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In this work, we analyze a viral hepatitis C model. This epidemic remains a major prob-
lem for global public health, in all communities, despite the efforts made. The model is
analyzed using the stability theory of systems of nonlinear differential equations. Based on
the results of the analysis, the proposed model has two equilibrium points: a disease-free
equilibrium point Fy and an endemic equilibrium point E*. We investigate the existence of
equilibrium point of the model. Furthermore, based on the indirect Lyapunov method, we
study the local stability of each equilibrium point of the model. Moreover, by construct-
ing the appropriate Lyapunov function and by using LaSalle invariance principle, we get
some information on the global stability of equilibrium points under certain conditions.
The basic reproduction number Ry is calculated using the Next Generation method. The
positivity of the solutions and their bornitude have been proven, the existence of the solu-
tions has also been proven. Optimal control of the system was studied by proposing three
types of intervention: awareness program, early detection, isolation and treatment. The
maximum principle of Pontryagin was used to characterize the optimal controls found.
Numerical simulations were carried out with a finite numerical difference diagram and
using MATLAB to confirm acquired results.

Keywords: optimal control; equilibrium point; Lagrange function; objective function;
Pontryagin mazimum principle; HCV.
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1. Introduction

The field of mathematical modeling provides additional and substantial information on the mechanisms
of transmission and spread of epidemics in general, exploitable in preventive studies especially with the
appearance of new strains of old viruses that are still alive with the human species. A mathematical
model is a description of how the real world works using symbols, equations and mathematical formu-
las [1-13]. In epidemiology, this allows us to study how diseases spread, predict the future trajectory
of an outbreak, estimate the risks associated with infection, and help guide public health planning
and infectious disease control. The World Health Organization report confirms that viral hepatitis
is an international public health problem comparable to other major communicable diseases such as
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HIV, tuberculosis and malaria. Despite the heavy burden it places on people in all parts of the world,
hepatitis was not really considered a health and development priority until recently. It will no longer
be neglected with the adoption of the resolution on the program for sustainable development to 2030.
This strategy addresses five hepatitis viruses (hepatitis A, B, C, D and E), with a special focus on
hepatitis B and C because of the relative high public health burden. In particular, the third goal
specifically calls for action to combat viral hepatitis [14-16|. This field provides further information
concerning the mechanisms of epidemic transmission and spread.

There are several major hepatitis virus types, according to research and investigations conducted
by the World Health Organization, namely hepatitis A, hepatitis B, hepatitis D, hepatitis E and
hepatitis C. Our motivation behind the study of hepatitis C (HCV) is mainly the lack of vaccine for
this viral variant, the incubation period associated with this virus which is long and due to the heavy
relative burden it represents for public health [14,15].

Hepatitis C is an inflammation of the liver caused by the hepatitis C virus. HCV is an RNA virus
with a variety of rather important genomes. There are six main genotypes, rated from 1 to 6, and
many subtypes. The virus can cause both acute and chronic hepatitis, ranging in severity from a
mild illness to a serious, lifelong illness including liver cirrhosis and cancer. The hepatitis C virus is a
blood-born virus and most infection occur through exposure to blood from unsafe injection practices,
unsafe health care, unscreened blood transfusions, injection drug use and sexual practices that lead to
exposure to blood. Globally, an estimated 58 million people have chronic hepatitis C virus infection,
with about 1.5 million new infections occurring per year. WHO estimated that in 2019, approximately
290000 people died from hepatitis C, mostly from cirrhosis and hepatocellular carcinoma (primary liver
cancer). Antiviral medicines can cure more than 95% of persons with hepatitis C infection, but access
to diagnosis and treatment is low. There is currently no effective vaccine against hepatitis C [16,17].
The period of the 90s was that of the first treatments and therapeutic trials, the development of
screening tests, the first recommendations of screening and management and the structuring of the
supply of care. In terms of screening, ELISA tests for the detection of very sensitive and specific 3rd
generation anti-HCV antibodies (Ac) were developed as early as 1993. Effective tests for the detection
of HCV RNA in serum by PCR (polymerase chain reaction) have been developed and used in clinical
practice. The pharmaceutical industry and the research of Moroccan laboratories have contributed
to the fight against this human virus. Hepatitis C patients in Morocco now have relatively effective
treatments, thanks to the production of generic drugs principles in the country. On the other hand,
access to screening and biological examinations remains largely insufficient and the capacity to access
care against HCV [17]|. Currently, there is no effective hepatitis C vaccine, so this was also one of the
goals that prompted us to start this study [15-17].

2. Formulation of the mathematical model

We introduce in this work a mathematical model S, S, EICQ R with seven compartments. People in the
S, compartment are less likely to contract the HCV virus than those in the S,, compartment because
of their knowledge due to several factors such as: education, prevention and assistance in awareness
sessions. In general the infection of these two classes occurs through contact with an infected individual
of high viral load prevent from one of the compartments I or C. The infection by individuals under
incident treatment of the () compartment is extremely negligible. The chronic phase is more infectious
than the acute phase.

2.1. Description of the model

— The compartment S,,: represents the unawareness susceptible, how are individuals at risk of
infection who do not have information about hepatitis C and its severity. They have never been
to prevention sessions. It also contains the category of illiterates and newborns. In general, in-
dividuals in the S,, compartment are more likely to be infected with the virus than those in the
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S, compartment. Contamination in individuals from compartment S,, is by contact with a sick
individual from one of the compartments I, C.

The compartment S,: refers to the compartment of potentially infected individuals who already
have information about viral hepatitis C or who have attended awareness and prevention sessions
on this subject. Contamination in individuals from compartment S, is by contact with a sick
individual from one of the compartments I, C.

Note that: two groups S, and S, include, mainly, people who change blood especially during
transfusion, people with chronic diseases other than hepatitis C [16,17].

The compartment E': this compartment represents exposed individuals who are in the incubation
period of the epidemic, subjects during this phase are asymptomatic, and they are generally infected
but not infectious. The incubation period for hepatitis C ranges from 2 weeks to 6 months [11,16].
The compartment [: this compartment includes individuals who have acute viral hepatitis C
infections. This phase of the infection has a short duration, after this period the patient passes to
the chronic phase at a rate of 75% [14] otherwise the patient heals spontaneously [6].

The compartment C: this compartment groups together individuals who have chronic viral
hepatitis C infections, during this phase the virus can take a lifelong hold. The d; coefficient
represents the mortality rate of chronic individuals due to hepatitis C after having reached cirrhosis
during the terminal stage of this viral disease.

The compartment (): this compartment represents the individuals hospitalized due to the de-
terioration of their health or the individuals of the same situation who are isolated at home while
following the protocol of treatment discussed by their doctors. The coefficient do represents the
mortality rate of some patients under treatment due to the deterioration of their health.

The compartment R: represents individuals cured and established with a cure rate ~ after
treatment either in hospitals or at home.

The following diagram will demonstrate the flow directions of individuals among the compartments.

These directions will be represented by directed arrows, see the following diagram (see Fig. 1).

Ay @2

51 152
Q R
‘I\U/I B
A, n 124 " 122
Su|B2Snl B, s.C
2T+ = I o
n
Fig. 1.
2.2. Model equations
We consider a system of differential equations
dSa Sa Sa(t)C
dt(t) — A — B ](\';)I(t) _ Bs %) (t) — 1Sa (),
dscrlzt(f) — Ay — ﬁQSn](\}f)I(t) _ B4Sn](\t[)c(t) — 1S (1),
dggt) _ ﬁlsa](\ﬁ)l(t) + BSSaE\tf)C(t) + ﬁ?sn](\;)l(t) + B4Sn§\?c(t) — (a1 + s + pE(),
T = 01 E(t) — (u+ 61+ 62)1(1), (1)

G0 = @y B(t) + 011(t) — (u+ 0 +01)C(1),
9O — 9, 1(t) + oC(t) — (7 + p+ 62)Q(1),
R — Q(t) — uR(t)

subject to the following initial conditions:

5a(0) 20, 8,(0) =0, E()=0, I(0)=0, C(0)=0, Q0)=0, R(0)=0,
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where:

A1 is the incidence rate of individuals in the compartment Sg;

As is the incidence rate of individuals in the compartment S,,;

1 is natural mortality;

(1 is infection rate of an individual in the compartment S, due to contact with acute individual infection;

(9 is infection rate of an individual in the compartment .S,, due to contact with acute individual infection;

(3 is infection rate of an individual in the compartment S, due to contact with chronic individual infection;

B4 is infection rate of an individual in the compartment S,, due to contact with chronic individual infection;

a1 is the rate of people infected with the HCV virus who are symptomless;

ao is rate of people who have developed HCV virus rapidly, with a very short incubation time, and dangerously
due to immune failure, other chronic diseases, immunodeficiency, old age or very fragile living conditions;

0, is the rate of acute infections that resulted in chronic infection;

0> is the rate of people with serious complications who have been quarantined;

~ is the cure rate;

o is the percentage of chronically infected who will be treated by the therapeutic protocol in the hospitals

or in their homes, following the deterioration of their health;
01 is the rate of deaths due to complications of hepatitis HCV;

02 is the rate of people who died under quarantine in hospitals.

2.3. Model basic properties
2.3.1. Positivity of solutions

Theorem 1. If S,(0) > 0, S,(0) > 0, E(0) > 0, I(0) > 0, C(0) > 0, Q(0) > 0 and R(0) > 0, the
solutions S(t), Su(t), E(t), I(t), C(t), Q(t) and R(t) of system (1) are positive for all t > 0.

Proof. It follows from the first equation of system (1) that
dSat) _ A, _ BlSa( )I(?) ﬁSSa%)C(t) — 1S, (t)

dt
> B! ( ) _ 5500 _ 9. (1),

dsc‘z() + (,u + B1—y 1e) + 35< ) Sa(t) = 0, where F(t) = u+ Bl% + 53%. The both sides in last
inequality are multiplied by exp ( f(f F (S)ds). We obtain

eXp(/OtF(s)ds> dSa(t) | eXp</F > J(1) > 0,

then % (S (t) exp (f F(s )ds)) > 0. Integrating this inequality from 0 to ¢ gives

/Ot%<5a(s)exp</0 (5252 + 5,50 d >>ds>0,

5.(6) > S.00)exp - /0 (n+ 0+ ) as) =00

~ + 53
Similarly, we prove that S,,(0) > 0, E(0) >0, I(0) >0, C(0) > 0, Q(0) > 0 and R(0) > 0. [

then
0.

WV

2.3.2. Boudedness of the solutions

Theorem 2. The set Q = {(Sa,Sn,E I,O,QR)ERS /0K Sq+Sn+E+I+C+Q+R< %}
positively invariant under system (1) with initial conditions S,(0) > 0, S, (0) > 0, E(0) > 0, I(0) > 0,
C(0) =0, Q(0) = 0 and R(0) > 0.

Proof. Also, one assumes that % = AN +Ay—uN—-61C < Ay+As—puN = N(t) < A1+A2 +N(0)e M,

If we take limit ¢ — oo we have 0 < N(¢) < % It implies that the region €2 is a posmvely invariant
set for the system (1). [
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3. Existence of solutions

Theorem 3. The system (1) that satisfies a given initial condition (S,(0),S,(0), E(0),1(0),C(0),
Q(0), R(0)) has an unique solution.

Proof. Let X = (Su(t), Su(t), E(8), 1(1), C(£),Q(t), R(1))T, and o(X) = (50, 450 450 440,

dC(t) dQ(t) dR(t)
at o dt 0 dl

-
) , so the system (1) can be rewritten in the following form: ¢(X) = AX + B(X),

where
—u 0 0 0 0 0 0
0 —u 0 0 0 0
0 0 —(p+a+a) 0 0 0 0
A= 0 0 o — (g + 601 + ) 0 0 0 |,
0 0 [(6%) 91 - (U +u+ 51) 0 0
0 0 0 0o o —(p+o+3d) 0
0 0 0 0 ¥ —u
and
A — By Sa(}f\)fl(t) B Sa(t])VC(t)
Aoy — 52Sn(§\)/l(t) _ ﬁ45n(1‘}2{0(t)
Sa(DI(t) Sn(t)I(t) S.()C(t) S (£)C(1)
B(X) = B + + B3 + Ba=F
0
0
0
0

The second term on the right-hand side of (1) satisfies
Bsal() "‘B Snl(tll(t 1By al(tcl "‘B Snl(tcl()

B Sa, 2(]212 o By S, 2(]\312(15) — B Sa, 2(]\)702 o B4 S, 2(]\)702 ®

51 Sa,l(]t\;h(t) _1_51 Sa,l(]t\;lg(t) — By Sn,l(]t\;IZ(t) . 52 Snyl(]t\zh(t)

., +B3sa,1(}t\)fcl(t) | g, 5eaC20) ﬁ4Sn,1(t)C’2(t) B 54Sn,1(t)01(t)
o L) 8 Sa,2(t)I2( +/8 Sn 2(t I(t)

+,82 Sn,l(t)lg(t) _ /82 Sn,l(t 5

48, nl(t Cat) ﬁ4sn,1(t)cz(t) B Sag(t)cz(t + By Sn2( Cz(t)
Z
7
+2Z (|2

|B(X1) — B(X2)| =

N
Ml“ 1(t) = Io(t)] +

BZSnlt ‘|I (t)| +
Bssal(t ‘\C Co(t)] +

545““ \\c 2<t>\+
I>(t) a,1(t) = Sa2(t)]

() = La(t)] + 1%1 1S01(6) = Sna(t)])

() = Co®)] + | 3| 9a,1(8) = Sa2 (1)

CL(t) = Ca®)] + | %] 11 (8) = Sn2(®)])

<M (1X:(t) - Xa(t))

20 15,1(8) — Saa()]

525\2{(0‘ |Sn,1(t) _ Sn’Q(t)|
%Q(t)‘ |Sa,1(t) — Sa2(t)]

M‘ 1Sa,1(t) — Sa2(t)]

<2

_|_52

B2|.|BL
N |

&
N

B_
N

B3

N

B—]\‘} ), Z is a strictly positive number.

where M:2% ( £

_l’_

_l’_
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Then ||p(X1) — o(Xo2)|| < V - || X1 — X2||, where V = max (M, ||A]]) < oo.

Thus, it follows that the function ¢ is uniformly Lipschitz continuous, and the restriction on
Sa(t) =20, S,(t) >0, E(t) >0, I(t) >0, C(t) >0, Q(t) = 0 and R(t) > 0. We see that a solution of
the system exists [18]. [

4. Stability analysis of equilibrium point

4.1. The disease free equilibrium

To find the disease free equilibrium point, we equated the right hand side of model (1) to zero, evaluating
it at £ = I = 0 and solving for the noninfected and noncarrier state variables. Therefore, the disease
free equilibrium point E° = <[Ll, m 20, O)

4.2. The endemic equilibrium

The endemic equilibrium point E* = (5%, Sk, E* I*) it occurs when the disease persists in the com-
munity. To obtain it, we equate all the model Eq. (1) to zero. Then we obtain
S* _ A S* _ Ao E* (A1 +A2)(Ro—1) [* _ a1 (A1+A2)(Ro—1)
a " pRo’ n — uRg’ ~  (ptai+a2)Rp — (01+02+p) (utarta)Ro

_ (BiMi+B2A2)ar+(B3A1+BaN2) (a2 (014024 1)+601 Ol1)
Np(01+02+p) (pt+ai+az)(p+o+01)

Where Ry is the basic reproduction number given by Ry =

Proof of the basic reproductive number Rjy. The basic reproduction number denoted by Ry
is the expected value of infection rate per time unit. The infection occurs in a susceptible population,
caused by an infected individual. Based on the system (1), the article generates an equation that
involves the classes of exposed and infected population. The disease reproduction number Ry of the
proposed model (1) is defined in the infected classes. In all cases, Ry < 1 implies that disease will
decline, whereas Ry > 1 implies that disease will persist within a community and Ry = 1 requires
further investigation. Ry is obtained using the next generation matrix approach [9,19] where several
authors have used it.

We implore the use of a next-generation matrix to find the basic reproduction number for the
model (1). Without loss of generality, it is clear from the model (1), the article generates an equation
that involves the classes of the exposed population, infected population without symptom, and infected
population with symptom as follows:

dEdit) — BlSa(t)I(t) + BaSag\tf)C’(t) + BzSn](\;f)I(t) + B4Sn](ff)0(t) . (al + +,u)E(t),

i) — o E( ) = (401 +02)1(2),
%) = asB(t) + 011(t) — (u+ 0 +81) C(t),
990 — 9,1(t) + aC(t) — (v + i+ 62) Q(¢).

Referring to [9,19], from the equations (2), the study generates matrix .# and 7/, i.e.
BrSaMI(®) | B3Sa()C() | B2Sn(MI(®) | BaSn(t)C(?)
- N + : N + : N + : N

F = 0
0

0
(,U + a1 + 012) )
(014 02+ p) I(t) — 1 E(t)
—BE(t) =0 It)+ (u+o+6)C(t) |’
—021(t) — oC(t) + (v + p+ 02) Q(t)
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where
BiA1+B2A2 BaA1+B4A2 0
Npup Np
F— 0 0 0 0 ’
0 0 0 0
0 0 0 0
(B + a1+ o) 0 0 0
V= —oy (01 + 02+ ) 0 0
—ag —bh (u+o+d) 0
0 —b2 —o (v+p+62)

Therefore, FV ! is the next generation matrix of the model structure (2). So, as described in [9,19]
Ry = p(FV 1) where p stands for spectral radius of the next-generation matrix 'V ~!. Thus,

BsAy+B4A
PP R o
S 0 0
0 0 0 0
0 0 0 0
with
_ (BiAg + Balg)ay + (BsAy + BaAo)(aa(01 + 02 + 1) + 0101)
FVl — )
NpOr+60+p) (p+ o1 +a2) (p+0+01)
FV, = (B1A1 + B2Asg) (B3A1 + BaAo)0
(91+92+,u) Nu(u+a1+a2)(u+a+51)'
Finally, we have
Ry = p(FV~1)

_ (B1A1 + BaAo)aq + (B3A1 + BaAa)(ap(61 + 02 + 1) + O10)
Nup(0r + 62+ p)(pp+ a1 + a2)(p+ o+ 01) .

5. Local stability of disease free equilibrium

Theorem 4. The disease free equilibrium point E° is locally asymptotically stable if Ry < 1 and
unstable if Ry > 1.

Proof. The Jacobian matrix with respect to the system (1) is given by

Ar 0 0 S5t TSt 0 0
0 521('5);:7540('5) — 0 %ﬂ(t) %ﬂ(t) 0 0
A 521(75)-;[540(1‘/) —(o + s + ) 515a(t)]-i\-[ﬂ25n(t) 53Sa(t)]-i\-]ﬂ45n(t) 0 0
J=1 0 0 o —(p+ 01 + 62) 0 0 0
0 0 Qo 01 —(p+ o+ 01) 0 0
0 0 0 0 o —(vy+up+d) 0
0 0 0 0 0 ol —u

Where A4; M pand Ay = %

The Jacobian at the disease free equilibrium point E° as follows:
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A A
0 0 G oL 0 0
0 —u 0 A R 0 0
0 0 —(ai+ax+p) ﬁlAlj\j'f?A? BSAlA'}'uB4A2 0 0
= oo Ry S o o | ®
oY o by ~(u+o+) 0 0
0 0 0 0o o —(y+p+d2) O
0 0 0 0 0 - L

The characteristic polynomial of the Jacobian matrix at DFE is given by det(.J E@0) — Al) = 0, where
A is the eigenvalue and [ is 7 x 7 identity matrix. Thus, the determinant of (Jg) — AI) is

—u=Xx 0 0 Al &l 0 0
0 —u—A 0 babz Bada 0 0
0 0 —(m+az+p)—A Blutils BALIA 0 0
- 0 0 o —(p 461 +65) — X 0 0 0
0 0 [ D) 01 —([L+0'+51)—)\ 0 0
0 0 0 0, o —(vy4+p+d)—A 0
0 0 0 0 0 5y —p—A

Simplifying and solving for A, gives
M=—u<0, A=—p<0, A=—-pu<0, As=—(u+0+06)<0, I=—(u+~v+0d)<O0,
M=—(p+o1+a2) <0, M=(01+02+pn) (p+ar+a)(Ry—1) <0,
provided that Ry < 1. This completes the proof. ]

6. Local stability analysis of the endemic equilibrium E*

Theorem 5. The endemic equilibrium E* is locally asymptotically stable if Ry > 1.

Proof. The Jacobian matrix with respect to the system (1) is given by

ﬁlf(f)-]‘rvﬁsc(t) - 0 0 Bli}z(t) 535Na(t) 0 0
0 ﬂzI(t);rV&C(t) —u 0 52?\7(0 ﬂ4u‘§vn(t) 0 0
B11<t>J+VBsC(t) ﬁQI(t)}Lvﬂ4C(t) —(a1 + as + ) Blsa(t)jvﬁzsn(t) ﬁ35a(t);ﬁ45n(t) 0 0
J = 0 0 o —(p+ 601+ 62) 0 0 U
0 0 Q9 91 —(/L + o+ (51) 0 0
0 0 0 05 o ~(y+p+d) O
0 0 0 0 0 ¥ —u
which implies,
Ju 0 0 Jig J1is 0 0
0 Jx 0 Joy Jos 0 0
J31 Jza (a1 + o+ p) J34 J35 0 0
J(E*) = 0 0 Qaq —(u+ 01+ 02) 0 0 0 ,
0 0 [65) 91 —(,u +o+ (51) 0 0
0 0 0 0 o —(y+p+d) O
0 0 0 0 0 ol —l

with
_ B a1(Mi+A2)(Ro—1) _ _ B M _ B2 a1(A1+A2)(Ro—1) o _ B2 A
Ju=7% O1+0a+m)(ptartaz)Ro  Ho Jia = N uRo? Jr =% 01 +02Fm) (utartaz)Re o Jou = N uRo’
B2

o ﬁ a1 (A1+A2)(Ro—1) _ P2 ai(A1+A2)(Ro—1) o ﬁ A1 & Ao
I31 = N Ottt i)(itar fon)Ro® 932 = N @t ip)(uton taa)Ro® 933 = Nyl T N ko

N pRo”

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 101-118 (2023)



On stability analysis study and strategies for optimal control of a mathematical model of . .. 109

The characteristic polynomial of the Jacobian matrix at E* is given by det(Jg« — AI) = 0, where
A is the eigenvalue and I is 7 x 7 identity matrix. Thus,

det(J(E*) — AI)

Jii— M 0 0 N Jis 0 0
0 Jog — Ao 0 Joy 0 0 0
J31 J32 (a1 +ag+p) — Az J34 J35 0 0
= 0 0 aq —(u+01+92)—)\4 0 0 0 R
0 0 [e%} 01 *(/L+U+51)*)\5 0 0
0 0 0 92 g —(’7+H+(52)—/\6 0
0 0 0 0 0 ol —i— A7

det(J(E*) = AI) = (Ji1 — M) (Jaz = A2) [(=p = M) (=(v + p+ 02) = Xe)(— (1 + 0+ 61) = As)
X [(a1 + ao + M)(—(,u + 601 + 92) — )\4) — a1d33 — )\3]] — J14.
Simplifying the characteristic polynomial, we get
M=—pu<0, d=—-u<0, I=-u<0,
As=—(p+0o+0)<0, Xe=—(n+v+3d)<0,
A3=—(u+a;+a) <0, M\=—(0)+602+u)<O0.

The the other polynomial coefficients has all terms positive and thus, its roots must all be negative.
This completes the proof. [

7. Global stability of free equilibrium point

Theorem 6. If %y < 1 then free equilibrium point of the system is globally asymptotically stable.
Proof. To prove the global stability of free equilibrium point, we consider Lyapunov function V': Q —
R given by V(S4; Sn, B, A) = 1 (((Sa+ Sn) — (Sa + 5,)°) + E+ A)2 + 2(1\17:[‘2)(]5 + A). Using sys-
tem (1) and the coordinates of the free equilibrium point we have DyV (Sq, Sy, E, A) < —p((Sa+Sn) —
(Sa+8n)0)" = (u+7) B2 — (n-+0) A2 — P22 (Y Bt 0y A) — (2p-+ g +9) AE — (1—%0) (Sa+ Sn) (E+ A).
Thus, D;V (Sa, Sy, B, A) < 0 for Zy < 1. Also we obtain D;V (S,, Sn, E,A) =0 < S, = 5% S, =S
and A=E=0.

Hence, by La Salle’s invariance principle [10], free equilibrium point is globally asymptotically stable
on 2. |

8. Global stability of the endemic equilibrium point

Theorem 7. If %y > 1 then the endemic equilibrium point of the system is globally asymptotically
stable.

Proof. Consider Lyapunov function V': 0 — R given by

V (S, Sp, E) = ((sa +5,) = (S + Sn)* — (Sa+ Sp)*In &ajﬁg{) +(E—E* —E*InLZ).

Then by using the property of fractional derivatives, we have

DYV (Sa, S, B) < (1= S350 ) Dy(S, + 8,) + (1- &

) D/E.

Using system (1) and the coordinates of the endemic equilibrium point

A1+A2)((Sa+5n)—(Sat+Sn)*)?
DiV (S S, B) < — GRSt <o,

Also we obtain DV (S,, Sy, F) =0 <= S, = Sk; S, = S;.
Hence by La Salle’s invariance principle [10], the endemic equilibrium point is globally asymptoti-
cally stable on 2. ]

9. Numerical simulation

In this section, we present some numerical solutions of system (1) for different values of the parameters.
The resolution of system (1) was created using the finite-difference method. We use the different initial
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values for each variable of state, and we use the following parameters: A; = 7.5-10%, Ay = 7.5 - 10°,
uw = 0024, oy = 08, ap = 0.2, a3 = 0.03, 51 = 0.12, B = 0.1, 61 = 0.03, 65 = 0.05, 0 =
5.7341 - 1075 we have the Disease free Equilibrium point E° = (3.124 - 107,3.026 - 107,0,0,0,0) and
Zo = 0.243238520541080 < 1. In this case, over time, we notice that the number of susceptible people
is close to £, in other words, all the state variables converge towards the equilibrium point and this
for three different initial values in each of the state variables considered. We also note that the number

of the exposed people and the number of the infected people with symptoms, are close to zero (see
Fig. 2).

35E+07 3.6E+07
— S,(0)=500000 — 5,(0)=250000000
3E+07 S4(0)=4000000 || 34E+07 \ S,(0)=300000000
2.5E+07 — 5,(0)=5500000 | B — 5,(0)=350000000
o= 2E+07 =
= < 3E+07
“ 1 5E+07 «
BE+
LE+07 2.8E+07
5E+06 2.6E+07
0 2.4E+07
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
30000 1E+06
— E(0)=20000 — [(0)=3000000
25000 E(0)=25000 || 800000 1(0)=8000000
20000 | ——E(0)=30000 | =——1(0)=1000000
_ 600000
= 15000 1 g
400000
10000 \

5000 t\ J 200000
0

0

0 50 100 150 200 250 300 50 100 150 200 250 300
Time Time

Fig. 2. Model with a disease-free equilibrium.

[=}

2E+08 2E+09
1.5E+08 1 1.5E+09
o5 1E+08 1 & 1E+09
5E+07 1 5E+08
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time
2.5E+08 L2E+09
2E+08 1 LE+09
8E+08
__15E+08
=1 £ 6E+08
1E+08
4E+08
PEHOT 2E+08 ‘
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time

Fig. 3. Model with an epidemic equilibrium.

Also, for the different initial values for each variable of state, and the following parameters: A; =
75100, Ay = 7.5-107, = 0.03, oy = 0.8, ap = 0.2, a3 = 0.03, 31 = 0.12, By = 0.1, 6; = 0.03,
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0y = 0.05, 0 = 5.7341- 10~ we have the endemic equilibrium point E* and Ry = 9.8487 > 1 and state
variables converge to the equilibrium point E*. In this case, over time, we notice that the number of
S, and S, people are convergent to same value for each of them. We also note that the number of the
people infected and people exposed are convergent to same value (see Fig. 3).

10. The optimal control problem

To control the spread of hepatitis HCV we will introduce three types of controls wy, us and wusg,
respectively representing awareness, early detection and treatment. Thus our model with optimal
control is defined as follows:

dSC(lzt(t) — A — 61Sa](vt)l(t) _ BgSa%)C(t) — 1Sa(t) + u1(t)5215\‘[n(t)1(t) + m(lt)ﬁa‘}qvn(lt)@(t)7
dsgllt(t) = Ay — B2Snj(\17t)l(t) o B4S7L](\tf)0(t) — uSp(t) — u1(t)62}§\’;L(t)I(t) _ ul(t)54%(t)0(t)7

dlc?lgt) _ ﬁlSaZ(\l;)I(t) n ﬁgsn](\;f)l(t) n ﬁgsa%)C(t) n 54571](3)0@) (1 + g + ) E(t) — us() E(D),

M — ay B(t) — (i + 6y + 62)I(2), (4)
W0 = 6 B(t) +611(t) — (u+ 0+ 6)C(2),

WU — 9, 1(t) + o C(t) — (7 + 11+ 62)Q(E) + ua () E(t) — us()Q(2),

RO = 4Q(t) — uR(t) + us(HQ(D).

10.1. The optimal control: existence and characterization

The problem is to minimize the objective functional

J(ur,uz,uz) = E(T) + I(T) + C(T) + Q(T)
T
+ / [E(t) +1(t) + C(t) + Q(t) + Fui(t) + Zu3(t) + Zuj(t)]dt,
0

where A, B and D are the cost coefficients. They are selected to weigh the relative importance of
u(t), ua(t) and ug(t) at time ¢, T' is the final time. In other words, we seek the optimal controls uj,
us and w3 such that

J (ul,u3,uz) = min  J(u1,ug,us),
(u1,u2,u3)eU

where U is the set of admissible controls defined by
(ur,u2,u3): 0 < Ut min < ui(t) < U max < 1,
U= 0< U2 min < u2(t) < U2 max < 17
0 < U3, min < UB(t) < U3, max < 17 te [07T]

10.2. Existence of an optimal control

In this section we introduce a result concerning the existence of optimal control.

Theorem 8. Consider the control problem with system (4). There exists an optimal control
(uf,us,ul) € U such that

J(UT,U;,U;{’) = min J(Ul,UQ,Ug)- (5)
(u1,u2,u3)€U

Proof. The existence of the optimal control can be obtained using a result by Fleming and Rishel [20],
checking the following steps.

e The set of controls and corresponding state variables is non-empty. To prove this condition we use
a simplified version of an existence result of Boyce and DiPrima ( [21], Theorem 7.1.1).
e J is convex in U.
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e The control set U is convex and closed by definition. Take any controls uy,us € U and A € [0, 1].
Then 0 < Au+ (1 — A)v. Additionally, we observe that Adu; < A and (1 — MNug < (1 — A) then
Aup+ (1 =Nug < A4+ (1=X)=1.

Hence, 0 < Aug + (1 — ANug < 1, for all ug,us € U and X € [0, 1].

e The right hand sides of equations of system (4) are continuous, bounded above by linear function

in the state and controls variable.

The integrand L(F,...,Q,u1,uz,u3) of the objective functional is clearly convex on U. There
exists constants (1, (o, and 8 > 1 such that the integrand in the objective functional satisfies

L(E,...,Q.ui,u2,u3) > G + G (Jur[* + Juof® + |u3|2)§
Indeed
E@) +It)+CH)+ Q1) + 2ui(t) + Zud(t) + Zud(t) = G + G (Jun|* + |ual? + [us]?)
The state variables being bounded, let
(= 4t€i[%fT] (EQ)+It)+CH+Q®), (=inf(5,5,2), and p=2

)

B
2

Therefore, from Fleming and Rishel [9], we conclude that there exists an optimal control. ]

10.3. Characterization of the optimal control

In order to derive the necessary conditions for the optimal control, we apply Pontryagin’s maximum
principle [12,22| we have the Hamiltonian H at time ¢ defined by

H(t) = B(t) + I(t) + C(t) + Q(t) + Jui(t) + Fu3(t) + Suj(t +ZA )fi(Sa,Sn, E,I,C,Q, R).

Where f; is the right side of the difference equation of the i-th state varlable.

Theorem 9. Given the optimal controls (uj,u3,u}) and the solutions S¥, Sk, E*, I*, C*, T* and
R* of the corresponding state system (1), there exists adjoint variables A1, Ao, A3, A4, A5, A¢ and A7
satisfying:

-\ (_ Blf(t)JrBaC(t) _ M) NI 611(0}630(0

)

/
)\_85’

)

)\2 _ 85‘ = My (t) Bai(t )+ﬁ4c() TIW ( 2I(f)+54c(t) — uy(t) 521(15)+54C(t) _ N) TIpW ﬁ21(t)-|];[ﬁ4c(t)

Ny =Sk =1+ X (— (a1+a2+u)—u2( )) + Asag + Asaz + Agusa(t),
L= %_I}I — 14\ <_ﬁ15a(t) stn(t > (_52?\?@) — up(2) ﬁm%;(ﬂ)
Sn
+ A3 <51§$ I ( )> At + 01 + 02) + s + Aoba,
b= =1+ N (-’33?\«;@) B4Sn(t ) Y (_545\7;@) _ ul(t)ﬁ‘*fg(t)) W (63%}@) X 64%@))

— /\5(,& +o0+ 51) + /\60',
N =G5 =1—=X6(y+ p+ 62+ uz(t)) + M (v + us(t),
With the transversality conditions at time Ty: A\i(Tf) = 0, Xa(Ty) = 0, A3(Ty) = 1, a(Ty) = 1,
Xs(Ty) =1, A¢(T¢) = 1 and A7(Ty) = 0. Furthermore, for t € [0,T], the optimal controls uf, u3 and
us are given by
ut = min {1,max [07% ()\ (ﬁan](\;)I(t) + B4Sn(t)c(t)> Ao (ﬁ25n(t) ®) + B4Sn(t)c(t))>:|:| 7

uj = min [1,max [07 M }

w3 = min {1,max [O, MH .
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Proof. The Hamiltonian H is defined as follows:
7

H(t) = E@t)+ I(t) + C(t) + Q(t) + 3ui(t) + Zu3(t) + Zui(t) + > Xi(t) fi(Sa, Sn, B, 1,C,Q, R).
i=1

(f1= Ay - BSeOIO _ 535000 _ g () 4 m10BS.OI0) | n1(®8S.0CO

N N )
fo = Ay — 525’”](\;)1(@ _ 54»%%)0(@ — 1S (t) — U1(t)ﬁ2ifn(t)1(t) _ U1(t)B4A]9\}L(t)C(t),

fo = L2500 4 B QIO 4 o500 | PaSQICD () + g + ) B(t) — uz (1) E(2),
fo=oE(t) = (n+ 01+ 62)1(2),
fs = aaE(t) + 611(t) — (n+ 0 +61) C(t),
fo = 021(t) + oC(t) — (v + p+ 62) Q(t) + uz(t) E(t) — us(t)Q(2),
( f7=7Q(t) — pR(t) + us(t)Q(1)-
For t € [0,T1], the adjoint equations and transversality conditions can be obtained by using Pontryagin’s
maximum principle [1,23] such that

)

No= 2y (_BlI(t)"f‘B-‘SC(t) _ u) + g ALOF5CE)

Ny = SH =y (1) L0450 |y, <_Bzf(t);rvﬁ40(t) — oy () LOLCE) u) + Ay B2IOHBCE)
5= 0% =14 X3 (—(a1 + ag + p) — ua(t)) + Ao + sz + Asua(t),
= G =1 (250 (0 250) 4 g (- 2550 — () 2H9)

s ( BrSa(t) | ﬁzsn(t)> — A+ 01+ 02) + Asb1 + Agba,
N O 1y, <_%a(t) —|—u1(t)%"(t)> HISW <_%"(t) _ul(t)%”(tw + A3 (53%@) + 54%"(t))
— X5 (W + 0+ 81) + Xgo,
b=28 =12 (v+p+02+us(t)) + M (v +us(t)
Ny =98 = _\p.

For t € [0,T7], the optimal controls uj, u}, u} and u} can be solved from the optimality condition,

OH(t) _ g OH() _ o 9HW) _

dur(t) Duz(t) dus(t)
That are
Aur () + M (ﬁzSn](\}f)I(t) i B4sn§\t[)0(t)) W <ﬁ23n](\}f)1(t) i B4Sn§\t[)0(t)) —0,
Buy(t) — AM3E(t) + N E(t) = 0,
Dug(t) — A6Q(t) + A7Q(t) = 0.
We obtain

ui(t) = 4 ()\1 (stn](\;)l(t) " /34Sn]($)c(t)> o (ﬁQSn](\;f)I(t) N 545,1](5)0@)))

)

UQ(t) _ AgE(t);)\(;E(t),

us(t) = AGQ(t)BMQ(t)'
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11. Numerical simulation

In this section, we present the results obtained by numerically solving the optimality system. In our
control problem, we have initial conditions for the state variables and terminal conditions for the
adjoints. We solve the optimality system by an iterative method with forward solving of the state
system followed by backward solving of the adjoint system. We start with an initial guess for the
controls at the first iteration and then before the next iteration, we update the controls by using the
characterization. We continue until convergence of successive iterates is achieved. A code is written
and compiled in MatLab using the following data.

Different simulations can be

25E+07 35E+07 ) . .
sgorl carried out using various values
2E+07 f t
25E+07] of parameters.
= 1.5E+07 o 2E+H07}
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1E+07”
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4E+08
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0 . .
0 50 100 150 200 250 300 controls representing advertis-

Time .
ing and awareness and access to
Fig.4. Simulations of the model showing the effects of the optimal in & . .
early detection were combined.

case u; =0, u 0, u 0. . ..
' 27 37 There is a significant decrease

in the number of individuals exposed FE from the beginning of the second week, and the same be-
haviour for individuals in compartment I. For chronic infections C' there is a sharp decrease from the
first week. On the other hand, there is an increase in the number of people hospitalized @, including
those who have isolated themselves in their homes. For people who are cured R, there is also an
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increase in the first week. There is a very significant increase in individuals of .S, through prevention
and awareness which means the positive results of this strategy also (see Fig.5).
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Fig. 5. Simulations of the model showing the effects of the optimal in case u; # 0, ug # 0, uz = 0.

11.3. Strategy C

In this strategy we have combined three controls uj, uo and us. There is a significant decrease in the
number of individuals exposed E from the beginning of the second week, and the same behaviour for
individuals in compartment /. For chronic infections C' there is a sharp decrease from the first week.
On the other hand, there is an increase in the number of people hospitalized (). For people who are
cured R, there is also an increase very important from the first week, which highlights the effectiveness
of the combination of the three controls, relative to other strategies (see Fig.6).
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Fig. 6. Simulations of the model showing the effects of the optimal in case u; # 0, us # 0, ug # 0.

12. Conclusion

In this article we have introduced a nonlinear system of viral hepatitis HCV that can be applied in other
types of pathologies. Currently, there is no effective hepatitis C vaccine, so this was also one of the goals
that prompted us to start this study. Stability analysis and optimal control were studied. Numerical
simulation of the results, using MATLAB software, demonstrated the effectiveness of the strategies
used and the convergence of state variables to equilibrium points under certain conditions. We plan
to study other viruses and infectious diseases, generally, with or without delay in the continuous or
discrete case by also introducing the spatial variable and considering several study approaches (age,
sex, living environment, etc.).
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Mpo pocnip)xeHHst aHaNiI3y CTIMKOCTI Ta cTpaTerii oNTUMaJIbHOIoO
KepyBaHHSI B MaTeMaTu4Hiii mogeni renatnty C 3 naTeHTHUM CTaHOM

Esb FOceydi JI.Y, Kyinepe A1, Kaga /1.2, Banarid 0.3, Jays A.4, Paunk M.!

L Tabopamopisa ananisy, modesosamns ma cumyrayit,
Kagedpa mamemamuxu ma ingopmamuru, Parxyavmem nayx Ben M’ Cix,
Vwisepcumem Xacana II Kacabaarru, Mapokxo
2 Jla6opamopis in@opmayitinuz merroioeits ma Mo0es06aHHA,
Kagedpa mamemamuxu ma ingopmamuru, Parxyasvmem nayx Ben M’ Cix,
Vuisepcumem Xacana II Kacabaanku, Mapoxko
3 Jlabopamopis dunamivnux cucmem, Komanda mamemamunnoi inorcenepii,
Kagedpa mamemamuru, Parxyavmem nayx Eav-Lowcadida,
Vwisepcumem Qyatiba dykanri, Eav-locadioa, Mapoxko
4 JIabopamopis MaMeMamury ma npuriaoHoi MamMemamuKy,
Vuisepcumem Xacana II Kacabaanku, Mapoxko

VY it pobori anamizyemo mozesnsb Bipycuoro rematuty C. Is emimemisi, He3BaxKaro9Im Ha
JOKJIQJIeHI 3yCHUJLIsSA, 3aJIUIIAEThCA CEPHO3HOI0 IPOOJIEMOIO JJIsd TJI00aIbHOI CUCTEME I'PO-
MaJICbKOI OXOPOHU 3/I0POB’d B ycCix crmimbHOTax. Mojenb aHATI3YEThCs 3a JIOIIOMOTOIO TE€O-
pil crifikocTi cucTeM HeiHITHEX JudepeHIialbHIX PIBHSAHb. 3a Pe3yIbTaTaMHu aHaJi3y
3aIPOITIOHOBAHA MO/JIEJb MA€ JIBI TOYKM PIBHOBAru: TOUKY piBHOBaru F(j 06e3 3aXBOPIOBaH-
Hs Ta TOYKY piBHOBarm E* eHmemiunoro 3axBoproBaHHs. JlOC/IiTKeHO iCHyBaHHSI TOYKH
piBHOBarum mojesi. Kpim Toro, Ha ocHOBI HempssiMoro Merojy JIamyHoBa mOCTIIZKEHO JIO-
KaJbHA CTIMKICTh KOXKHOI TOUKH piBHOBaru mojesni. Kpim Toro, moby/iyBaBIu BimoBiHy
dyHKIio JIgnmyHoBa Ta BUKOPUCTOBYOYHN IpuHIUI iHBapianTHOCTI Jla CaJute, orpuMmyemMo
nesKy iHdOpMAIlio Mpo rI00abHy CTIfIKICTh TOYOK pIBHOBArW 3a NMEBHUX yMOB. bazose
quciio BigrBoperHs Ry obuncioerses 3a monmomoro meroay Next Generation. loBemeno
JONATHICTD PO3B’s3KiB, a TaKOXK iX icHyBaHHS. J[OC/TiKEeHO ONTHMAaJIbHE KepYBaHHS CHU-
CTeMH, IIPOIOHYIOYN TPH THUIIM BTPYYaHHs: Iporpama indOpMyBaHHs, PAHHE BUSABJIEHH,
i3ossAig Ta JiKyBaHHS. [y XapaKTepUCTUKM 3HANIEHUX ONTHMAJIbHIUX KEPYyBaHb BHKO-
pucrano npuHimn makcumyMmy llonrpsrina. UucesnbHe MozeoBaHHS OyJI0 IPOBENEHO 3
CKIHYEHHOIO YHMCEIBLHOI0 PI3HUIEBOIO Jjiarpamoro Ta Bukopuctanaasm MATLAB g min-
TBEP/I2KEHHST OTPUMAHUX PE3yJIHTATIB.

Knto4oBi cnoBa: onmumasvhe Kepysarns; mowka pienosazu; gynkyis Jlazparoca; ui-
084 Pyrryia; npuryun makcumymy Ionmpsazina; sipyc eenamumy C.
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