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1. Introduction and preliminary results

1.1. Introduction

This paper will deal with the following problem




∂u
∂t +Au = f, in Q,
u = 0, on Γ = ∂Ω × (0, T ),
u(x, 0) = 0, in Ω,

(1)

where
Au = − div(a(x, t, u)â(x, t, u,∇u)),

f ∈ Lm(Q), m > 1, Ω is an open bounded subset of RN (N > 2), Q is the cylinder Ω× (0, T ) (T > 0),
Γ the lateral surface ∂Ω × (0, T ).

Let a : Q × R → R be a Carathéodory function satisfying for almost every (x, t) ∈ Q and every
s ∈ R

α

(1 + |s|)θ 6 a(x, t, s) 6 β, (2)

and
0 6 θ < p− 1 +

p

N
, (3)

where p is a real number such that 2 < p < N , and α, β are two positive constants.
We assume that â : Ω×]0, T [×R×RN → RN is a Carathéodory function, satisfying for a.e. (x, t, s) ∈

Q× R, ∀ξ, ξ′ ∈ RN :
â(x, t, s, ξ) · ξ > |ξ|p, (4)

|â(x, t, s, ξ)| 6 b(x, t) + |s|p−1 + |ξ|p−1, (5)
(
â(x, t, s, ξ) − â(x, t, s, ξ′)

)
· (ξ − ξ′) > 0, (6)

b is a nonnegative function in Lp
′

(Q), where p′ = p
p−1 .

When the degenerate term does not appear in (1) (i.e., a(x, t, u) ≡ 1) and u(x, 0) = u0 ∈ L1(Ω),
the existence and regularity of entropy solution of (1) are proved in [1]. The uniqueness results has
been developed in [2]. If â(x, t, u,∇u) = |∇u|p−2∇u, in [3], existence and regularity results for the
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problem (1) were proved. The existence and uniqueness of a renormalised solution of problem (1)
proved in [4]. In the case θ 6= 0, p = 2, 0 6 θ < 1 + 2

N and f ∈ L1(Q), the existence and regularity of
entropy solutions studied in [5]. In [6] the authors prove the following result

Theorem 1. Under the hypotheses (2)–(6), if f ∈ Lm(Q) with m > N
p + 1, then there exists a

bounded weak solution u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) to problem (1).

1.2. Preliminary results

Let k > 0 and Tk : R → R the truncating function equal to Tk(s) := sgn(s) min{|s|, k}, and its primitive
Sk : R → R+

Sk(x) =

∫ x

0
Tk(s) ds. (7)

It results
1

2
|Tk(s)|2 6 Sk(s) 6 k|s|, ∀k > 0, ∀s ∈ R. (8)

We use the following definition of the entropy solutions.

Definition 1. A measurable function u ∈ L∞(0, T ;L1(Ω)) will be called an entropy solution to
problem (1) if Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)), for every k > 0, and if
∫

Ω
Sk(u(t) − φ(t))dx ∈ C([0, T ]), (9)

∫

Ω
Sk(u(T ) − φ(T )) dx −

∫

Ω
S

k
(−φ(0)) dx +

∫ T

0
〈φt, Tk(u− φ)〉 dt

+

∫

Q
a(x, t, u)â(x, t, u,∇u)∇Tk(u− φ) dx dt 6

∫

Q
fTk(u− φ) dx dt, (10)

for every k > 0 and φ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) such that

φt ∈ Lp(0, T ;W−1,p′(Ω)) + L1(Q).

Lemma 1. For every k > 0, if Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)), then there exists a unique measurable

function v : Q 7→ RN such that ∇Tk(u) = vχ{|u|<k} a.e. in Q, where χ{|u|<k} denotes the characteristic
function over the set {|u| < k}. Defining the derivative ∇u of u as the unique function v which satisfies
the above equality. Furthermore, u ∈ Lp(0, T ;W 1,p

0 (Ω)) if and only if v ∈ Lp(Q), and then v ≡ ∇u in
the usual weak sense.

Proof. The proof of Lemma 1 is the same as that of Lemma 2.2 in [7], we omit the details. �

Definition 2 (Refs. [8,9]). Let q be a positive number. The Marcinkiewicz space Mq(Q) is the set
of all measurable functions u : Q→ R such that

meas({(x, t) ∈ Q : |u(x, t)| > k}) 6
C

kq
, for every k > 0, (11)

for some constant C > 0. The norm of u in Mq(Q) is defined by

‖u‖qMq(Q) = inf{C > 0 such that (11) holds}.

The alternate name of weak Lq space is due to the fact that, if Q has finite measure, then
{

Mq(Q) ⊂ Mγ(Q),
Lq(Q) ⊂ Mq(Q) ⊂ Mγ(Q),

for every γ < q.
We also recall a consequence of the Gagliardo–Nirenberg embedding theorem.
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Lemma 2 (Ref. [13]). Let v ∈ Lh(0, T ;W 1,h
0 (Ω)) ∩ L∞(0, T ;L̺(Ω)), h, ̺ > 1. Then v belongs to

Lq(Q), where q = hN+̺
N , and there exists a positive constant M1 depending only on N , h, ̺ such that

∫

Q
|v(x, t)|q dx dt 6M1

(
ess sup

0<t<T

∫

Ω
|v(x, t)|̺dx

) h
N
∫

Q
|Dv(x, t)|h dx dt. (12)

Before the proof, we need a technical lemma.

Lemma 3. Let u be a measurable function in Mµ(Q) for some µ > 0, and assume that there exist
two nonegative constants ν > γ such that

∫

Q
|∇Tk(u)|p dx dt 6M2(1 + k)γkν−γ , ∀k > 0,

where M2 is a positive constant independent of k. Then |∇u| belongs to Ms(Q), with s = pµ
µ+ν .

Proof. We follow the lines of the proof of [7], Lemma 4.1. and 4.2. Let λ be a fixed positive real
number. We have, for every k > 0,

meas ({|∇u|p > λ}) = meas ({|∇u|p > λ, |u| 6 k}) + meas ({|∇u|p > λ, |u| > k})

6 meas ({|∇u|p > λ, |u| 6 k}) + meas ({|u| > k}) . (13)

Moreover,

meas ({|∇u|p > λ, |u| 6 k}) =
1

λ

∫

{|∇u|p>λ,|u|6k}
λdx dt 6

1

λ

∫

{|u|6k}
|∇u|p dx dt

6
1

λ

∫

Q
|∇Tk(u)|p dx dt 6M

(1 + k)γkν−γ

λ
.

If k > 1, then the above inequality turns into

meas ({|∇u|p > λ, |u| 6 k}) 6M
(2k)γkν−γ

λ
6 2γM

kν

λ
.

By Definition 2 of the Marcinkiewicz space and u ∈ Mµ(Q), then there exists a positive constant M1

independent of k such that

meas ({|u| > k}) 6M1
1

kµ
. (14)

Using (13)–(14), we obtain

meas ({|∇u|p > λ}) 6 2γM
kν

λ
+M1

1

kµ
6M2

(
kν

λ
+

1

kµ

)
, (15)

where M2 = max{2γM,M1}, and (15) holds for every k > 1. Minimizing with respect to k, we easily

prove that as k =
(µ
ν

) 1
µ+ν λ

1
µ+ν , the minimum value of the right side term in (15) is achieved, and

setting λ = hp for every h > 0 we get

meas ({|∇u| > h}) 6M2 min
k

(
kν

hp
+

1

kµ

)
6M2

[(µ
ν

) ν
µ+ν

+
(µ
ν

)− µ
µ+ν

]
1

h
pµ
µ+ν

6
M3

h
pµ
µ+ν

6
M3

hs
, (16)

where M3 is a positive constant independent of h. However, the above conclusion is obtained under

the assumpation k > 1, that is h >
(
ν
µ

) 1
p
. If h 6

(
ν
µ

) 1
p
, since Q is bounded, the above inequality

obviously holds. By (16) and Definition 2 yield |∇u| ∈ Ms(Q). �
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2. Statement of main results and approximate solutions

2.1. Statement of main results

Theorem 2. Under the hypotheses (2)–(6), if f ∈ Lm(Q) with

1 6 m 6 max

{
N + θ + 2

(p− 1)N + p+ 1 − θ(N − 1)
, 1

}
, (17)

then there exists an entropy solution u to problem (1) in the sence of Definition 1 with

u ∈ Mδ(Q), and |∇u| ∈ Mq(Q), (18)

where Mδ(Q), Mq(Q) are Marcinkiewicz spaces defind in Definition 2, and

δ =
m(p+N(p− 1 − θ))

N + p− pm
, and q =

m[N(p− 1 − θ) + p]

N + 1 − (θ + 1)(m− 1)
. (19)

Remark 1. If 0 6 θ < p − 1 + p
N − N+1

N , then (17) becomes m = 1, thus δ = p+N(p−1−θ)
N > 1,

q = N(p−1−θ)+p
N+1 > 1. By the embedding theorems between Marcinkiewicz and Lebesgue spaces, we

can deduce that u belongs to Ls(0, T ;W 1,s
0 (Ω)) for every 1 6 s < q = N(p−1−θ)+p

N+1 .

Remark 2. If p − 1 + p
N − N+1

N 6 θ < p − 1 + p
N , then (17) becomes 1 6 m 6 N+θ+2

(p−1)N+p+1−θ(N−1)

and q 6 1. It is not possible to deduce that |∇u| belongs to some Sobolev space even if 1 < m 6
N+θ+2

(p−1)N+p+1−θ(N−1) .

2.2. Approximate solutions

In the remainder of this section, we denote by c various positive constants depending only on the data
of the problem, but not on n and k.

Let (fn) be a sequence of bounded functions defined in Q, where fn ∈ D(Q) and satisfy

‖fn‖Lm(Q) 6 ‖f‖Lm(Q) 6 c, ∀n, (20)

fn → f, strongly in Lm(Q). (21)

We approximate the problem (1) by the following problems





∂un
∂t − div(a(x, t, Tn(un))â(x, t, un,∇un)) = fn, in Q,
un = 0, on Γ,
un(x, 0) = 0, in Ω.

(22)

For n ∈ N, we define the operator An by An = − div(a(., ., Tn(u))â(., ., u,∇u)).
From (2) and (4), we have
∫

Q
a(x, t, Tn(u))â(x, t, u,∇u) · ∇u dx dt > g(n)

∫

Q
|∇u|pdx dt, with g(n) =

1

(1 + |n|)θ ,

so that the operator An from Lp(0, T ;W 1,p
0 (Ω)) into its dual Lp

′

(0, T ;W−1,p′(Ω)) is coercive and
satisfies the classical Leary–Lions conditions. Then from the well-known result of [10], there exists at
least a solution un in C([0, T ];L2(Ω)) to problem (22) such that u′n ∈ Lp

′

(0, T ;W−1,p′(Ω)) and satisfies
∫

Q
u′nφdx dt +

∫

Q
a(x, t, Tn(un))â(x, t, un,∇un)∇φdx dt =

∫

Q
fnφdx dt,

for any φ ∈ Lp(0, T ;W 1,p
0 (Ω)) and un(x, 0) = 0.
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3. A priori estimates

Throughout this section we assume that hypotheses (20)–(21) hold. Let un be a solution of prob-
lem (22).

In this section, we prove some a priori estimates for the approximate solutions un and its partial
derivatives.

Lemma 4. Let f ∈ Lm(Q), with m satisfies (17), and (2)–(6) hold. Then there exists a positive
constant c such that

meas({|un| > k}) 6
c

kδ
, (23)

meas({|∇un| > k}) 6
c

kq
, (24)

‖un‖L∞(0,T ;L1(Ω)) 6 c, and (25)

‖Tk(un)‖Lp(0,T ;W 1,p
0 (Ω)) 6 c(1 + k)

1+θ
p , (26)

where δ and q as in (19).

Proof. The proof is divided into three cases.
Case 1. Suppose that m > p(N+2)

(p−1)N+2p . Choosing Tk(un(x, t))χ(0,τ)(t) a test function for prob-
lem (22), using (7), (2), (4) and Hölder’s inequality, we get

∫

Ω
Sk(un(x, τ)) dx + α

∫ τ

0

∫

Ω

|∇un|p
(1 + |un|)θ

dx dt 6 ‖fn‖Lm(Q)

(∫ τ

0

∫

Ω
|Tk(un)|m′

dx dt

) 1
m′

. (27)

By (8) and (27), we have

ess sup
06t6T

∫

Ω
|Tk(un(x, t))|2dx+ 2α

∫ τ

0

∫

Ω

|∇un|p
(1 + |un|)θ

dx dt 6 2‖f‖Lm(Q)

(∫ τ

0

∫

Ω
|Tk(un)|m′

dxdt

) 1
m′

.

(28)
Moreover ∫

Q
|∇Tk(un)|p dx dt =

∫

Q

|∇Tk(un)|p
(1 + |Tk(un)|)θ (1 + |Tk(un)|)θdx dt

6
‖f‖Lm(Q)

α
(1 + k)θ

(∫

Q
|Tk(un)|m′

dx dt

) 1
m′

. (29)

If m > p(N+2)
(p−1)N+2p , we have m′ < p(N+2)

N , thus we can choose ρ < p such that ρ(N+2)
N = m′. Then

ρ =
Nm

(N + 2)(m− 1)
. (30)

For the above ρ, (28) and Hölder’s inequality imply that
∫

Q
|∇Tk(un)|ρdx dt =

∫

Q

|∇Tk(un)|ρ

(1 + |Tk(un)|)
θρ
p

(1 + |Tk(un)|)
θρ
p dx dt

6

(∫

Q

|∇Tk(un)|p
(1 + |Tk(un)|)θ dx dt

) ρ
p
(∫

Q
(1 + |Tk(un)|)

θρ
p−ρdx dt

) p−ρ
p

6 c

(∫

Q
|Tk(un)|m′

dx dt

) ρ

pm′
(∫

Q
(1 + |Tk(un)|)

θρ
p−ρdx dt

) p−ρ
p

. (31)

By Lemma 2, applied to v(x, t) = Tk(un(x, t)), ̺ = 2, and h = ρ, using (28), (31), we obtain
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∫

Q
|Tk(un)|

(N+2)ρ
N dx dt 6

(
ess sup

06t6T

∫

Ω
|Tk(un)|2dx

) p
N
∫

Q
|DTk(un)|ρdx dt

6 c

(∫

Q
|Tk(un)|m′

dx dt

) ρ

Nm′
(∫

Q
|Tk(un)|m′

dx dt

) ρ

pm′

×
(∫

Q
(1 + |Tk(un)|)

θρ
p−ρdx dt

) p−ρ
p

6 c

(∫

Q
|Tk(un)|m′

dx dt

) ρ(N+p)

pNm′
(∫

Q
(1 + |Tk(un)|)

θρ
p−ρdx dt

) p−ρ
p

. (32)

Now m > p(N+2)
(p−1)N+2p and (17) imply

m 6
N + θ + 2

(p− 1)N + p+ 1 − θ(N − 1)
. (33)

However, by virtue of θ < p− 1 + p
N , then

N + θ + 2

(p− 1)N + p+ 1 − θ(N − 1)
<

p(N + 2) −Nθ

(p− 1)N + 2p −Nθ
. (34)

Thus from (30), (33) and (34), we can deduce that θρ
p−ρ > m′, if k > 1, (32) yields

∫

Q
|Tk(un)|

(N+2)ρ
N dx dt =

∫

Q
|Tk(un)|m′

dx dt

6 c

(∫

Q
|Tk(un)|m′

dx dt

) ρ(N+p)

pNm′
(∫

Q
(1 + |Tk(un)|)

θρ
p−ρ

−m′

(1 + |Tk(un)m
′

dx dt

) p−ρ
p

6 c

(∫

Q
|Tk(un)|m′

dx dt

) ρ(N+p)

pNm′

(2k)(
θρ
p−ρ

−m′)p−ρ
p

(∫

Q
(1 + |Tk(un)|)m′

dx dt

) p−ρ
p

6 c

(∫

Q
|Tk(un)|m′

dx dt

) ρ(N+p)

pNm′

(2k)(
θρ
p−ρ

−m′)p−ρ
p

(
2m

′ |Q| + 2m
′

∫

Q
|Tk(un)|m′

dx dt

) p−ρ
p

6 ck
θρ
p
− (p−ρ)m′

p

(∫

Q
|Tk(un)|m′

dx dt

) ρ(N+p)

pNm′
(

1 +

∫

Q
|Tk(un)|m′

dx dt

) p−ρ
p

. (35)

If
∫
Q |Tk(un)|m′

dx dt > 1, it follows from (35) that

∫

Q
|Tk(un)|m′

dx dt 6 c2
p−ρ
p k

θρ
p
− (p−ρ)m′

p

(∫

Q
|Tk(un)|m′

dx dt

) ρ(N+p)

pNm′ + p−ρ
p

.

Hence (∫

Q
|Tk(un)|m′

dx dt

)1− ρ(N+p)

pNm′ − p−ρ
p

6 c2
p−ρ
p k

θρ
p
− (p−ρ)m′

p .

Thus we get ∫

Q
|Tk(un)|m′

dx dt 6 ck
[ θρ
p
− (p−ρ)m′

p
] 1

1−
ρ(N+p)
pNm′ −

p−ρ
p . (36)

From (30) we obtain
(
θρ

p
− (p− ρ)m′

p

)
1

1 − ρ(N+p)
pNm′ − p−ρ

p

= −mN((p− 1)m− p) + 2p(m− 1) − θN(m− 1)

(m− 1)(N − pm+ p)
. (37)
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It follows from (36)–(37) that
∫

Q
|Tk(un)|m′

dx dt 6 ck
−mN((p−1)m−p)+2p(m−1)−θN(m−1)

(m−1)(N−pm+p) . (38)

New θ < p− 1 + p
N , (33) and (34) imply

{
N − pm+ p > 0, and
N((p− 1)m− p) + 2p(m− 1) − θN(m− 1) < 0.

(39)

Combining (37) and (39), we obtain

−mN((p− 1)m− p) + 2p(m− 1) − θN(m− 1)

(m− 1)(N − pm+ p)
> 0.

If
∫
Q |Tk(un)|m′

dx dt 6 1, by virtue of k > 1, then
∫

Q
|Tk(un)|m′

dx dt 6 1 6 k
−mN((p−1)m−p)+2p(m−1)−θN(m−1)

(m−1)(N−pm+p) . (40)

By (38) and (40) we get for any k > 1,
∫

Q
|Tk(un)|m′

dx dt 6 ck
−mN((p−1)m−p)+2p(m−1)−θN(m−1)

(m−1)(N−pm+p) . (41)

The condition m > 1 ensures that

m′ > −mN((p− 1)m− p) + 2p(m− 1) − θN(m− 1)

(m− 1)(N − pm+ p)
. (42)

If k 6 1, using (42), we have
∫

Q
|Tk(un)|m′

dx dt 6 |Q|km′

6 |Q|k−m
N((p−1)m−p)+2p(m−1)−θN(m−1)

(m−1)(N−pm+p) .

It follows from (41) and (43) that for any k > 0,
∫

Q
|Tk(un)|m′

dx dt 6 ck
−mN((p−1)m−p)+2p(m−1)−θN(m−1)

(m−1)(N−pm+p) . (43)

Therefore we have

km
′

meas{(x, t) ∈ Q : |un(x, t)| > k} 6 ck
−mN((p−1)m−p)+2p(m−1)−θN(m−1)

(m−1)(N−pm+p) .

Namely,

meas{(x, t) ∈ Q : |un(x, t)| > k} 6 ck
−mN((p−1)m−p)+2p(m−1)−θN(m−1)

(m−1)(N−pm+p)
−m′

6 ck
−m(p+N(p−1−θ))

N+p−pm 6 ck−δ.

Thus (23) is proved.
Now, (29) and (43) yield

∫

Q
|DTk(un)|pdx dt 6 c(1 + k)θ

(∫

Q
|Tk(un)|m′

dx dt

) 1
m′

6 c(1 + k)θk−
N((p−1)m−p)+2p(m−1)−θN(m−1)

N−pm+p .

Thus, by the Lemma 3, applied to v(x, t) = u(x, t), µ = δ, γ = θ, s = q and ν =
−(N(p−1)m−Np+2p(m−1))+θ(Nm−pm+p)

N−pm+p , we can obtain (24).
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Case 2. Suppose that 1 < m 6
p(N+2)

(p−1)N+2p . Note that m′ > p(N+2)
N . Then we have

(∫

Q
|Tk(un)|m′

dx dt

) 1
m′

6

(∫

Q
|Tk(un)|

p(N+2)
N |Tk(un)|m′− p(N+2)

N dx dt

) 1
m′

6 k1−
p(N+2)

m′N

(∫

Q
|Tk(un)|

p(N+2)
N dx dt

) 1
m′

. (44)

From (28)–(29) and (44), we have

ess sup
06t6T

∫

Ω
|Tk(un(x, t))|2dx 6 ck1−

p(N+2)

m′N

(∫

Q
|Tk(un)|

p(N+2)
N dx dt

) 1
m′

, (45)

and ∫

Q
|DTk(un)|pdx dt 6 c(1 + k)θk1−

p(N+2)

m′N

(∫

Q
|Tk(un)|

p(N+2)
N dx dt

) 1
m′

. (46)

Thus, by the Gagliardo–Nirenberg inequality (12) (Lemma 2), applied to v(x, t) = Tk(un(x, t)), ̺ = 2,
and h = p, using (45)–(46), we have

∫

Q
|Tk(un)|

p(N+2)
N dx dt 6

(
ess sup

06t6T

∫

Ω
|Tk(un(x, t))|2dx

) p
N
∫

Q
|DTk(un)|pdx dt

6 c(1 + k)θk(1−
p(N+2)

Nm′ )( p
N
+1)

(∫

Q
|Tk(un)|

p(N+2)
N dx dt

) p+N

Nm′

.

By virtue of m 6
p(N+2)

(p−1)N+2p , then 1 − p+N
Nm′ > 0. Thus we get

(∫

Q
|Tk(un)|

p(N+2)
N dx dt

)1− p+N

Nm′

6 c(1 + k)θk(1−
p(N+2)

Nm′ )( p
N
+1).

Hence
∫

Q
|Tk(un)|

p(N+2)
N dx dt 6 c

[
(1 + k)θk(1−

p(N+2)

Nm′ )( p
N
+1)
] 1

1−
p+N

Nm′

6 c(1 + k)
Nmθ

N−pm+p k
(N+p)(Nm−p(N+2)(m−1))

N(N−pm+p) . (47)

If k > 1, it follows from (47) that
∫

Q
|Tk(un)|

p(N+2)
N dx dt 6 ck

(N+p)(Nm−p(N+2)(m−1))+θN2m
N(N−pm+p) . (48)

If k 6 1. Now θ < p− 1 + p
N , imply

p(N + 2)

N
>

(N + p)(Nm− p(N + 2)(m − 1)) + θN2m

N(N − pm+ p)
,

which implies
∫

Q
|Tk(un)|

p(N+2)
N dx dt 6 |Q|k

p(N+2)
N 6 |Q|k

(N+p)(Nm−p(N+2)(m−1))+θN2m

N(N−pm+p) . (49)

It follows from (48)–(49) that for any k > 0,
∫

Q
|Tk(un)|

p(N+2)
N dx dt 6 ck

(N+p)(Nm−p(N+2)(m−1))+θN2m
N(N−pm+p) . (50)

Therefore from (50) we can obtain (23). Finally, (24) can be deduced from (46), (50) and Lemma 3.
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Case 3. Suppose that m = 1. We only need to replace
(∫

Q |Tk(un)|m′

dx dt
) 1

m′

with |Q| 1
m′ k

in (27)–(29). That is
∫

Ω
Sk(un(x, τ))dx + α

∫ τ

0

∫

Ω

|∇un|p
(1 + |un|)θ

dx dt 6 ‖fn‖Lm(Q)|Q| 1
m′ k,

so,

ess sup
06t6T

∫

Ω
|Tk(un(x, t))|2dx+ α

∫

Q

|∇un|p
(1 + |un|)θ

dx dt 6 ck. (51)

Therefore ∫

Q
|∇Tk(un)|pdx dt =

∫

Q

|∇Tk(un)|p
(1 + |Tk(un)|)θ (1 + |Tk(un)|)θdx dt 6 c(1 + k)θk. (52)

By (51)–(52) and Lemma 2 (here v(x, t) = Tk(un(x, t)), h = p, ̺ = 2), going through the same process
as that of (51), we obtain ∫

Q
|Tk(un)|

p(N+2)
N dx dt 6 ck

N+p+θN
N . (53)

Thus it’s easy to get (23) by (53). Now (52)–(53) and Lemma (3) imply that (24) holds.
Taking T1(un)χ(0,τ)(t) as a test function for problem (22), and using (2), (4) and Hölder’s inequality,

we get
∫

Ω
S1(un(x, τ))dx + α

∫ τ

0

∫

Ω

|∇T1(un)|p
(1 + |un|)θ

dx dt 6 ‖fn‖Lm(Q)

(∫ τ

0

∫

Ω
|T1(un)|m′

dx dt

) 1
m′

.

Note that by (7)–(8) for any s ∈ R, |s| − 1
2 6 S1(s) 6 |s|. Then we have

ess sup
06t6T

∫

Ω
|un(x, t)|dx 6 ‖fn‖Lm(Q)|Q| 1

m′ +
1

2
|Ω|. (54)

So, (20) and (54) yield (25).
By (53), and Hölder’s inequality, we obtain

∫

Q
|Tk(un)|pdx dt 6

(∫

Q
|Tk(un)|

p(N+2)
N dx dt

) N
N+2

|Q|
2

N+2 6 ck
N+p+θN

N+2 |Q|
2

N+2 ,

New by (52), we have ∫

Q
|DTk(un)|pdx dt 6 c|Q| 1

m′ (1 + k)θk.

The above two inequalities imply (26). �

4. Proof of the main theorem

Proof. Let

hk(s) = 1 − |T1(s− Tk(s))|, Hk(s) =

∫ s

0
hk(τ)dτ, ∀s ∈ R, ∀k > 0.

Taking φ = hk(un) in (22), we get in the sense of distributions

(Hk(un))t = div(hk(un)a(x, t, Tn(un))â(x, t, un,∇un))

− a(x, t, Tn(un))â(x, t, un,∇un)∇unh′k(un) + fnhk(un). (55)

Note that supp(hk) ⊆ [−k − 1, k + 1], 0 6 hk 6 1, |h′k| 6 1, if n > k + 1,
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hk(un)a(x, t, Tn(un))â(x, t, un,∇un) = hk(un)a(x, t, Tk+1(un))â(x, t, Tk+1(un),∇Tk+1(un)),

and

a(x, t, Tn(un))â(x, t, un,∇un)∇unh′k(un)

= a(x, t, Tk+1(un))â(x, t, Tk+1(un),∇Tk+1(un))∇Tk+1(un)h′k(un).

By Lemma 4, (9) and the above equalities, for fixed k > 0, we can deduce that

hk(un)a(x, t, Tn(un))â(x, t, un,∇un) is bounded in Lp(Q),

a(x, t, Tn(un))â(x, t, un,∇un)∇unh′k(un) is bounded in L1(Q).

Hence
(Hk(un))t is bounded in Lp

′

(0, T ;W−1,p′(Ω)) + L1(Q). (56)

(56) implies (Hk(un))t is bounded in L1(0, T ;W−1,s)(Ω) for all s > 1. By virtue of ∇Hk(un) =
hk(un)∇un = hk(un)∇Tk+1(un), (26) implies that Hk(un) is bounded in Lp(0, T ;W 1,p

0 (Ω)).
So, we can use Corollary 4 of [11] to see thatHk(un) is relatively compact in L1(Q). By Theorem 1.1

in [12], we have Hk(un) ∈ C([0, T ], L1(Ω)). Thus there exists a subsequence of {Hk(un)} (still denoted
by {Hk(un)}) such that it also converges in measure and almost everywhere in Q.

Let σ, k, and ε be positive numbers. Noting that

meas{|un − um| > σ} 6 meas{|un| > k} + meas{|um| > k} + meas{|Hk(un) −Hk(um)| > σ}. (57)

By (23) in Lemma 4, we can choose k large enough to have

meas{|un| > k} + meas{|um| > k} < ε

2
, ∀n,m. (58)

Furthermore, for the above fixed k, we can choose a large N0 such that

meas{|Hk(un) −Hk(um)| > σ} < ε

2
, ∀n,m > N0. (59)

(57)–(59) yield
meas{|un − um| > σ} < ε, ∀n,m > N0. (60)

Now, (60) implies that {un} is a Cauchy sequence in measure in Q. Hence there exists a measurable
function u such that

un → u a.e. in Q. (61)

Thus we get
Hk(un) → Hk(u) a.e. in Q. (62)

Since |Hk| 6 k + 1, (62) and Lebesgue’s dominated convergence theorem yield

Hk(un) → Hk(u) strongly in Lp(Q). (63)

Since Hk(un) is bounded in Lp(0, T ;W 1,p
0 (Ω)) and noting that (63) holds, we have

Hk(un) ⇀ Hk(u) weakly in Lp(0, T ;W 1,p
0 (Ω)).

Now, (61) yields
Tk(un) → Tk(u) a.e. in Q. (64)

Using Lebesgue’s dominated convergence theorem once again, we get

Tk(un) → Tk(u) strongly in Lp(Q). (65)

From (26) and (65), it follows that

Tk(un) ⇀ Tk(u) weakly in Lp(0, T ;W 1,p
0 (Ω)).

Then (25), (61) and Fatou’s lemma yield u ∈ L∞(0, T ;L1(Ω)).
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Similarly to Theorem 2.1 in [12], we can prove

Tk(un) → Tk(u) strongly in Lp(0, T ;W 1,p
0 (Ω)). (66)

Hence
∇Tk(un) → ∇Tk(u) a.e. in Q. (67)

Choosing T1(un − Tk(un)) as a test function for problem (22), using (4) we obtain
∫

Ω
T̃ (un(T )) dx+

∫

{k<|un|6k+1}
a(x, t, Tn(un))|∇un|pdx dt 6

∫

{|un|>k}
|fn| dx dt,

where

T̃ (un(T )) =

∫ un(T )

0
T1(s− Tk(s)) ds.

It is easy to see that T̃ (un(T )) > 0 a.e. in Ω. Hence we have
∫

{k<|un|6k+1}
a(x, t, Tn(un))|∇un|pdx dt 6

∫

{|un|>k}
|fn| dx dt. (68)

Letting n→ ∞ in (68) and using Fatou’s lemma in the left side and Vitali’s theorem on the right side
of (68), we get ∫

{k<|u|6k+1}
a(x, t, u)|∇u|pdx dt 6

∫

{|u|>k}
|f | dx dt. (69)

Thus from (69) we can deduce that

lim
k→∞

∫

{k<|u|6k+1}
a(x, t, u)|∇u|pdx dt = 0. (70)

Then (61), (64), (66) and Vitali’s theorem imply that

k(un)a(x, t, Tn(un))â(x, t, un,∇un) → hk(u)a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u))

strongly in Lp(Q), and

a(x, t, Tn(un))â(x, t, un,∇un)∇unh′k(un) → a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u))∇Tk+1(u)h′k(u)

strongly in L1(Q). Let n→ ∞ in (55). We obtain in the sense of distributions that

(Hk(u))t = div(hk(u)a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u)))

− a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u))∇Tk+1(u)h′k(u) + fhk(u). (71)

Hence (Hk(u))t ∈ Lp
′

(0, T ;W−1,p′(Ω)) + L1(Q). By Theorem 1.1 in [12], we have Hk(u) ∈
C([0, T ], L1(Ω)). Since Hk(un(0)) = 0, thus we get Hk(u(0)) = 0. For every φ ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩
L∞(Q) such that φt ∈ Lp

′

(0, T ;W−1,p′(Ω)) +L1(Q) and for all τ ∈ (0, T ], using Tl(Hk(u)−φ)χ(0,τ)(t)
as a test function in (71), and integrating by parts we obtain
∫

Ω
Sl(Hk(u) − φ)(τ) dx −

∫

Ω
Sl(−φ(0)) dx +

∫ τ

0
〈φt, Tl(Hk(u) − φ)〉 dt

+

∫ τ

0

∫

Ω
hk(u)a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u))∇Tl(Hk(u) − φ) dx dt

+

∫ τ

0

∫

Ω
a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u))∇Tk+1(u)h′k(u)Tl(Hk(u) − φ) dx dt

=

∫ τ

0

∫

Ω
fhk(u)Tl(Hk(u) − φ) dx dt.
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Noting that if k → ∞, we have

hk(u) → 1 a.e. in Q, (72)

Hk(u) → u a.e. in Q. (73)

Since h′k(u) = − sign(u)χ{k6|u|6k+1}, sign(Hk(u)) = sign(u), and |Hk(u)| > k if |u| > k; and Hk(u) = u
if |u| 6 k. Moreover, if |Hk(u)| > l + ‖φ‖L∞(Q) = L, we have ∇Tl(Hk(u) − φ) = 0. Hence if k > L,
thus we have
∫ τ

0

∫

Ω
hk(u)a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u))∇Tl(Hk(u) − φ) dx dt

=

∫ τ

0

∫

Ω
a(x, t, TL(u))â(x, t, TL(u),∇TL(u))∇Tl(TL(u) − φ) dx dt. (74)

It follows from (70) that

lim
k→∞

∫ τ

0

∫

Ω
a(x, t, Tk+1(u))â(x, t, Tk+1(u),∇Tk+1(u))∇Tk+1(u)h′k(u)Tl(Hk(u) − φ) dx dt = 0. (75)

Lebesgue’s dominated convergence theorem and (72)–(73) imply that

lim
k→∞

∫ τ

0

∫

Ω
fhk(u)Tl(Hk(u) − φ) dx dt =

∫ τ

0

∫

Ω
fTl(u− φ) dx dt. (76)

We can also prove if k → ∞,

Tl(Hk(u) − φ) → Tl(u− φ) strongly in Lp(0, T ;W 1,p
0 (Ω)), (77)

Tl(Hk(u) − φ) → Tl(u− φ) weak∗ in L∞(Ω). (78)

From (77) and (78) we get

lim
k→∞

∫ τ

0
〈φt, Tl(Hk(u) − φ)〉 dt =

∫ τ

0
〈φt, Tl(u− φ)〉 dt. (79)

Since for a.e. τ ∈ [0, T ], a.e. x ∈ Ω,

|Hk(u)| 6 |u|, 0 6 Sl(Hk(u) − φ)(τ) 6 l (|u(τ)| + |φ(τ)|) ,

combining with u ∈ L∞(0, T ;L1(Ω)) and φ ∈ C([0, T ];L1(Ω)), by Lebesgue’s dominated convergence
theorem and (73), we get

lim
k→∞

∫

Ω
Sl(Hk(u) − φ)(τ) dx =

∫

Ω
Sl(u− φ)(τ) dx. (80)

Now (74)–(76), (79)–(80) yield for a.e. τ ∈ [0, T ],
∫

Ω
Sl(u− φ)(τ) dx −

∫

Ω
Sl(−φ(0)) dx +

∫ τ

0
〈φt, Tl(u− φ)〉 dt

+

∫ τ

0

∫

Ω
a(x, t, u)â(x, t, u,∇u)∇Tl(u− φ) dx dt =

∫ τ

0

∫

Ω
f Tl(u− φ) dx dt. (81)

This shows that the first term on the left side of the above equality is almost everywhere equal to
a continuous function on [0, T ]. Replacing l with k in (81), we obtain (9)–(10) and u is an entropy
solution to problem (1). By (23), we have

∫

Q
χ{|un|>k}dx dt = meas{|un| > k} 6

c

kδ
. (82)

Thus (61), (82) and Fatou’s lemma yield

meas{|u| > k} =

∫

Q
χ{|u|>k}dx dt 6

c

kδ
.
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Rewriting (73) as follows

kmeas{|u| > k} 1
δ = c

1
δ . (83)

Thus by Definition 2, we obtain u ∈ Mδ(Q).
The complete the proof of (18), we need to prove

∇un → ∇u a.e. in Q. (84)

If fact, for all σ > 0 and ε > 0, we have

meas{|∇un −∇u| > σ} 6 meas{|un| > k} + meas{|u| > k} + meas{|Tk(un) − Tk(u)| > σ}.

By (23) and (18), we can choose k large enough to prove

meas{|un| > k} + meas{|u| > k} < ε

2
, ∀n. (85)

For the above k, (67) implies that there exists a large N0 such that

meas{|Tk(un) − Tk(u)| > σ} < ε

2
, ∀n > N0. (86)

Now, (85) and (86) yield
meas{|∇un −∇u| > σ} < ε, ∀n > N0.

Hence from (83), we can deduce that (84) holds. Similarly to (82)–(83), by (24) and (84), we obtain
|∇u| ∈ M(Q). Thus the proof of Theorem 2 is completed. �

[1] Li F. Regularity for entropy solution of a class of parabolic equations with irregular data. Commentationes
Mathematicae Universitatis Carolinae. 48 (1), 69–82 (2007).

[2] Prignet A. Existence and uniqueness of “entropic” solutions of parabolic problems with L1 data. Nonlinear
Analysis: Theory, Methods & Applications. 28 (12), 1943–1954 (1997).

[3] Segura de León S, Toledo J. Regularity for entropy solutions of parabolic p-Laplacian equations. Publica-
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Регулярнiсть ентропiйних розв’язкiв вироджених
параболiчних рiвнянь iз даними L

m

Хелiфi Х.1,2

1Факультет математики Алжирського унiверситету, Алжир,
вул. Дiдо Мурада, 2, Алжир, Алжир

2Лабораторiя математичного аналiзу та застосувань, Унiверситет Алжиру 1, Алжир, Алжир

У цiй статтi дослiджуються регулярнi результати для ентропiйних розв’язкiв класу
параболiчних нелiнiйних рiвнянь iз виродженою коерцитивнiстю, коли права частина
знаходиться в Lm з m > 1.

Ключовi слова: регулярнiсть; ентропiйнi розв’язки; вироджена коерцитивнiсть;
данi Lm.
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