Regularity for entropy solutions of degenerate parabolic equations with L^{m} data

Khelifi H. ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, University of Algiers, Algeria,
2 Didouche Mourad Str., Algiers, Algeria
${ }^{2}$ Laboratory of Mathematical Analysis and Applications, University of Algiers 1, Algiers, Algeria

(Received 3 March 2022; Accepted 17 November 2022)
In this paper, we study the regularity results for entropy solutions of a class of parabolic nonlinear parabolic equations with degenerate coercivity, when the right-hand side is in L^{m} with $m>1$.

Keywords: regularity; entropy solutions; degenerate coercivity; L^{m} data.
2010 MSC: 35K60, 35K65, 35K55
DOI: 10.23939/mmc2023.01.119

1. Introduction and preliminary results

1.1. Introduction

This paper will deal with the following problem

$$
\begin{cases}\frac{\partial u}{\partial t}+A u=f, & \text { in } Q \tag{1}\\ u=0, & \text { on } \Gamma=\partial \Omega \times(0, T) \\ u(x, 0)=0, & \text { in } \Omega\end{cases}
$$

where

$$
A u=-\operatorname{div}(a(x, t, u) \widehat{a}(x, t, u, \nabla u))
$$

$f \in L^{m}(Q), m \geqslant 1, \Omega$ is an open bounded subset of $\mathbb{R}^{N}(N \geqslant 2), Q$ is the cylinder $\Omega \times(0, T)(T>0)$, Γ the lateral surface $\partial \Omega \times(0, T)$.

Let $a: Q \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function satisfying for almost every $(x, t) \in Q$ and every $s \in \mathbb{R}$

$$
\begin{equation*}
\frac{\alpha}{(1+|s|)^{\theta}} \leqslant a(x, t, s) \leqslant \beta \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqslant \theta<p-1+\frac{p}{N} \tag{3}
\end{equation*}
$$

where p is a real number such that $2<p<N$, and α, β are two positive constants.
We assume that $\widehat{a}: \Omega \times] 0, T\left[\times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}\right.$ is a Carathéodory function, satisfying for a.e. $(x, t, s) \in$ $Q \times \mathbb{R}, \forall \xi, \xi^{\prime} \in \mathbb{R}^{N}:$

$$
\begin{gather*}
\widehat{a}(x, t, s, \xi) \cdot \xi \geqslant|\xi|^{p} \tag{4}\\
|\widehat{a}(x, t, s, \xi)| \leqslant b(x, t)+|s|^{p-1}+|\xi|^{p-1} \tag{5}\\
\left(\widehat{a}(x, t, s, \xi)-\widehat{a}\left(x, t, s, \xi^{\prime}\right)\right) \cdot\left(\xi-\xi^{\prime}\right)>0 \tag{6}
\end{gather*}
$$

b is a nonnegative function in $L^{p^{\prime}}(Q)$, where $p^{\prime}=\frac{p}{p-1}$.
When the degenerate term does not appear in (1) (i.e., $a(x, t, u) \equiv 1$) and $u(x, 0)=u_{0} \in L^{1}(\Omega)$, the existence and regularity of entropy solution of (1) are proved in [1]. The uniqueness results has been developed in [2]. If $\widehat{a}(x, t, u, \nabla u)=|\nabla u|^{p-2} \nabla u$, in [3], existence and regularity results for the
problem (1) were proved. The existence and uniqueness of a renormalised solution of problem (1) proved in [4]. In the case $\theta \neq 0, p=2,0 \leqslant \theta<1+\frac{2}{N}$ and $f \in L^{1}(Q)$, the existence and regularity of entropy solutions studied in [5]. In [6] the authors prove the following result
Theorem 1. Under the hypotheses (2)-(6), if $f \in L^{m}(Q)$ with $m>\frac{N}{p}+1$, then there exists a bounded weak solution $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)$ to problem (1).

1.2. Preliminary results

Let $k>0$ and $T_{k}: \mathbb{R} \rightarrow \mathbb{R}$ the truncating function equal to $T_{k}(s):=\operatorname{sgn}(s) \min \{|s|, k\}$, and its primitive $S_{k}: \mathbb{R} \rightarrow \mathbb{R}^{+}$

$$
\begin{equation*}
S_{k}(x)=\int_{0}^{x} T_{k}(s) d s \tag{7}
\end{equation*}
$$

It results

$$
\begin{equation*}
\frac{1}{2}\left|T_{k}(s)\right|^{2} \leqslant S_{k}(s) \leqslant k|s|, \quad \forall k>0, \quad \forall s \in \mathbb{R} \tag{8}
\end{equation*}
$$

We use the following definition of the entropy solutions.
Definition 1. A measurable function $u \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$ will be called an entropy solution to problem (1) if $T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, for every $k>0$, and if

$$
\begin{gather*}
\int_{\Omega} S_{k}(u(t)-\phi(t)) d x \in C([0, T]) \tag{9}\\
\int_{\Omega} S_{k}(u(T)-\phi(T)) d x-\int_{\Omega} S_{k}(-\phi(0)) d x+\int_{0}^{T}\left\langle\phi_{t}, T_{k}(u-\phi)\right\rangle d t \\
 \tag{10}\\
+\int_{Q} a(x, t, u) \widehat{a}(x, t, u, \nabla u) \nabla T_{k}(u-\phi) d x d t \leqslant \int_{Q} f T_{k}(u-\phi) d x d t
\end{gather*}
$$

for every $k>0$ and $\phi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)$ such that

$$
\phi_{t} \in L^{p}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}(Q)
$$

Lemma 1. For every $k>0$, if $T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, then there exists a unique measurable function $v: Q \mapsto \mathbb{R}^{N}$ such that $\nabla T_{k}(u)=v \chi_{\{|u|<k\}}$ a.e. in Q, where $\chi_{\{|u|<k\}}$ denotes the characteristic function over the set $\{|u|<k\}$. Defining the derivative ∇u of u as the unique function v which satisfies the above equality. Furthermore, $u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ if and only if $v \in L^{p}(Q)$, and then $v \equiv \nabla u$ in the usual weak sense.

Proof. The proof of Lemma 1 is the same as that of Lemma 2.2 in [7], we omit the details.
Definition 2 (Refs. [8,9]). Let q be a positive number. The Marcinkiewicz space $\mathcal{M}^{q}(Q)$ is the set of all measurable functions $u: Q \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{meas}(\{(x, t) \in Q:|u(x, t)|>k\}) \leqslant \frac{C}{k^{q}}, \quad \text { for every } \quad k>0 \tag{11}
\end{equation*}
$$

for some constant $C>0$. The norm of u in $\mathcal{M}^{q}(Q)$ is defined by

$$
\|u\|_{\mathcal{M}^{q}(Q)}^{q}=\inf \{C>0 \text { such that }(11) \text { holds }\}
$$

The alternate name of weak L^{q} space is due to the fact that, if Q has finite measure, then

$$
\left\{\begin{array}{l}
\mathcal{M}^{q}(Q) \subset \mathcal{M}^{\gamma}(Q) \\
L^{q}(Q) \subset \mathcal{M}^{q}(Q) \subset \mathcal{M}^{\gamma}(Q)
\end{array}\right.
$$

for every $\gamma<q$.
We also recall a consequence of the Gagliardo-Nirenberg embedding theorem.

Lemma 2 (Ref. [13]). Let $v \in L^{h}\left(0, T ; W_{0}^{1, h}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{\varrho}(\Omega)\right), h, \varrho \geqslant 1$. Then v belongs to $L^{q}(Q)$, where $q=h \frac{N+\varrho}{N}$, and there exists a positive constant M_{1} depending only on N, h, ϱ such that

$$
\begin{equation*}
\int_{Q}|v(x, t)|^{q} d x d t \leqslant M_{1}\left(\operatorname{ess} \sup _{0<t<T} \int_{\Omega}|v(x, t)|^{\varrho} d x\right)^{\frac{h}{N}} \int_{Q}|D v(x, t)|^{h} d x d t \tag{12}
\end{equation*}
$$

Before the proof, we need a technical lemma.
Lemma 3. Let u be a measurable function in $\mathcal{M}^{\mu}(Q)$ for some $\mu>0$, and assume that there exist two nonegative constants $\nu>\gamma$ such that

$$
\int_{Q}\left|\nabla T_{k}(u)\right|^{p} d x d t \leqslant M_{2}(1+k)^{\gamma} k^{\nu-\gamma}, \quad \forall k>0
$$

where M_{2} is a positive constant independent of k. Then $|\nabla u|$ belongs to $\mathcal{M}^{s}(Q)$, with $s=\frac{p \mu}{\mu+\nu}$.
Proof. We follow the lines of the proof of [7], Lemma 4.1. and 4.2. Let λ be a fixed positive real number. We have, for every $k>0$,

$$
\begin{align*}
\operatorname{meas}\left(\left\{|\nabla u|^{p}>\lambda\right\}\right) & =\operatorname{meas}\left(\left\{|\nabla u|^{p}>\lambda,|u| \leqslant k\right\}\right)+\operatorname{meas}\left(\left\{|\nabla u|^{p}>\lambda,|u|>k\right\}\right) \\
& \leqslant \operatorname{meas}\left(\left\{|\nabla u|^{p}>\lambda,|u| \leqslant k\right\}\right)+\operatorname{meas}(\{|u|>k\}) . \tag{13}
\end{align*}
$$

Moreover,

$$
\begin{aligned}
\operatorname{meas}\left(\left\{|\nabla u|^{p}>\lambda,|u| \leqslant k\right\}\right) & =\frac{1}{\lambda} \int_{\left\{|\nabla u|^{p}>\lambda,|u| \leqslant k\right\}} \lambda d x d t \leqslant \frac{1}{\lambda} \int_{\{|u| \leqslant k\}}|\nabla u|^{p} d x d t \\
& \leqslant \frac{1}{\lambda} \int_{Q}\left|\nabla T_{k}(u)\right|^{p} d x d t \leqslant M \frac{(1+k)^{\gamma} k^{\nu-\gamma}}{\lambda}
\end{aligned}
$$

If $k>1$, then the above inequality turns into

$$
\operatorname{meas}\left(\left\{|\nabla u|^{p}>\lambda,|u| \leqslant k\right\}\right) \leqslant M \frac{(2 k)^{\gamma} k^{\nu-\gamma}}{\lambda} \leqslant 2^{\gamma} M \frac{k^{\nu}}{\lambda} .
$$

By Definition 2 of the Marcinkiewicz space and $u \in \mathcal{M}^{\mu}(Q)$, then there exists a positive constant M_{1} independent of k such that

$$
\begin{equation*}
\operatorname{meas}(\{|u|>k\}) \leqslant M_{1} \frac{1}{k^{\mu}} \tag{14}
\end{equation*}
$$

Using (13)-(14), we obtain

$$
\begin{equation*}
\operatorname{meas}\left(\left\{|\nabla u|^{p}>\lambda\right\}\right) \leqslant 2^{\gamma} M \frac{k^{\nu}}{\lambda}+M_{1} \frac{1}{k^{\mu}} \leqslant M_{2}\left(\frac{k^{\nu}}{\lambda}+\frac{1}{k^{\mu}}\right) \tag{15}
\end{equation*}
$$

where $M_{2}=\max \left\{2^{\gamma} M, M_{1}\right\}$, and (15) holds for every $k>1$. Minimizing with respect to k, we easily prove that as $k=\left(\frac{\mu}{\nu}\right)^{\frac{1}{\mu+\nu}} \lambda^{\frac{1}{\mu+\nu}}$, the minimum value of the right side term in (15) is achieved, and setting $\lambda=h^{p}$ for every $h>0$ we get

$$
\begin{equation*}
\operatorname{meas}(\{|\nabla u|>h\}) \leqslant M_{2} \min _{k}\left(\frac{k^{\nu}}{h^{p}}+\frac{1}{k^{\mu}}\right) \leqslant M_{2}\left[\left(\frac{\mu}{\nu}\right)^{\frac{\nu}{\mu+\nu}}+\left(\frac{\mu}{\nu}\right)^{-\frac{\mu}{\mu+\nu}}\right] \frac{1}{h^{\frac{p \mu}{\mu+\nu}}} \leqslant \frac{M_{3}}{h^{\frac{p \mu}{\mu+\nu}}} \leqslant \frac{M_{3}}{h^{s}} \tag{16}
\end{equation*}
$$

where M_{3} is a positive constant independent of h. However, the above conclusion is obtained under the assumpation $k>1$, that is $h>\left(\frac{\nu}{\mu}\right)^{\frac{1}{p}}$. If $h \leqslant\left(\frac{\nu}{\mu}\right)^{\frac{1}{p}}$, since Q is bounded, the above inequality obviously holds. By (16) and Definition 2 yield $|\nabla u| \in \mathcal{M}^{s}(Q)$.

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 119-132 (2023)

2. Statement of main results and approximate solutions

2.1. Statement of main results

Theorem 2. Under the hypotheses (2)-(6), if $f \in L^{m}(Q)$ with

$$
\begin{equation*}
1 \leqslant m \leqslant \max \left\{\frac{N+\theta+2}{(p-1) N+p+1-\theta(N-1)}, 1\right\} \tag{17}
\end{equation*}
$$

then there exists an entropy solution u to problem (1) in the sence of Definition 1 with

$$
\begin{equation*}
u \in \mathcal{M}^{\delta}(Q), \quad \text { and } \quad|\nabla u| \in \mathcal{M}^{q}(Q) \tag{18}
\end{equation*}
$$

where $\mathcal{M}^{\delta}(Q), \mathcal{M}^{q}(Q)$ are Marcinkiewicz spaces defind in Definition 2, and

$$
\begin{equation*}
\delta=\frac{m(p+N(p-1-\theta))}{N+p-p m}, \quad \text { and } \quad q=\frac{m[N(p-1-\theta)+p]}{N+1-(\theta+1)(m-1)} \tag{19}
\end{equation*}
$$

Remark 1. If $0 \leqslant \theta<p-1+\frac{p}{N}-\frac{N+1}{N}$, then (17) becomes $m=1$, thus $\delta=\frac{p+N(p-1-\theta)}{N}>1$, $q=\frac{N(p-1-\theta)+p}{N+1}>1$. By the embedding theorems between Marcinkiewicz and Lebesgue spaces, we can deduce that u belongs to $L^{s}\left(0, T ; W_{0}^{1, s}(\Omega)\right)$ for every $1 \leqslant s<q=\frac{N(p-1-\theta)+p}{N+1}$.
Remark 2. If $p-1+\frac{p}{N}-\frac{N+1}{N} \leqslant \theta<p-1+\frac{p}{N}$, then (17) becomes $1 \leqslant m \leqslant \frac{N+\theta+2}{(p-1) N+p+1-\theta(N-1)}$ and $q \leqslant 1$. It is not possible to deduce that $|\nabla u|$ belongs to some Sobolev space even if $1<m \leqslant$ $\frac{N+\theta+2}{(p-1) N+p+1-\theta(N-1)}$.

2.2. Approximate solutions

In the remainder of this section, we denote by c various positive constants depending only on the data of the problem, but not on n and k.

Let $\left(f_{n}\right)$ be a sequence of bounded functions defined in Q, where $f_{n} \in \mathcal{D}(Q)$ and satisfy

$$
\begin{gather*}
\left\|f_{n}\right\|_{L^{m}(Q)} \leqslant\|f\|_{L^{m}(Q)} \leqslant c, \quad \forall n \tag{20}\\
f_{n} \rightarrow f, \text { strongly in } L^{m}(Q) \tag{21}
\end{gather*}
$$

We approximate the problem (1) by the following problems

$$
\begin{cases}\frac{\partial u_{n}}{\partial t}-\operatorname{div}\left(a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right)\right)=f_{n}, & \text { in } Q \tag{22}\\ u_{n}=0, & \text { on } \Gamma \\ u_{n}(x, 0)=0, & \text { in } \Omega\end{cases}
$$

For $n \in \mathbb{N}$, we define the operator A_{n} by $A_{n}=-\operatorname{div}\left(a\left(., ., T_{n}(u)\right) \widehat{a}(., ., u, \nabla u)\right)$.
From (2) and (4), we have

$$
\int_{Q} a\left(x, t, T_{n}(u)\right) \widehat{a}(x, t, u, \nabla u) \cdot \nabla u d x d t \geqslant g(n) \int_{Q}|\nabla u|^{p} d x d t, \quad \text { with } \quad g(n)=\frac{1}{(1+|n|)^{\theta}}
$$

so that the operator A_{n} from $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ into its dual $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$ is coercive and satisfies the classical Leary-Lions conditions. Then from the well-known result of [10], there exists at least a solution u_{n} in $C\left([0, T] ; L^{2}(\Omega)\right)$ to problem (22) such that $u_{n}^{\prime} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$ and satisfies

$$
\int_{Q} u_{n}^{\prime} \phi d x d t+\int_{Q} a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla \phi d x d t=\int_{Q} f_{n} \phi d x d t
$$

for any $\phi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and $u_{n}(x, 0)=0$.

3. A priori estimates

Throughout this section we assume that hypotheses (20)-(21) hold. Let u_{n} be a solution of problem (22).

In this section, we prove some a priori estimates for the approximate solutions u_{n} and its partial derivatives.
Lemma 4. Let $f \in L^{m}(Q)$, with m satisfies (17), and (2)-(6) hold. Then there exists a positive constant c such that

$$
\begin{align*}
& \operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\}\right) \leqslant \frac{c}{k^{\delta}}, \tag{23}\\
& \operatorname{meas}\left(\left\{\left|\nabla u_{n}\right|>k\right\}\right) \leqslant \frac{c}{k^{q}}, \tag{24}\\
& \left\|u_{n}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leqslant c, \quad \text { and } \tag{25}\\
& \left\|T_{k}\left(u_{n}\right)\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)} \leqslant c(1+k)^{\frac{1+\theta}{p}}, \tag{26}
\end{align*}
$$

where δ and q as in (19).
Proof. The proof is divided into three cases.
Case 1. Suppose that $m>\frac{p(N+2)}{(p-1) N+2 p}$. Choosing $T_{k}\left(u_{n}(x, t)\right)_{(0, \tau)}(t)$ a test function for problem (22), using (7), (2), (4) and Hölder's inequality, we get

$$
\begin{equation*}
\int_{\Omega} S_{k}\left(u_{n}(x, \tau)\right) d x+\alpha \int_{0}^{\tau} \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x d t \leqslant\left\|f_{n}\right\|_{L^{m}(Q)}\left(\int_{0}^{\tau} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{1}{m^{\prime}}} \tag{27}
\end{equation*}
$$

By (8) and (27), we have

$$
\begin{equation*}
\operatorname{ess} \sup _{0 \leqslant t \leqslant T} \int_{\Omega}\left|T_{k}\left(u_{n}(x, t)\right)\right|^{2} d x+2 \alpha \int_{0}^{\tau} \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x d t \leqslant 2\|f\|_{L^{m}(Q)}\left(\int_{0}^{\tau} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{1}{m^{\prime}}} . \tag{28}
\end{equation*}
$$

Moreover

$$
\begin{align*}
\int_{Q}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t & =\int_{Q} \frac{\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}}{\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\theta}}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\theta} d x d t \\
& \leqslant \frac{\|f\|_{L^{m}(Q)}^{\alpha}(1+k)^{\theta}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{1}{m^{\prime}}}}{\alpha} . \tag{29}
\end{align*}
$$

If $m>\frac{p(N+2)}{(p-1) N+2 p}$, we have $m^{\prime}<\frac{p(N+2)}{N}$, thus we can choose $\rho<p$ such that $\frac{\rho(N+2)}{N}=m^{\prime}$. Then

$$
\begin{equation*}
\rho=\frac{N m}{(N+2)(m-1)} . \tag{30}
\end{equation*}
$$

For the above ρ, (28) and Hölder's inequality imply that

$$
\begin{align*}
\int_{Q}\left|\nabla T_{k}\left(u_{n}\right)\right|^{\rho} d x d t & =\int_{Q} \frac{\left|\nabla T_{k}\left(u_{n}\right)\right|^{\rho}}{\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\frac{\theta \rho}{p}}}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\frac{\theta \rho}{p}} d x d t \\
& \leqslant\left(\int_{Q} \frac{\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}}{\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\theta}} d x d t\right)^{\frac{\rho}{p}}\left(\int_{Q}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\frac{\theta \rho}{p-\rho}} d x d t\right)^{\frac{p-\rho}{p}} \\
& \leqslant c\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho}{p m^{\prime}}}\left(\int_{Q}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\frac{\theta \rho}{p-\rho}} d x d t\right)^{\frac{p-\rho}{p}} \tag{31}
\end{align*}
$$

By Lemma 2, applied to $v(x, t)=T_{k}\left(u_{n}(x, t)\right), \varrho=2$, and $h=\rho$, using (28), (31), we obtain

$$
\begin{align*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{(N+2) \rho}{N}} d x d t & \leqslant\left(\operatorname{ess} \sup _{0 \leqslant t \leqslant T} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2} d x\right)^{\frac{p}{N}} \int_{Q}\left|D T_{k}\left(u_{n}\right)\right|^{\rho} d x d t \\
& \leqslant c\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho}{N m^{\prime}}}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho}{p m}} \\
& \times\left(\int_{Q}\left(1+\left.\left|T_{k}\left(u_{n}\right)\right|\right|^{\frac{\theta \rho}{p-\rho}} d x d t\right)^{\frac{p-\rho}{p}}\right. \\
& \leqslant c\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho(N+p)}{p N m^{\prime}}}\left(\int_{Q}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\frac{\theta \rho}{p-\rho}} d x d t\right)^{\frac{p-\rho}{p}} \tag{32}
\end{align*}
$$

Now $m>\frac{p(N+2)}{(p-1) N+2 p}$ and (17) imply

$$
\begin{equation*}
m \leqslant \frac{N+\theta+2}{(p-1) N+p+1-\theta(N-1)} \tag{33}
\end{equation*}
$$

However, by virtue of $\theta<p-1+\frac{p}{N}$, then

$$
\begin{equation*}
\frac{N+\theta+2}{(p-1) N+p+1-\theta(N-1)}<\frac{p(N+2)-N \theta}{(p-1) N+2 p-N \theta} . \tag{34}
\end{equation*}
$$

Thus from (30), (33) and (34), we can deduce that $\frac{\theta \rho}{p-\rho}>m^{\prime}$, if $k \geqslant 1$, (32) yields

$$
\begin{align*}
& \int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{(N+2) \rho}{N}} d x d t=\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \\
& \quad \leqslant c\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho(N+p)}{p N m^{\prime}}}\left(\int_{Q}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\frac{\theta \rho}{p-\rho}-m^{\prime}}\left(1+\mid T_{k}\left(u_{n}\right)^{m^{\prime}} d x d t\right)^{\frac{p-\rho}{p}}\right. \\
& \quad \leqslant c\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho(N+p)}{p N m^{\prime}}}(2 k)^{\left(\frac{\theta \rho}{p-\rho}-m^{\prime}\right) \frac{p-\rho}{p}}\left(\int_{Q}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{m^{\prime}} d x d t\right)^{\frac{p-\rho}{p}} \\
& \quad \leqslant c\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho(N+p)}{p N m^{\prime}}}(2 k)^{\left(\frac{\theta \rho}{p-\rho}-m^{\prime}\right) \frac{p-\rho}{p}}\left(2^{m^{\prime}}|Q|+2^{m^{\prime}} \int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{p-\rho}{p}} \\
& \quad \leqslant c k^{\frac{\theta \rho}{p}-\frac{(p-\rho) m^{\prime}}{p}}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho(N+p)}{p N m^{\prime}}}\left(1+\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{p-\rho}{p}} . \tag{35}
\end{align*}
$$

If $\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \geqslant 1$, it follows from (35) that

$$
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant c 2^{\frac{p-\rho}{p}} k^{\frac{\theta \rho}{p}-\frac{(p-\rho) m^{\prime}}{p}}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{\rho(N+p)}{p N m^{\prime}}+\frac{p-\rho}{p}} .
$$

Hence

$$
\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{1-\frac{\rho(N+p)}{p N m^{\prime}}-\frac{p-\rho}{p}} \leqslant c 2^{\frac{p-\rho}{p}} k^{\frac{\theta \rho}{p}-\frac{(p-\rho) m^{\prime}}{p}}
$$

Thus we get

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant c k^{\left[\frac{\theta \rho}{p}-\frac{(p-\rho) m^{\prime}}{p}\right]} \frac{1}{1-\frac{\rho(N+p)}{p N m^{\prime}}-\frac{p-\rho}{p}} . \tag{36}
\end{equation*}
$$

From (30) we obtain

$$
\begin{equation*}
\left(\frac{\theta \rho}{p}-\frac{(p-\rho) m^{\prime}}{p}\right) \frac{1}{1-\frac{\rho(N+p)}{p N m^{\prime}}-\frac{p-\rho}{p}}=-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)} . \tag{37}
\end{equation*}
$$

It follows from (36)-(37) that

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant c k^{-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}} \tag{38}
\end{equation*}
$$

New $\theta<p-1+\frac{p}{N}$, (33) and (34) imply

$$
\left\{\begin{array}{l}
N-p m+p>0, \quad \text { and } \tag{39}\\
N((p-1) m-p)+2 p(m-1)-\theta N(m-1)<0
\end{array}\right.
$$

Combining (37) and (39), we obtain

$$
-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}>0
$$

If $\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant 1$, by virtue of $k \geqslant 1$, then

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant 1 \leqslant k^{-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}} \tag{40}
\end{equation*}
$$

By (38) and (40) we get for any $k \geqslant 1$,

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant c k^{-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}} \tag{41}
\end{equation*}
$$

The condition $m>1$ ensures that

$$
\begin{equation*}
m^{\prime}>-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)} \tag{42}
\end{equation*}
$$

If $k \leqslant 1$, using (42), we have

$$
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant|Q| k^{m^{\prime}} \leqslant|Q| k^{-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}}
$$

It follows from (41) and (43) that for any $k>0$,

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t \leqslant c k^{-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}} \tag{43}
\end{equation*}
$$

Therefore we have

$$
k^{m^{\prime}} \operatorname{meas}\left\{(x, t) \in Q:\left|u_{n}(x, t)\right|>k\right\} \leqslant c k^{-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}}
$$

Namely,

$$
\operatorname{meas}\left\{(x, t) \in Q:\left|u_{n}(x, t)\right|>k\right\} \leqslant c k^{-m \frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{(m-1)(N-p m+p)}-m^{\prime}} \leqslant c k^{-\frac{m(p+N(p-1-\theta))}{N+p-p m}} \leqslant c k^{-\delta}
$$

Thus (23) is proved.
Now, (29) and (43) yield

$$
\begin{aligned}
\int_{Q}\left|D T_{k}\left(u_{n}\right)\right|^{p} d x d t & \leqslant c(1+k)^{\theta}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{1}{m^{\prime}}} \\
& \leqslant c(1+k)^{\theta} k^{-\frac{N((p-1) m-p)+2 p(m-1)-\theta N(m-1)}{N-p m+p}}
\end{aligned}
$$

Thus, by the Lemma 3, applied to $v(x, t)=u(x, t), \mu=\delta, \gamma=\theta, s=q$ and $\nu=$ $\frac{-(N(p-1) m-N p+2 p(m-1))+\theta(N m-p m+p)}{N-p m+p}$, we can obtain (24).

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 119-132 (2023)

Case 2. Suppose that $1<m \leqslant \frac{p(N+2)}{(p-1) N+2 p}$. Note that $m^{\prime} \geqslant \frac{p(N+2)}{N}$. Then we have

$$
\begin{align*}
\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{1}{m^{\prime}}} & \leqslant\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}-\frac{p(N+2)}{N}} d x d t\right)^{\frac{1}{m^{\prime}}} \\
& \leqslant k^{1-\frac{p(N+2)}{m^{\prime} N}}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t\right)^{\frac{1}{m^{\prime}}} \tag{44}
\end{align*}
$$

From (28)-(29) and (44), we have

$$
\begin{equation*}
\operatorname{ess} \sup _{0 \leqslant t \leqslant T} \int_{\Omega}\left|T_{k}\left(u_{n}(x, t)\right)\right|^{2} d x \leqslant c k^{1-\frac{p(N+2)}{m^{\prime} N}}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t\right)^{\frac{1}{m^{\prime}}} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{Q}\left|D T_{k}\left(u_{n}\right)\right|^{p} d x d t \leqslant c(1+k)^{\theta} k^{1-\frac{p(N+2)}{m^{\prime} N}}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t\right)^{\frac{1}{m^{\prime}}} \tag{46}
\end{equation*}
$$

Thus, by the Gagliardo-Nirenberg inequality (12) (Lemma 2), applied to $v(x, t)=T_{k}\left(u_{n}(x, t)\right), \varrho=2$, and $h=p$, using (45)-(46), we have

$$
\begin{aligned}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t & \leqslant\left(\operatorname{ess} \sup _{0 \leqslant t \leqslant T} \int_{\Omega}\left|T_{k}\left(u_{n}(x, t)\right)\right|^{2} d x\right)^{\frac{p}{N}} \int_{Q}\left|D T_{k}\left(u_{n}\right)\right|^{p} d x d t \\
& \leqslant c(1+k)^{\theta} k^{\left(1-\frac{p(N+2)}{N m^{\prime}}\right)\left(\frac{p}{N}+1\right)}\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t\right)^{\frac{p+N}{N m^{\prime}}}
\end{aligned}
$$

By virtue of $m \leqslant \frac{p(N+2)}{(p-1) N+2 p}$, then $1-\frac{p+N}{N m^{\prime}}>0$. Thus we get

$$
\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t\right)^{1-\frac{p+N}{N m^{\prime}}} \leqslant c(1+k)^{\theta} k^{\left(1-\frac{p(N+2)}{N m^{\prime}}\right)\left(\frac{p}{N}+1\right)}
$$

Hence

$$
\begin{align*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t & \leqslant c\left[(1+k)^{\theta} k^{\left(1-\frac{p(N+2)}{N m^{\prime}}\right)\left(\frac{p}{N}+1\right)}\right]^{\frac{1}{1-\frac{p+N}{N m^{\prime}}}} \\
& \leqslant c(1+k)^{\frac{N m \theta}{N-p m+p}} k^{\frac{(N+p)(N m-p(N+2)(m-1))}{N(N-p m+p)}} \tag{47}
\end{align*}
$$

If $k \geqslant 1$, it follows from (47) that

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t \leqslant c k^{\frac{(N+p)(N m-p(N+2)(m-1))+\theta N^{2} m}{N(N-p m+p)}} \tag{48}
\end{equation*}
$$

If $k \leqslant 1$. Now $\theta<p-1+\frac{p}{N}$, imply

$$
\frac{p(N+2)}{N}>\frac{(N+p)(N m-p(N+2)(m-1))+\theta N^{2} m}{N(N-p m+p)}
$$

which implies

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t \leqslant|Q| k^{\frac{p(N+2)}{N}} \leqslant|Q| k^{\frac{(N+p)(N m-p(N+2)(m-1))+\theta N^{2} m}{N(N-p m+p)}} . \tag{49}
\end{equation*}
$$

It follows from (48)-(49) that for any $k>0$,

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t \leqslant c k^{\frac{(N+p)(N m-p(N+2)(m-1))+\theta N^{2} m}{N(N-p m+p)}} . \tag{50}
\end{equation*}
$$

Therefore from (50) we can obtain (23). Finally, (24) can be deduced from (46), (50) and Lemma 3.

Case 3. Suppose that $m=1$. We only need to replace $\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{1}{m^{\prime}}}$ with $|Q|^{\frac{1}{m^{\prime}}} k$ in (27)-(29). That is

$$
\int_{\Omega} S_{k}\left(u_{n}(x, \tau)\right) d x+\alpha \int_{0}^{\tau} \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x d t \leqslant\left\|f_{n}\right\|_{L^{m}(Q)}|Q|^{\frac{1}{m^{\prime}}} k
$$

so,

$$
\begin{equation*}
\text { ess } \sup _{0 \leqslant t \leqslant T} \int_{\Omega}\left|T_{k}\left(u_{n}(x, t)\right)\right|^{2} d x+\alpha \int_{Q} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x d t \leqslant c k \tag{51}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int_{Q}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t=\int_{Q} \frac{\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}}{\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\theta}}\left(1+\left|T_{k}\left(u_{n}\right)\right|\right)^{\theta} d x d t \leqslant c(1+k)^{\theta} k \tag{52}
\end{equation*}
$$

By (51)-(52) and Lemma 2 (here $v(x, t)=T_{k}\left(u_{n}(x, t)\right), h=p, \varrho=2$), going through the same process as that of (51), we obtain

$$
\begin{equation*}
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t \leqslant c k^{\frac{N+p+\theta N}{N}} \tag{53}
\end{equation*}
$$

Thus it's easy to get (23) by (53). Now (52)-(53) and Lemma (3) imply that (24) holds.
Taking $T_{1}\left(u_{n}\right) \chi_{(0, \tau)}(t)$ as a test function for problem (22), and using (2), (4) and Hölder's inequality, we get

$$
\int_{\Omega} S_{1}\left(u_{n}(x, \tau)\right) d x+\alpha \int_{0}^{\tau} \int_{\Omega} \frac{\left|\nabla T_{1}\left(u_{n}\right)\right|^{p}}{\left(1+\left|u_{n}\right|\right)^{\theta}} d x d t \leqslant\left\|f_{n}\right\|_{L^{m}(Q)}\left(\int_{0}^{\tau} \int_{\Omega}\left|T_{1}\left(u_{n}\right)\right|^{m^{\prime}} d x d t\right)^{\frac{1}{m^{\prime}}}
$$

Note that by (7)-(8) for any $s \in \mathbb{R},|s|-\frac{1}{2} \leqslant S_{1}(s) \leqslant|s|$. Then we have

$$
\begin{equation*}
\text { ess } \sup _{0 \leqslant t \leqslant T} \int_{\Omega}\left|u_{n}(x, t)\right| d x \leqslant\left\|f_{n}\right\|_{L^{m}(Q)}|Q|^{\frac{1}{m^{\prime}}}+\frac{1}{2}|\Omega| \tag{54}
\end{equation*}
$$

So, (20) and (54) yield (25).
By (53), and Hölder's inequality, we obtain

$$
\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{p} d x d t \leqslant\left(\int_{Q}\left|T_{k}\left(u_{n}\right)\right|^{\frac{p(N+2)}{N}} d x d t\right)^{\frac{N}{N+2}}|Q|^{\frac{2}{N+2}} \leqslant c k^{\frac{N+p+\theta N}{N+2}}|Q|^{\frac{2}{N+2}}
$$

New by (52), we have

$$
\int_{Q}\left|D T_{k}\left(u_{n}\right)\right|^{p} d x d t \leqslant c|Q|^{\frac{1}{m^{\prime}}}(1+k)^{\theta} k
$$

The above two inequalities imply (26).

4. Proof of the main theorem

Proof. Let

$$
h_{k}(s)=1-\left|T_{1}\left(s-T_{k}(s)\right)\right|, \quad H_{k}(s)=\int_{0}^{s} h_{k}(\tau) d \tau, \quad \forall s \in \mathbf{R}, \quad \forall k>0
$$

Taking $\phi=h_{k}\left(u_{n}\right)$ in (22), we get in the sense of distributions

$$
\begin{align*}
\left(H_{k}\left(u_{n}\right)\right)_{t}=\operatorname{div}\left(h_{k}\left(u_{n}\right) a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}(\right. & \left.\left.x, t, u_{n}, \nabla u_{n}\right)\right) \\
& -a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} h_{k}^{\prime}\left(u_{n}\right)+f_{n} h_{k}\left(u_{n}\right) \tag{55}
\end{align*}
$$

Note that $\operatorname{supp}\left(h_{k}\right) \subseteq[-k-1, k+1], 0 \leqslant h_{k} \leqslant 1,\left|h_{k}^{\prime}\right| \leqslant 1$, if $n>k+1$,
Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 119-132 (2023)

$$
h_{k}\left(u_{n}\right) a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right)=h_{k}\left(u_{n}\right) a\left(x, t, T_{k+1}\left(u_{n}\right)\right) \widehat{a}\left(x, t, T_{k+1}\left(u_{n}\right), \nabla T_{k+1}\left(u_{n}\right)\right),
$$

and

$$
\begin{aligned}
a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla & \nabla u_{n} h_{k}^{\prime}\left(u_{n}\right) \\
& =a\left(x, t, T_{k+1}\left(u_{n}\right)\right) \widehat{a}\left(x, t, T_{k+1}\left(u_{n}\right), \nabla T_{k+1}\left(u_{n}\right)\right) \nabla T_{k+1}\left(u_{n}\right) h_{k}^{\prime}\left(u_{n}\right) .
\end{aligned}
$$

By Lemma 4, (9) and the above equalities, for fixed $k>0$, we can deduce that

$$
\begin{aligned}
h_{k}\left(u_{n}\right) a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right) & \text { is bounded in } L^{p}(Q), \\
a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} h_{k}^{\prime}\left(u_{n}\right) & \text { is bounded in } L^{1}(Q) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(H_{k}\left(u_{n}\right)\right)_{t} \text { is bounded in } L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}(Q) . \tag{56}
\end{equation*}
$$

(56) implies $\left(H_{k}\left(u_{n}\right)\right)_{t}$ is bounded in $L^{1}\left(0, T ; W^{-1, s}\right)(\Omega)$ for all $s>1$. By virtue of $\nabla H_{k}\left(u_{n}\right)=$ $h_{k}\left(u_{n}\right) \nabla u_{n}=h_{k}\left(u_{n}\right) \nabla T_{k+1}\left(u_{n}\right),(26)$ implies that $H_{k}\left(u_{n}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.

So, we can use Corollary 4 of [11] to see that $H_{k}\left(u_{n}\right)$ is relatively compact in $L^{1}(Q)$. By Theorem 1.1 in [12], we have $H_{k}\left(u_{n}\right) \in C\left([0, T], L^{1}(\Omega)\right)$. Thus there exists a subsequence of $\left\{H_{k}\left(u_{n}\right)\right\}$ (still denoted by $\left.\left\{H_{k}\left(u_{n}\right)\right\}\right)$ such that it also converges in measure and almost everywhere in Q.

Let σ, k, and ε be positive numbers. Noting that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\sigma\right\} \leqslant \operatorname{meas}\left\{\left|u_{n}\right|>k\right\}+\operatorname{meas}\left\{\left|u_{m}\right|>k\right\}+\operatorname{meas}\left\{\left|H_{k}\left(u_{n}\right)-H_{k}\left(u_{m}\right)\right|>\sigma\right\} . \tag{57}
\end{equation*}
$$

By (23) in Lemma 4, we can choose k large enough to have

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\}+\operatorname{meas}\left\{\left|u_{m}\right|>k\right\}<\frac{\varepsilon}{2}, \quad \forall n, m . \tag{58}
\end{equation*}
$$

Furthermore, for the above fixed k, we can choose a large N_{0} such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|H_{k}\left(u_{n}\right)-H_{k}\left(u_{m}\right)\right|>\sigma\right\}<\frac{\varepsilon}{2}, \quad \forall n, m>N_{0} . \tag{59}
\end{equation*}
$$

(57)-(59) yield

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}-u_{m}\right|>\sigma\right\}<\varepsilon, \quad \forall n, m>N_{0} . \tag{60}
\end{equation*}
$$

Now, (60) implies that $\left\{u_{n}\right\}$ is a Cauchy sequence in measure in Q. Hence there exists a measurable function u such that

$$
\begin{equation*}
u_{n} \rightarrow u \text { a.e. in } Q . \tag{61}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
H_{k}\left(u_{n}\right) \rightarrow H_{k}(u) \text { a.e. in } Q . \tag{62}
\end{equation*}
$$

Since $\left|H_{k}\right| \leqslant k+1$, (62) and Lebesgue's dominated convergence theorem yield

$$
\begin{equation*}
H_{k}\left(u_{n}\right) \rightarrow H_{k}(u) \text { strongly in } L^{p}(Q) . \tag{63}
\end{equation*}
$$

Since $H_{k}\left(u_{n}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and noting that (63) holds, we have

$$
H_{k}\left(u_{n}\right) \rightharpoonup H_{k}(u) \text { weakly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) .
$$

Now, (61) yields

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { a.e. in } Q . \tag{64}
\end{equation*}
$$

Using Lebesgue's dominated convergence theorem once again, we get

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { strongly in } L^{p}(Q) . \tag{65}
\end{equation*}
$$

From (26) and (65), it follows that

$$
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \text { weakly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) .
$$

Then (25), (61) and Fatou's lemma yield $u \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$.

Similarly to Theorem 2.1 in [12], we can prove

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { strongly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{66}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\nabla T_{k}\left(u_{n}\right) \rightarrow \nabla T_{k}(u) \text { a.e. in } Q . \tag{67}
\end{equation*}
$$

Choosing $T_{1}\left(u_{n}-T_{k}\left(u_{n}\right)\right)$ as a test function for problem (22), using (4) we obtain

$$
\int_{\Omega} \tilde{T}\left(u_{n}(T)\right) d x+\int_{\left\{k<\left|u_{n}\right| \leqslant k+1\right\}} a\left(x, t, T_{n}\left(u_{n}\right)\right)\left|\nabla u_{n}\right|^{p} d x d t \leqslant \int_{\left\{\left|u_{n}\right| \geqslant k\right\}}\left|f_{n}\right| d x d t
$$

where

$$
\tilde{T}\left(u_{n}(T)\right)=\int_{0}^{u_{n}(T)} T_{1}\left(s-T_{k}(s)\right) d s
$$

It is easy to see that $\tilde{T}\left(u_{n}(T)\right) \geqslant 0$ a.e. in Ω. Hence we have

$$
\begin{equation*}
\int_{\left\{k<\left|u_{n}\right| \leqslant k+1\right\}} a\left(x, t, T_{n}\left(u_{n}\right)\right)\left|\nabla u_{n}\right|^{p} d x d t \leqslant \int_{\left\{\left|u_{n}\right| \geqslant k\right\}}\left|f_{n}\right| d x d t \tag{68}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (68) and using Fatou's lemma in the left side and Vitali's theorem on the right side of (68), we get

$$
\begin{equation*}
\int_{\{k<|u| \leqslant k+1\}} a(x, t, u)|\nabla u|^{p} d x d t \leqslant \int_{\{|u| \geqslant k\}}|f| d x d t . \tag{69}
\end{equation*}
$$

Thus from (69) we can deduce that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\{k<|u| \leqslant k+1\}} a(x, t, u)|\nabla u|^{p} d x d t=0 \tag{70}
\end{equation*}
$$

Then (61), (64), (66) and Vitali's theorem imply that

$$
k\left(u_{n}\right) a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right) \rightarrow h_{k}(u) a\left(x, t, T_{k+1}(u)\right) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right)
$$

strongly in $L^{p}(Q)$, and

$$
a\left(x, t, T_{n}\left(u_{n}\right)\right) \widehat{a}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} h_{k}^{\prime}\left(u_{n}\right) \rightarrow a\left(x, t, T_{k+1}(u)\right) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right) \nabla T_{k+1}(u) h_{k}^{\prime}(u)
$$

strongly in $L^{1}(Q)$. Let $n \rightarrow \infty$ in (55). We obtain in the sense of distributions that

$$
\begin{align*}
&\left(H_{k}(u)\right)_{t}=\operatorname{div}\left(h_{k}(u) a\left(x, t, T_{k+1}(u)\right) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right)\right) \\
& \quad-a\left(x, t, T_{k+1}(u) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right) \nabla T_{k+1}(u) h_{k}^{\prime}(u)+f h_{k}(u)\right. \tag{71}
\end{align*}
$$

Hence $\left(H_{k}(u)\right)_{t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}(Q)$. By Theorem 1.1 in [12], we have $H_{k}(u) \in$ $C\left([0, T], L^{1}(\Omega)\right)$. Since $H_{k}\left(u_{n}(0)\right)=0$, thus we get $H_{k}(u(0))=0$. For every $\phi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap$ $L^{\infty}(Q)$ such that $\phi_{t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)+L^{1}(Q)$ and for all $\tau \in(0, T]$, using $T_{l}\left(H_{k}(u)-\phi\right) \chi_{(0, \tau)}(t)$ as a test function in (71), and integrating by parts we obtain

$$
\begin{aligned}
\int_{\Omega} S_{l}\left(H_{k}(u)-\right. & \phi)(\tau) d x-\int_{\Omega} S_{l}(-\phi(0)) d x+\int_{0}^{\tau}\left\langle\phi_{t}, T_{l}\left(H_{k}(u)-\phi\right)\right\rangle d t \\
& +\int_{0}^{\tau} \int_{\Omega} h_{k}(u) a\left(x, t, T_{k+1}(u)\right) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right) \nabla T_{l}\left(H_{k}(u)-\phi\right) d x d t \\
& +\int_{0}^{\tau} \int_{\Omega} a\left(x, t, T_{k+1}(u)\right) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right) \nabla T_{k+1}(u) h_{k}^{\prime}(u) T_{l}\left(H_{k}(u)-\phi\right) d x d t \\
= & \int_{0}^{\tau} \int_{\Omega} f h_{k}(u) T_{l}\left(H_{k}(u)-\phi\right) d x d t
\end{aligned}
$$

Noting that if $k \rightarrow \infty$, we have

$$
\begin{align*}
& h_{k}(u) \rightarrow 1 \text { a.e. in } Q, \tag{72}\\
& H_{k}(u) \rightarrow u \text { a.e. in } Q . \tag{73}
\end{align*}
$$

Since $h_{k}^{\prime}(u)=-\operatorname{sign}(u) \chi_{\{k \leqslant|u| \leqslant k+1\}}, \operatorname{sign}\left(H_{k}(u)\right)=\operatorname{sign}(u)$, and $\left|H_{k}(u)\right|>k$ if $|u|>k$; and $H_{k}(u)=u$ if $|u| \leqslant k$. Moreover, if $\left|H_{k}(u)\right|>l+\|\phi\|_{L^{\infty}(Q)}=L$, we have $\nabla T_{l}\left(H_{k}(u)-\phi\right)=0$. Hence if $k>L$, thus we have

$$
\begin{align*}
& \int_{0}^{\tau} \int_{\Omega} h_{k}(u) a\left(x, t, T_{k+1}(u)\right) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right) \nabla T_{l}\left(H_{k}(u)-\phi\right) d x d t \\
&=\int_{0}^{\tau} \int_{\Omega} a\left(x, t, T_{L}(u)\right) \widehat{a}\left(x, t, T_{L}(u), \nabla T_{L}(u)\right) \nabla T_{l}\left(T_{L}(u)-\phi\right) d x d t \tag{74}
\end{align*}
$$

It follows from (70) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{\tau} \int_{\Omega} a\left(x, t, T_{k+1}(u)\right) \widehat{a}\left(x, t, T_{k+1}(u), \nabla T_{k+1}(u)\right) \nabla T_{k+1}(u) h_{k}^{\prime}(u) T_{l}\left(H_{k}(u)-\phi\right) d x d t=0 . \tag{75}
\end{equation*}
$$

Lebesgue's dominated convergence theorem and (72)-(73) imply that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{\tau} \int_{\Omega} f h_{k}(u) T_{l}\left(H_{k}(u)-\phi\right) d x d t=\int_{0}^{\tau} \int_{\Omega} f T_{l}(u-\phi) d x d t \tag{76}
\end{equation*}
$$

We can also prove if $k \rightarrow \infty$,

$$
\begin{align*}
& T_{l}\left(H_{k}(u)-\phi\right) \rightarrow T_{l}(u-\phi) \text { strongly in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \tag{77}\\
& T_{l}\left(H_{k}(u)-\phi\right) \rightarrow T_{l}(u-\phi) \text { weak }^{*} \text { in } L^{\infty}(\Omega) . \tag{78}
\end{align*}
$$

From (77) and (78) we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{0}^{\tau}\left\langle\phi_{t}, T_{l}\left(H_{k}(u)-\phi\right)\right\rangle d t=\int_{0}^{\tau}\left\langle\phi_{t}, T_{l}(u-\phi)\right\rangle d t \tag{79}
\end{equation*}
$$

Since for a.e. $\tau \in[0, T]$, a.e. $x \in \Omega$,

$$
\left|H_{k}(u)\right| \leqslant|u|, \quad 0 \leqslant S_{l}\left(H_{k}(u)-\phi\right)(\tau) \leqslant l(|u(\tau)|+|\phi(\tau)|),
$$

combining with $u \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$ and $\phi \in C\left([0, T] ; L^{1}(\Omega)\right)$, by Lebesgue's dominated convergence theorem and (73), we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega} S_{l}\left(H_{k}(u)-\phi\right)(\tau) d x=\int_{\Omega} S_{l}(u-\phi)(\tau) d x \tag{80}
\end{equation*}
$$

Now (74)-(76), (79)-(80) yield for a.e. $\tau \in[0, T]$,

$$
\begin{align*}
\int_{\Omega} S_{l}(u-\phi)(\tau) d x & -\int_{\Omega} S_{l}(-\phi(0)) d x+\int_{0}^{\tau}\left\langle\phi_{t}, T_{l}(u-\phi)\right\rangle d t \\
& +\int_{0}^{\tau} \int_{\Omega} a(x, t, u) \widehat{a}(x, t, u, \nabla u) \nabla T_{l}(u-\phi) d x d t=\int_{0}^{\tau} \int_{\Omega} f T_{l}(u-\phi) d x d t \tag{81}
\end{align*}
$$

This shows that the first term on the left side of the above equality is almost everywhere equal to a continuous function on $[0, T]$. Replacing l with k in (81), we obtain (9)-(10) and u is an entropy solution to problem (1). By (23), we have

$$
\begin{equation*}
\int_{Q} \chi_{\left\{\left|u_{n}\right|>k\right\}} d x d t=\operatorname{meas}\left\{\left|u_{n}\right|>k\right\} \leqslant \frac{c}{k^{\delta}} . \tag{82}
\end{equation*}
$$

Thus (61), (82) and Fatou's lemma yield

$$
\operatorname{meas}\{|u|>k\}=\int_{Q} \chi_{\{|u|>k\}} d x d t \leqslant \frac{c}{k^{\delta}}
$$

Rewriting (73) as follows

$$
\begin{equation*}
k \text { meas }\{|u|>k\}^{\frac{1}{\delta}}=c^{\frac{1}{\delta}} . \tag{83}
\end{equation*}
$$

Thus by Definition 2, we obtain $u \in \mathcal{M}^{\delta}(Q)$.
The complete the proof of (18), we need to prove

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } Q . \tag{84}
\end{equation*}
$$

If fact, for all $\sigma>0$ and $\varepsilon>0$, we have

$$
\operatorname{meas}\left\{\left|\nabla u_{n}-\nabla u\right|>\sigma\right\} \leqslant \operatorname{meas}\left\{\left|u_{n}\right|>k\right\}+\operatorname{meas}\{|u|>k\}+\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}(u)\right|>\sigma\right\} .
$$

By (23) and (18), we can choose k large enough to prove

$$
\begin{equation*}
\operatorname{meas}\left\{\left|u_{n}\right|>k\right\}+\operatorname{meas}\{|u|>k\}<\frac{\varepsilon}{2}, \quad \forall n \tag{85}
\end{equation*}
$$

For the above $k,(67)$ implies that there exists a large N_{0} such that

$$
\begin{equation*}
\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}(u)\right|>\sigma\right\}<\frac{\varepsilon}{2}, \quad \forall n>N_{0} . \tag{86}
\end{equation*}
$$

Now, (85) and (86) yield

$$
\operatorname{meas}\left\{\left|\nabla u_{n}-\nabla u\right|>\sigma\right\}<\varepsilon, \quad \forall n>N_{0}
$$

Hence from (83), we can deduce that (84) holds. Similarly to (82)-(83), by (24) and (84), we obtain $|\nabla u| \in \mathcal{M}(Q)$. Thus the proof of Theorem 2 is completed.
[1] Li F. Regularity for entropy solution of a class of parabolic equations with irregular data. Commentationes Mathematicae Universitatis Carolinae. 48 (1), 69-82 (2007).
[2] Prignet A. Existence and uniqueness of "entropic" solutions of parabolic problems with L^{1} data. Nonlinear Analysis: Theory, Methods \& Applications. 28 (12), 1943-1954 (1997).
[3] Segura de León S, Toledo J. Regularity for entropy solutions of parabolic p-Laplacian equations. Publicacions Matemàtiques. 43 (2), 665-683 (1999).
[4] Blanchard D., Murat F. Renormalised solutions of nonlinear parabolic problems with L^{1} data: existence and uniqueness. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 127 (6), 1137-1152 (1997).
[5] Li F. Existence and regularity results for some parabolic equations with degenerate coercivity. Annales Academiæ Scientiarum Fennicæ Mathematica. 37, 605-633 (2012).
[6] Mokhtari F., Khelifi H. Regularity results for degenerate parabolic equations with L^{m} data. Complex Variables and Elliptic Equations. 1-15 (2022).
[7] Bénilan P. H., Boccardo L., Gallouët T., Gariepy R, Pierre M, Vazquez J. L. An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa Classe di Scienze, Serie 4. 22 (2), 241-273 (1995).
[8] Boccardo L, Dall'Aglio A, Orsina A. Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Del Seminario Matematico E Fisico Universita Di Modena. 46, 51-81 (1998).
[9] Bénilan P. H, Brezis H, Crandall M. G. A semilinear equation in $L^{1}\left(\mathbb{R}^{N}\right)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4. 2 (4), 523-555 (1975).
[10] Lions J. L. Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod, Paris (1969).
[11] Simon J. Compact sets in the space $L^{p}(0, T ; B)$. Annali di Matematica Pura ed Applicata. 146, 65-96 (1987).
[12] Porretta A. Exestence results for nonlinear parabolic equations via strong convergence of truncations. Annali di Matematica Pura ed Applicata. 177, 143-172 (1999).
[13] Di Benedetto E. Degenerate parabolic equations. Springer-Verlag, New York (1993).

Регулярність ентропійних розв'язків вироджених параболічних рівнянь із даними L^{m}

Хеліфі X. ${ }^{1,2}$
${ }^{1}$ Факультет математики Алэжирського університету, Алжнир, вул. Дідо Мурада, 2, Алжсир, Алжир
${ }^{2}$ Лабораторія математичного аналізу та застосувань, Університет Алжиру 1, Алжир, Алжир

У цій статті досліджуються регулярні результати для ентропійних розв'язків класу параболічних нелінійних рівнянь із виродженою коерцитивністю, коли права частина знаходиться в L^{m} з $m>1$.

Ключові слова: регулярність; ентропійні розв'язки; вироджена коериитивність; дані L^{m}.

