S(pg), where pg is a positive number.

The problem is to determine does there a unique solution of the system (4) in Hilbert space lo
exist? Let

ni(t) = ((zi(t), vi(t), (), [m(t)| = \/%2(’5) +y7(t) + 22(t),
TI(t) = (771(’5):772@)7 .- ) = (xl(t)7yl(t)7zl(t)7x2(t)7y2(t)v ZQ(t)7 .- ) ’
no = (110,720, - - -) = (10, Y10, 210, 20, Y20, 220, - - -),

o0 1/2 o 1/2
In(®)] = (Z(:v?(t) +yi(t) + Z?(t))> s Almoll = (Z(w?o + i + z?o)) :
i=1 =1
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2. Notation and preliminary results

In this section, we state some necessary basic definition and properties related to the study.

Definition 1. Let w(-) € S(po). A function n(t) = (ni(t),n2(t), ..

.), with continuous coordinates

n;(t) satisfying initial conditions 1;(0) = n;0, ¢ = 1,2, ... is said to be solution of the system (4) if n;(t)
is differentiable almost everywhere on [0,T] and satisfies almost everywhere on [0,T] the system (4).

It can be shown that for the matrix

N 1 0
Ai=10 =N 1], i=1,2,
0 0 =X\
we have
1t 3t
edit—e Nt 10 1 t |, i=1,2....
00 1

It is not difficult to verify that the following statement is true.
Property 1. For the matrix e?i*, the following relations hold
(1) eAi(t-i-h) — eAit . eAih;

(ii) |eAitm‘ < e_)‘ita(t)\m];

)
1
(iii) [Je — B3| <1—e M+t + 32, B3 = |0
0

The second inequality in (iii) can be established as follows. For z = (1,22, x3), 22 + 23 + 2% = 1,

e—)\it -1 te—)\it %th—)\it

edit — I|| :max‘(eA I) z| = max 0
|z|=1 |z|=1

(et — 1) @y + teNilay + Lt%e”

= max _)‘t—l)$2+te>‘t3:3
|lz|=1 (e—At )
e Ait 1) T te”
< max e Nt — 1) x| |+ | |te”
|z|=1 —)\t 1) T3

—)\-t

-1 te—Ait
e Nt — 1

lm
-

4l
T2
T3

—ma}§<(1 331+:E2+:E3+t6 i\ a3 +3:3+ i ’\it|3:3|>
T

1 1

2

We need this property in the following section to prove the main result of the present paper.

3. Main result

We denote the space of continuous functions n(t) € la, 0 < t <

statement is the main result of the present paper.

T, by C(0,T;ls).

The following

Theorem 1. If w(-) € S(po) and A\; > 0, i = 1,2,..., then there exists a unique solution of the

infinite system of differential equations (4) in the space C(0,T;12).
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Proof. Clearly, each ternary differential equation of the infinite system (4) has the unique solution

n(t) = (m(t),n2(t), - --), t
ni(t) = et + / A=y, (s) ds, (5)
0
where w; = (w1, wiz, wi3), Mo = (Tio, Yio, zio). Therefore, infinite system (4) can’t have more than one
solution in the space ls.
Next, we show that n(-) = (n1(-),nm2(:),...) € C(0,T;l2). To prove this we need to show that
n(t) = (m(t),n2(t),...) € ly for each ¢, 0 < ¢t < T, and that n(¢), 0 <t < T, is continuous in the norm

of the space Is.
We prove that n(t) = (n1(t),n2(t),...) € la for each t € [0,T]. One can obtain from (5) that

2
[mi(t) <‘6At77@0‘ +</‘ =)y (s) ‘ds) )

By using the relations following from Property 1
1
‘eAi(t_s)wi(s)‘ L e Nilt=s) <1 +(t—s)+ §(t — 8)2> lw;(s)]

<a(t) [wi(s)], >,

t
<t [ o),
0

and the Cauchy—Schwartz inequality

([1 i)

()2 <2 <e-wa2<t>|mo|2 ria) | |wz-<s>|2ds>

<2a1) (InoP + 7 | ' o))

2

we obtain

Therefore,
(%) o] 0 T
Do Im®)? < 20%(T) (Z il + TZ/O Iwi(8)|2d8>
=0 =0 =0

< 2a*(T) (|Inol* + Th3) -

Thus, n(t) € Iy for each ¢ € [0,T].
Let us prove that the function n(¢), 0 < t < 7', is continuous. We show that, for any positive ¢,
there exists § > 0 such that ||n(t + h) — n(t)|| < € whenever |h| < §. For h > 0, using Property 1

t+h t
milt 4+ h) — ma(t) = Mg / M=) (5) ds — el — / My (5) ds
0 0

t
= (eA"h — Eg) eAitmo +/ (eA"h — Eg) eA"(t_S)wi(s) ds
0

t+h
+/ A (t+h— s) ( )dS
t
Using the inequality (a + b+ ¢)? < 3(a® + b? + ¢?) yields

it +h) —ni(t)]* <3 ‘ (eAih - Es) eAitig ’ /t <eAih - E3> et (s) ds
0

t+h 2
/ eAi(t—I—h—s)wi(s) ds < 3H6Aih . E3H26—2)\ita2(t)|ni0|2
t

2
+3

+3
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t 2
T3t — By|2a2() ( | et ds)
0

t+h 2
+ 3a*(t) </ e N HFR=S) 1y ()] ds)
t

In(t + h) —n(t)|* = Z\mt+h ni(t)? <+ I + I,

Then,

where

N t 2
I =3a(1) Y [l - By (a”itmoﬁ # ([ e uias) ) ,
i=1 0

o0 t 2
Iy = 3a2(T) Z HeAz-h . E3H2 <6—2>\it‘m0‘2 + </ e_)‘i(t—s)]wi(s)\ds> ) ,
i=N+1 0
o0 t+h 2
=3ty ([ s |
i=1 Wt

where N is a positive integer to be chosen below.
Since A; > 0 and by Property 1 (iii) [led" — E5|? < (1+h + %hz)z, we have

I < 303(T) f: A — B <|mo|2 (/ lwi(s |ds>2>

i=N+1
2 L.y g 2 T 2
<3a*(T)(14+h+=h Z niol”+T [ |wi(s)|["ds ) .
2 i=N+1 0

Since the series
oo o) T
Z|77i0|27 Z/ |wi(3)|2ds
i=1 =170

are convergent, then for any positive number &, we can choose the positive integer N such that Is < £/3.
Next, we estimate [;. Since \; > 0,

N t 2
A1) et — B (e_zkit‘moﬁ + </ e ai(s)| ds) )
=1 0
N ) T
DLt = (fnaf +7 [ w(oras). ©)
=1

By Property 1 (iii) [|e?" — B3> < (1—e ™"+ h+ %hz)2 — 0 as h — 0 for each . Since the
expression on the right hand side of (6) has finite number of terms, we can choose 07 such that I; < /3
whenever |h| < 0.

To estimate I3, we use Cauchy—Schwartz inequality

o0 t+h
2 T)Zh/t lw;(s)|*ds
=1
0 T
<3ha*(T)Y / lwi(s)[2ds < 3ha?(T)p?
=170
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Obviously, we can choose 3 such that I3 < £/3 whenever |h| < d3. Hence, ||n(t + h) —n(t)||* can
be done less than any given positive number & by choosing § = min{dy, d2}.
Now, we consider ||n(t) —n(t — h)||, h > 0. Since

t—h

t
mi(t) —mi(t — h) = XDy + / e (s) ds — e — / A=) (s) ds
0 0
—h

t
— (eAih o Eg) eAi(t_h)T]i() +/ (eAih o E3> eAi(t—h—S)wi(S) ds
0
t
+/ eAit=h=5) 1, (s) ds.
t—h

Similar to the estimation of ||n(t + h) — n(t)||> we can establish that for any positive number
e > 0, there exists number 6 > 0 such that |[n(t) — n(t — h)||> < & whenever |h| < 6. Therefore,
n(-) € C(0,T;l2). This completes the proof of the theorem. [

4. Conclusion

In the present paper, we have studied the existence and uniqueness of the solution of an infinite system
of ternary differential equations (4). The infinite system can be written as follows

Z=Az+w,

where the infinite block diagonal matrix A = diag(A;, Ag,...) consisting of matrices

“N 10
Ai=10 —N 11, i=12...,
0 0 =X\

is studied in this paper for the first time. We have proved the existence and uniqueness of the solution
of an infinite system of ternary differential equations in the space C'(0,T’;12). Clearly, A; is of the form
of Jordan block.

In the past, the following cases were studied (see, for example, [5,20])

~A 0 0 0
0 =X 0 ... 0 ...
A=1|... ... ... ... 0 ..., xn=0 i=12...,
0 0 .. . =
0

and (see, for example, [21])

—a; P
Bi — QG

Then for the corresponding infinite system, control and differential game problems were studied. Such
problems can be now studied for the infinite ternary differential equations (4) the cases of integral and
geometric constraints on controls of players.

In future, for the case

A = diag(A;, Ag, .. .), Ai:[ ], a; =20, i=1,2,....

a; b

A = diag(A44, A, .. .), Ai:[Ci d;

], i=1,2,....

the existence and uniqueness of the solution of infinite systems of differential equations can be studied.
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CraTTsi IpUCBsYeHa HECKIHYEHHIl cucremi audepeHiiaabHuX piBHsIHb. L[ cucreMa cKJia-
JAETHCs 3 MOTPIRHUX AuEpEeHIaJbHIX PIBHSAHB, 10 BIIMOBIIAIOTE 3 X 3 KOPIAHOBUM
6n0kam. CucreMa pO3IISIAEThCA B rijibbepToBOMYy mpoctopi ls. [loBeneno teopemy mpo
iCHYBaHHSI Ta €IUHICTH PO3B’SI3KY CHUCTEMH.

Kntouosi cnoBa: Jdudeperyianvhe pPieHANHA, HECKIHYEHHA CUCTEMG, ICHYSAHHA A
eduricmv po3s’asky, 2iavbepmosuti npocmip.
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