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On March 2, 2020, the Moroccan Ministry of Health announced the first case of COVID-19
in the city of Casablanca for a Moroccan tourist who came from Italy. The SARS-COV-
2 virus has spread throughout the Kingdom of Morocco. In this paper, we study the
spatiotemporal transmission of the COVID-19 virus in the Kingdom of Morocco. By sup-
porting a SIWIHR partial differential equation for the spread of the COVID-19 pandemic
in Morocco as a case study. Our main goal is to characterize the optimum order of control-
ling the spread of the COVID-19 pandemic by adopting a vaccination strategy, the aim of
which is to reduce the number of susceptible and infected individuals without vaccination
and to maximize the recovered individuals by reducing the cost of vaccination using one
of the vaccines approved by the World Health Organization. To do this, we proved the
existence of a pair of control. It provides a description of the optimal controls in terms
of state and auxiliary functions. Finally, we provided numerical simulations of data re-
lated to the transmission of the COVID-19 pandemic. Numerical results are presented to
illustrate the effectiveness of the adopted approach.

Keywords: epidemiological modeling; novel coronavirus; PDE; optimal control; numeri-
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1. Introduction

In late 2019, a deadly and deadly virus spread all over the world, and even tightened its grip and
imposed its control over the world, and caused the suspension of life and the suspension of studies, the
suspension of travel, and the closure of countries on themselves until this Sunday, October 17, 2021.
This virus is called SARS-CoV-2, which causes COVID-19 disease [1].

The COVID-19 disease turned into a global pandemic a few months after its spread. Recording
high rates of COVID-19 infection compared to the famous strains of Corona such as Sars-Cov and
Mers-Cov. The number of COVID-19 infections worldwide has reached more than 224 million, and
nearly 5 million deaths. The United States of America, India, and Brazil were the most affected by
the virus. Several mutations of the SARS-Cov-2 virus have also appeared, including alpha, beta, and
delta+, which differ according to the speed of their spread and the virulence of the infection.

The Kingdom of Morocco is among the countries affected by the virus globally and in Africa.
The first infection with this virus appeared from a Moroccan citizen coming from Italy on March 02,
2020 [2]. Then it spread throughout the Kingdom. The number of COVID-19 infections has reached
more than 938 000 and more than 14 000 deaths, (see Fig. 1).

The first infection was recorded in the city of Casablanca and then spread to the rest of the world,
the Kingdom of Morocco. East, West, North, and South.
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Fig. 1. Daily New Cases in Morocco [2].

To limit the spread of this global pandemic, the recognized international companies have worked
to invent a vaccination to contribute to strengthening immunity as well as limiting the spread of the
pandemic. Among the vaccines recognized by the World Health Organization, Pfizer – Moderna –
Sinopharm, AstraZeneca and others.

Morocco, like other countries, started the vaccination process against a virus at the beginning of
2021. The number of vaccinated people in Morocco, according to three doses, reached more than
23 million vaccinated with the first dose, more than 20 million vaccinated with the second dose, and
more than 7 000 thousand vaccinated with the third dose. For age groups over 12 years old, according
to the vaccines approved by the World Health Organization and the Moroccan Ministry of Health. It
also allowed the vaccinators, after completing two doses of the vaccine, to extract the vaccine passport,
which is allowed to move inside and outside Morocco and is recognized.

To limit the spread of the COVID-19 pandemic, the Kingdom of Morocco has taken several impor-
tant strategies. There was suspension of a study during the months of March, April and May of 2020.
The closure of the borders of many endemic countries, in addition to that it was among the countries
that preceded the launch of the vaccination process, which began in January 2021.

Several mathematical modeling studies have emerged that aim to understand the coronavirus and
describe its dynamics using continues ODEs model [3–9], discrete-time model [10], delayed model [11],
age-structured model [12, 13] or fractional derivatives [14–18]. However, they have not taken into
account the spread in space-time, especially since the virus started spreading from place to place.

The aim of this paper is:

— study the spread of COVID-19 in Morocco as a case study;
— study the spread of Sars-cov-2 in space and time in Morocco;
— propose the vaccination strategy knowing that there are many vaccines approved by the World

Health Organization and approved by the Ministry of Health in Morocco, such as Astzenika and
Senovar.

In this paper, we propose a spatial-temporal SEIHR COVID-19 model (SEIHR stands for suscep-
tible, infected without symptoms, infected, hospitalisation and recovered) and our aim is to minimize
the number of infected individuals by using the vaccination strategy. Hence, a large part of this work
is devoted to the mathematical study of the existence, uniqueness and characterization of our optimal
spatiotemporal control that minimizes the density of infected individuals and the cost of vaccination
program.

The paper is organized as follows: in Section 2, we presented our spatial-temporel SIWIHR
COVID-19 model, in Section 3, we prove the existence of a global strong solution for our system.
In Section 4, we prove the existence of an optimal solution. Necessary optimality conditions are estab-
lished in Section 5. As application, the numerical results associated to our control problem are given
in Section 6. Finally, we conclude the paper in Section 7.
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2. Model description and problem formulation

In this paper, we consider a model of five partial differential equations which describe the spatiotem-
poral dynamic of the COVID-19 disease in Morocco. The total population, denoted N , is divided into
five different compartments:

• susceptible Moroccan individuals (S), people who may be infected by the virus;
• infected without symptoms individuals (IW ), infected with the virus but without typical symptoms

of infection;
• unreported infection cases (I), who are infectious but not yet confirmed by a test;
• the hospitalized (H), people who are diagnosed as COVID-19 positive patients and are hospitalized;
• recovered individuals (R).

We assume that all recruitment is into the susceptible compartment and occur at a rate µN . The
natural death rate, denoted µ, is constant across all compartments. The transmission of COVID-19
occurs following an adequate contact between a susceptible and only infectious in IW and I, as the
positive diagnosed people in H are isolated and do not contribute to the disease spread. Due to the
non-linear contact dynamics in the population, we use the incidence function β1IW

S
N and β2I

S
N to

indicate successful transmission of COVID-19, where βi, i = 1, 2, denote the effective contact rate
with infectious individuals in compartment IW and I respectively. All newly infected individuals enter
to the infected without symptoms compartment IW for k−1 days (k is the rate at which individuals
leaves the infected without symptoms class by becoming infectious). A proportion p of the infectious
individuals are diagnosed and enter the compartment H. While the remaining infectious patients are
considered as free infectious people and they are regrouped in the unreported compartment I. Among
infectious patients who are not yet detected and isolated, some of them are diagnosed at a rate σ. The
infectious individuals in I and H compartments progress to the recovered class with constant rates ω1

and ω2, respectively.
Our model is formulated as a reaction-diffusion system to take into account the spatial dispersal of

the population. The reaction terms describe the local dynamics of the population, and the diffusion
terms take into account the spatial distribution dynamics. It is assumed that the five sub-populations
could be present at each location, and interact locally. Furthermore, the corresponding diffusion rate
for susceptible, infected without symptoms individuals, infected individuals, hospitalized individuals,
and recovered individuals are given by the positive constants dS , dIW , dI , dH and dR respectively.

Hence, our model is given by the following reaction-diffusion system in a fixed and bounded domain
Ω ∈ R2 with smooth boundary ∂Ω:





dS(t, x)

dt
= dS∆S + µN − µS(t, x) − β1

S(t, x)IW (t, x)

N
− β2

S(t, x)I(t, x)

N
,

dIW (t, x)

dt
= dIW ∆IW + β1

S(t, x)IW (t, x)

N
+ β2

S(t, x)I(t, x)

N
− (µ+ k)IW (t, x),

dI(t, x)

dt
= dI∆I + (1 − p)kIW (t, x) − (σ + θ1 + µ)I(t, x),

dH(t, x)

dt
= dH∆H + pkIW (t, x) + σI(t, x) − (θ2 + µ)H(t, x),

dR(t, x)

dt
= dR∆R+ θ2H(t, x) + θ1I(t, x) − µR(t, x).

(1)

Where (t, x) ∈ Q = [0, T ] × Ω, [0, T ] is a finite time interval, ∆ = ∂2

∂x2
+ ∂2

∂y2
represents the usual

Laplace operator and S(t, x), IW (t, x), I(t, x), H(t, x) and R(t, x) are densities of susceptible, infected
without symptoms, infected, hospitalized and recovered individuals.

Throughout the paper, we assume that the initial values

S(0, x) = S0(x) > 0, IW (0, x) = IW.0(x) > 0, I(0, x) = I0(x) > 0,

H(0, x) = H0(x) > 0, R(0, x) = R0(x) > 0
(2)
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are five non-negative continuous functions in Ω for biological reasons. The no-flux boundary conditions
are given by

∂S

∂η
(t, x) =

∂IW
∂η

(t, x) =
∂I

∂η
(t, x) =

∂H

∂η
(t, x) =

∂R

∂η
(t, x) = 0, (t, x) ∈ Σ = [0, T ] × ∂Ω. (3)

Here, η is the outward unit normal vector on the boundary ∂Ω.
As strategy of control we adopt a vaccination campaign and we include into the model (1) a control

term u that represents the rate of susceptible who have been vaccinated per time unit and space. The
susceptible people who have been vaccinated are removed to the recovered class.

The dynamics of the controlled model is given by




dS

dt
= dS∆S + µN − µS − β1

SIW
N

− β2
SI

N
− uS,

dIW
dt

= dIW ∆IW + β1
SIW
N

+ β2
SI

N
− (µ + k)IW ,

dI

dt
= dI∆I + (1 − p)kIW − (σ + θ1 + µ)I (t, x) ∈ Q = [0, T ] × Ω,

dH

dt
= dH∆H + pkIW + σI − (θ2 + µ)H,

dR

dt
= dR∆R+ θ2H + θ1I − µR+ uS,

(4)

with the homogeneous Neumann boundary conditions

∂S

∂η
(t, x) =

∂IW
∂η

(t, x) =
∂I

∂η
(t, x) =

∂H

∂η
(t, x) =

∂R

∂η
(t, x) = 0, (t, x) ∈ Σ = [0, T ] × ∂Ω, (5)

and initial conditions

S(0, x) = S0(x) > 0, IW (0, x) = IW.0(x) > 0, I(0, x) = I0(x) > 0,

H(0, x) = H0(x) > 0, R(0, x) = R0(x) > 0.
(6)

Our goal is to minimize the density of the infected without symptoms IW and infected individuals
I as well as the vaccination cost. Mathematically, we need to find a control function u∗ such that

J(u∗) = min
u∈Uad

J(u), (7)

where J is the objective functional given by

J(u) =

∫ T

0

∫

Ω
(ω1IW (t, x) + ω2I(t, x)) dx dt +

ω3

2
‖u‖2L2(Q) , (8)

with ωi (for i = 1, 2, 3) are constant positives weights, and u belongs to the set Uad of the admissible
controls defined by

Uad = {u ∈ L∞(Q) | 0 6 u 6 umax 6 1} . (9)

Hereafter, we introduce the following notations:

— H(Ω) =
(
L2(Ω)

)5
;

— W 1,2([0, T ],H(Ω)), the space of all absolutely continuous functions y : [0, T ] ∈ H(Ω) having the
property that ∂y

∂t ∈ L2([0, T ],H(Ω));
— L(T,Ω) = L2([0, T ],H2(Ω)) ∩ L∞([0, T ],H1(Ω));
— y = (y1, y2, y3, y4, y5) = (S, IW , I,H,R) the solution of the system (4), and the initial value y0 =

(y01 , y
0
2, y

0
3 , y

0
4 , y

0
5) = (S0, IW.0, I0,H0, R0).

— A : D(A) ⊂ H(Ω) → H(Ω), the linear operator given by

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 171–185 (2023)
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A =




dS∆ 0 0 0 0
0 dIW ∆ 0 0 0
0 0 dI∆ 0 0
0 0 0 dH∆ 0
0 0 0 0 dR∆



, (10)

where D(A) =
{
y = (y1, y2, y3, y4, y5) ∈

(
H2(Ω)

)5
, ∂yi∂η = 0, for i = 1, . . . , 5

}
.

3. Existence of a global solution

The concern of this section is to show the existence of a global solution, the boundedness and positivity
of the solution of the problem (4)–(6).

Theorem 1. Let Ω be a bounded domain from R2; with the boundary smooth enough, y0i > 0 on Ω
(with i = 1, . . . , 5), the problem (4)–(6) has a unique (global) strong solution y ∈ W 1,2([0, T ] : H(Ω))
such that yi ∈ L(T,Ω) ∩ L∞(Q) with i = 1, . . . , 5. In addition y1, y2, y3, y4 and y5 are non-negative.
Furthermore, there exists C > 0 (independent of u) such that for all t ∈ [0, T ]:∥∥∥∥

∂yi
∂t

∥∥∥∥
L2(Q)

+ ‖yi‖L2(0,T ;H2(Ω)) + ‖yi‖H1(Ω) + ‖yi‖L∞(Q) 6 C. (11)

Proof. Let f(y(t)) = (f1(y(t)), f2(y(t)), f3(y(t)), f4(y(t)), f5(y(t)) the non-linear term in (4), i.e.




f1(y(t)) = µN − µy1 − β1
y1y2
N

− β2
y1y3
N

− uy1,

f2(y(t)) = β1
y1y2
N

+ β2
y1y3
N

− (µ+ k)y2,

f3(y(t)) = (1 − p)ky2 − (σ + θ1 + µ)y3, t ∈ [0, T ],
f4(y(t)) = pky2 + σy3 − (θ2 + µ)y4,
f5(y(t)) = θ2y4 + θ1y3 − µy5 + uy1.

(12)

The system (4)–(6) can be rewritten in the space H(Ω) as follows:
{

∂y

∂t
= Ay + f(y(t)), t ∈ [0, T ],

y(0) = y0.
(13)

It is clear that function f is Lipschitz continuous in y = (y1, y2, y3, y4, y5) uniformly with respect to
t ∈ [0, T ]. Furthermore, as the operator A defined in (10) is dissipating, self-adjoint and generates a
C0-semi-group of contractions on H(Ω) [19]; the well-known result in [20] (see Proposition 1.2 p. 175)
assures that the problem (4)–(6) admits a unique strong solution y ∈W 1,2([0, T ],H(Ω)) with

y1, y2, y3, y4, y5 ∈ L2([0, T ]),H2(Ω). (14)

Let us show that yi ∈ L∞(Q) for i = 1, . . . , 5. For this, we denote by M = max
{
‖f1‖L∞(Q), ‖y01‖L∞(Ω)

}

and by {S(t), t > 0} the C0-semigroup generated by the operator B : D(B) ⊂ L2(Ω) → L2(Ω), where

By1 = d1∆y1 and D(B) =
{
y1 ∈ H2(Ω), ∂y1∂η = 0, a.e. ∂Ω

}
.

It is clear that the function U1(t, x) = y1 −Mt− ‖y01‖L∞(Ω) satisfies the system:




∂U1

∂η
= dS∆U1 + f1(t, y(t)) −M, t ∈ [0, T ],

U1(0, x) = y01 −
∥∥y01
∥∥
L∞(Ω)

,
(15)

which has a solution given by

U1(t) = S(t)
(
y01 −

∥∥y01
∥∥
L∞(Ω)

)
+

∫ t

0
S(t− s)

(
f1(s, y(s)) −M

)
ds. (16)

As y01 − ‖y01‖L∞(Ω) 6 0 and f1(s, y(s)) −M 6 0, we have U1(t, x) 6 0,∀(t, x) ∈ Q. Similarly, the
function U2(t, x) = y1 +Mt+ ‖y01‖L∞(Ω) satisfies U2(t, x) > 0,∀(t, x) ∈ Q. Then

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 171–185 (2023)
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|y1(t, x)| 6Mt+
∥∥y01
∥∥
L∞(Ω)

, ∀(t, x) ∈ Q, (17)

and analogously, we have

|yi(t, x)| 6Mt+
∥∥y0i
∥∥
L∞(Ω)

, ∀(t, x) ∈ Q, for i = 2, . . . , 5. (18)

Thus, we have proved that

yi ∈ L∞(Q), ∀(t, x) ∈ Q, for i = 1, . . . , 5. (19)

By the first equation of (4), we obtain
∫ t

0

∫

Ω

∣∣∣∣
∂y1
∂s

∣∣∣∣
2

ds dx+ d2S

∫ t

0

∫

Ω
|∆y1|2 ds dx− 2dS

∫ t

0

∫

Ω

∂y1
∂s

∆y1ds dx

=

∫ t

0

∫

Ω

(
µN − µy1 − β1

y1y2
N

− β2
y1y3
N

)2
ds dx.

Using the regularity of y1 and Green’s formula, we can write

2

∫ t

0

∫

Ω

∂y1
∂s

∆y1ds dx = −
∫ t

0

∂

∂s

(∫

Ω

∣∣∣
h
y1

∣∣∣
2
dx

)
ds = −

∫

Ω

∣∣∣
h
y1

∣∣∣
2
dx+

∫

Ω

∣∣∣
h
y01

∣∣∣
2
dx,

then,
∫ t

0

∫

Ω

∣∣∣∣
∂y1
∂s

∣∣∣∣
2

ds dx+ d2S

∫ t

0

∫

Ω
|∆y1|2 ds dx− dS

∫ t

0

∫

Ω

∂y1
∂s

∆y1ds dx+

∫

Ω

∣∣∣
h
y01

∣∣∣
2
dx

=

∫ t

0

∫

Ω

(
µN − µy1 − β1

y1y2
N

− β2
y1y3
N

)2
ds dx.

Since ‖yi‖L∞(Q) for i = 1, . . . , 5 are bounded independently of u and y01 ∈ H2(Ω), we deduce that

y1 ∈ L∞ ([0, T ],H1(Ω)
)
. (20)

So, according to (14), (19) and (20), we get

y1 ∈ L(T,Ω) ∩ L∞(Q), (21)

and we can conclude that inequality (11) holds for i = 1. The remaining cases (i = 2, . . . , 5) can be
treated similarly.

Now, to show the positiveness of yi for i = 1, . . . , 5 we write system (4) in the form:




∂y1
∂t

= dS∆y1 + F1(y),

∂y2
∂t

= dIW ∆y2 + F2(y),

∂y3
∂t

= dI∆y3 + F3(y), (t, x) ∈ Q,

∂y4
∂t

= dH∆y4 + F4(y),

∂y5
∂t

= dR∆y5 + F5(y).

(22)

It is easy to see that the functions F1(y), F2(y), F3(y), F4(y) and F5(y) are continuously differ-
entiable satisfying F1(0, y2, y3, y4, y5) = µ(y2 + y3 + y4 + y5) > 0, F2(y1, 0, y3, y4, y5) = β2

y1y3
N > 0,

F3(y1, y2, 0, y4, y5) = (1 − p)ky2 > 0, F4(y1, y2, y3, 0, y5) = pky2 + σy3 > 0, F5(y1, y2, y3, y4, 0) =
θ2y4 + θ1y3 + uy1 > 0 for all y1, y2, y3, y4, y5 > 0 (see [21]). This completes proof. �
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4. Existence of the optimal solution

This section is devoted to the existence of an optimal solution for the control problem (4)–(7). We
have the following result.

Theorem 2. Under the hypotheses of Theorem 1, the optimal control problem (4)–(7) admits an
optimal solution (y∗, u∗).

Proof. From Theorem 1, we know that, for every u ∈ Uad, there exists a unique solution y to
system (4)–(6). Assume that infu∈Uad

J(u) > −∞ and let {(un)} ⊂ Uad be a minimizing sequence such
that

lim
n→∞

J(un) = inf
u∈Uad

J(u),

where (yn1 , y
n
2 , y

n
3 , y

n
4 , y

n
5 ) is the solution of system (4)–(6) corresponding to the control (un) for n =

1, 2, . . ., i.e.



∂yn1
∂t

= µ (yn1 + yn2 + yn3 + yn4 + yn5 ) − µyn1 − β1
yn1 y

n
2

yn1 + yn2 + yn3 + yn4 + yn5

−β2
yn1 y

n
3

yn1 + yn2 + yn3 + yn4 + yn5
− unyn1 ,

∂yn2
∂t

= β1
yn1 y

n
2

yn1 + yn2 + yn3 + yn4 + yn5
+ β2

yn1 y
n
3

yn1 + yn2 + yn3 + yn4 + yn5
− (µ + k)yn2 ,

∂yn3
∂t

= (1 − p)kyn2 − (σ + θ1 + µ)yn3 , (t, x) ∈ Q,
∂yn4
∂t

= pkyn2 + σyn3 − (θ2 + µ)yn4 ,

∂yn5
∂t

= θ2y
n
4 + θ1y

n
3 − µyn5 + unyn1 .

(23)

∂yn1
∂η

=
∂yn2
∂η

=
∂yn3
∂η

=
∂yn4
∂η

=
∂yn5
∂η

= 0, (t, x) ∈ Σ, (24)

yni (0, x) = y0i for i = 1, . . . , 5 and x ∈ Ω. (25)

By Theorem 1, there exists a constant C > 0 such that for all n > 1 and t ∈ [0, T ], the solution solution
yni satisfies

∥∥∥∥
∂yni
∂t

∥∥∥∥
L2(Q)

6 C, ‖yni ‖L2(0,T ;H2(Ω)) 6 C and ‖yni ‖H1(Ω) 6 C, i = 1, . . . , 5. (26)

As H1(Ω) is compactly embedded in L2(Ω), we deduce that yn1 (t) is compact in L2(Ω).

Let us show that {yn1 (t), n > 1} is equicontinuous in C([0, T ] : L2(Ω)). As ∂yni
∂t is bounded in L2(Ω),

this implies that for all s, t ∈ [0, T ],
∣∣∣∣
∫

Ω
(yn1 )2 (t, x) dx−

∫

Ω
(yn1 )2 (s, x) dx

∣∣∣∣ 6 K|t− s|. (27)

The Ascoli–Arzela theorem (see [22]) implies that yn1 is compact in C([0, T ] : L2(Ω)). Hence, selecting
further sequences, if necessary, we have yn1 → y∗1 in L2(Ω), uniformly with respect to t and analogously,
we have for yni → y∗i in L2(Ω) for i = 2, 3, 4, 5, uniformly in relation to t. From the boundedness of
∆yni in L2(Q), which implies it is weakly convergent in L2(Q) on a subsequence denoted again by ∆yni ,
for all distribution ϕ,

∫

Q
ϕ∆yni dx =

∫

Q
yni ∆ϕdx→

∫

Q
ϕ∆y∗i dx =

∫

Q
y∗i ∆ϕdx,

which implies that ∆yni → ∆y∗i weakly in L2(Q), i = 1, . . . , 5. In addition, the estimates (26) lead to

∂yni
∂t

→ ∂y∗i
∂t

weakly in L2(Q), for i = 1, . . . , 5,

yni → y∗i weakly in L2(0, T ;H2(Ω)), for i = 1, . . . , 5,
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yni → y∗i weakly in L∞(0, T ;H1(Ω)), for i = 1, . . . , 5.

Let N1(y) = β1
y1+y2+y3+y4+y5

and N2(y) = β2
y1+y2+y3+y4+y5

; we show that yn1 y
n
2 → y∗1y

∗
2 and yn1 y

n
3 →

y∗1y
∗
3 and N1(yn)yn1 y

n
2 → N1(y∗)y∗1y

∗
2 and N2(yn)yn1 y

n
3 → N2(y

∗)y∗1y
∗
3 strongly in L2(Q), writing

yn1 y
n
2 − y∗1y

∗
2 = yn1 (yn2 − y∗2) + (yn1 − y∗1)y∗2 ,

yn1 y
n
3 − y∗1y

∗
3 = yn1 (yn3 − y∗3) + (yn1 − y∗1)y∗3 ,

N1(yn)yn1 y
n
2 −N1(y∗)y∗1y

∗
2 = N1(yn) (yn1 y

n
2 − y∗1y

∗
2) + (N1(yn) −N1(y∗)) y∗1y

∗
2,

N2(yn)yn1 y
n
3 −N2(y∗)y∗1y

∗
3 = N2(yn) (yn1 y

n
3 − y∗1y

∗
3) + (N1(yn) −N1(y∗)) y∗1y

∗
3,

(28)

and using the convergences yni → y∗i strongly in L2(Q), and of the boundedness of yn1 , yn2 and yn3 in
L∞(Q), we obtain yn1 y

n
2 → y∗1y

∗
2 and yn1 y

n
3 → y∗1y

∗
3 and N1(yn)yn1 y

n
2 → N1(y∗)y∗1y

∗
2 and N2(yn)yn1 y

n
3 →

N2(y∗)y∗1y
∗
3 strongly in L2(Q).

Since un is bounded, we assume that un → u∗ weakly in L2(Q) on a subsequence denoted again
by un. Since Uad is a closed and convex set in L2(Q), it is weakly closed, so u∗ ∈ Uad.

Afterword, to show that unyn1 → u∗y∗1 weakly in L2(Q). We write

unyn1 − u∗y∗1 = un (yn1 − y∗1) + (un − u∗) y∗1 ,

and we make use of the convergences yn1 → y∗1 strongly in L2(Q) and un → un weakly in L2(Q).
By taking n → ∞ in (23)–(25), one obtains that y∗ is a solution of (4)–(6) corresponding to

u∗ ∈ Uad. Therefore,

J (y∗, u∗) = ω1

∫ T

0

∫

Ω
y∗2(t, x) dx dt + ω2

∫ T

0

∫

Ω
y∗3(t, x) dx dt +

ω3

2
‖u∗‖2L2(Ω)

6 lim
n→∞

inf

(
ω1

∫ T

0

∫

Ω
yn2 (t, x) dx dt + ω2

∫ T

0

∫

Ω
yn3 (t, x) dx dt +

ω3

2
‖un‖2L2(Ω)

)

= lim
n→∞

(
ω1

∫ T

0

∫

Ω
yn2 (t, x) dx dt + ω2

∫ T

0

∫

Ω
yn3 (t, x) dx dt +

ω3

2
‖un‖2L2(Ω)

)

= inf
u∈U

J(y, u).

This shows that J attains its minimum at (y∗, u∗), and we deduce that (y∗, u∗) is an optimal
solution of the problem (4)–(7). �

5. Necessary optimality conditions

In this section, we establish necessary conditions of optimality of our control problem (4)–(7), and we
derive a characterization of our optimal control. Let (y∗, u∗) be an optimal pair and uε = u∗+εu ∈ Uad
(ε > 0) be a control function such that u ∈ Uad. First, we show the Gateaux differentiabil-
ity of the mapping u → y(u). Denote by yε = (yε1, y

ε
2, y

ε
3, y

ε
4, y

ε
5) = (y1, y2, y3, y4, y5)(uε) and

y∗ = (y∗1 , y
∗
2 , y

∗
3, y

∗
4 , y

∗
5) = (y1, y2, y3, y4, y5)(u

∗) the solution of (4)–(6) corresponding to uε and u∗

respectively. Put yεi = y∗i + εzεi for i = 1, . . . , 5 and g(y) = y1(β1y2+β2y3)
y1+y2+y3+y4+y5

. Subtracting system (4)–(6)
corresponding to u∗ from the system corresponding to uε we get




∂zε1
∂t

= dS∆zε1 − (M ε
1 + uε)zε1 + (µ−M ε

2 )zε2 + (µ −M ε
3 )zε3 + (µ−M ε

4 )zε4 + (µ −M ε
5 )zε5 − uy∗1,

∂zε2
∂t

= dIW ∆zε2 +M ε
1z
ε
1 + (M ε

2 − µ− k)zε2 +M ε
3z

ε
3 +M ε

4z
ε
4 +M ε

5z
ε
5,

∂zε3
∂t

= dI∆z
ε
3 + (1 − p)kzε2 − (σ + θ1 + µ)zε3,

∂zε4
∂t

= dH∆zε4 + pkzε2 + σzε3 − (θ2 + µ)zε4,

∂zε5
∂t

= dR∆zε5 + uεzε1 + θ1z
ε
3 + θ2z

ε
4 − µzε5 + uy∗1 ,

(29)
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with the homogeneous Neumann boundary conditions

∂zε1
∂η

=
∂zε2
∂η

=
∂zε3
∂η

=
∂zε4
∂η

=
∂zε5
∂t

= 0, (t, x) ∈ Σ(t, x), (30)

the initial conditions
zεi (0, x) = 0, x ∈ Ω, for i = 1, . . . , 5, (31)

and

M ε
1 =

g(yε1, y
ε
2, y

ε
3, y

ε
4, y

ε
5) − g(y∗1 , y

ε
2, y

ε
3, y

ε
4, y

ε
5)

yε1 − y∗1
,

M ε
2 =

g(y∗1 , y
ε
2, y

ε
3, y

ε
4, y

ε
5) − g(y∗1 , y

∗
2, y

ε
3, y

ε
4, y

ε
5)

yε2 − y∗2
,

M ε
3 =

g(y∗1 , y
∗
2 , y

ε
3, y

ε
4, y

ε
5) − g(y∗1 , y

∗
2 , y

∗
3 , y

ε
4, y

ε
5)

yε3 − y∗3
,

M ε
4 =

g(y∗1 , y
∗
2 , y

∗
3, y

ε
4, y

ε
5) − g(y∗1 , y

∗
2 , y

∗
3, y

∗
4 , y

ε
5)

yε4 − y∗4
,

M ε
5 =

g(y∗1 , y
∗
2 , y

∗
3, y

∗
4 , y

ε
5) − g(y∗1 , y

∗
2, y

∗
3 , y

∗
4 , y

∗
5)

yε5 − y∗5
.

Now, we prove that zεi are bounded L2(Q) uniformly with respect to ε. For this, denote by
zε = (zε1, z

ε
2, z

ε
3, z

ε
4, z

ε
5),

Hε =




−(M ε
1 + uε) µ−M ε

2 µ−M ε
3 µ−M ε

4 µ−M ε
5

M ε
1 M ε

2 − µ− k M ε
3 M ε

4 M ε
5

0 (1 − p)k −(σ + θ1 + µ) 0 0
0 pk σ −(θ2 + µ) 0
uε 0 θ1 θ2 −µ



, (32)

and K = (−y∗1 0 0 0 y∗1)T . Then, the system (29) can be written as




∂zε

∂t
= Azε +Hεzε +Ku, t ∈ [0, T ],

zε(0) = 0.
(33)

If (S(t), t > 0) is the semigroup generated by A, then, the solution of (33) can be expressed as

zε(t) =

∫ t

0
S(t− s)Hε(s) zε(s) ds +

∫ t

0
S(t− s)K u(s) ds. (34)

As the coefficients of the matrix Hε are bounded uniformly with respect to ε, and using Gronwall’s
inequality, we obtain

‖zεi ‖L2(Q) 6 Γ, for i = 1, . . . , 5 and with a constant Γ > 0.

Afterwards,
‖yεi − y∗i ‖L2(Q) = ε ‖zεi ‖L2(Q) for i = 1, . . . , 5. (35)

Hence, yni → y∗i in L2(Q), i = 1, . . . , 5. Denote z = (z1, z2, z3, z4, z5), and

H =




−(M∗
1 + u∗) µ−M∗

2 µ−M∗
3 µ−M∗

4 µ−M∗
5

M∗
1 M∗

2 − µ− k M∗
3 M∗

4 M∗
5

0 (1 − p)k −(σ + θ1 + µ) 0 0
0 pk σ −(θ2 + µ) 0
u∗ 0 θ1 θ2 −µ



, (36)

with M∗
i = ∂g

∂yi
(y∗1 , y

∗
2, y

∗
3 , y

∗
4 , y

∗
5) for i = 1, . . . , 5. Then, the system (29)–(31) can be written as
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∂z

∂t
= Az +Hz +Ku, t ∈ [0, T ],

z(0) = 0.
(37)

and its solution given by

z(t) =

∫ t

0
S(t− s)H(s) z(s) ds +

∫ t

0
S(t− s)K u(s) ds. (38)

From (34) and (38), we deduce

zε(t) − z(t) =

∫ t

0
S(t− s)

[
Hε(s)(zε − z) + z(s)(Hε(s) −H(s))

]
ds.

Since all the coefficients of the matrix Hε tend to the corresponding coefficients of the matrix H in
L2(Q) and using Gronwall’s inequality, we conclude that zεi → zi in L2(Q) as ε → 0, for i = 1, . . . , 5.
Therefore, we have the following result.

Proposition 3. The mapping y : Uad → W 1,2([0, T ],H(Ω)) with yi ∈ L(T,Ω) for i = 1, . . . , 5 is
Gateaux differentiable with respect to u∗. For all direction u ∈ Uad, y′(u∗)u = y is the unique solution
in W 1,2([0, T ],H(Ω)), with zi ∈ L(T,Ω), of the following equation





∂z

∂t
= Az +Hz +Ku, t ∈ [0, T ],

z(0) = 0.
(39)

Denoting by H∗ the adjoint matrix associated to H, D the matrix defined by

D =




0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



,

D∗ the adjoint matrix associated to D, p = (p1, p2, p3, p4, p5) the adjoint variable and W the vector
given by W = (0, ω1, ω2, 0, 0). The dual system associated to our problem, can be written as





−∂p
∂t

−Ap−H∗p = D∗DW, t ∈ [0, T ],

p(T, x) = 0.
(40)

Lemma 1. Under hypotheses of Theorem 1, if (y∗, (u∗)) is an optimal pair, then there exists a unique
strong solution p ∈W 1,2([0, T ],H(Ω)) to system (40) with pi ∈ L(T,Ω) for i = 1, . . . , 5.

Proof. Similar to Theorem 1, by making the change of variable s = T − t and the change of functions
qi(s, x) = pi(T − s, x) = pi(t, x), (t, x) ∈ Q, i = 1, . . . , 5, we can easily prove the existence of the
solution to this lemma. �

In the following result we provide a characterization of our optimal control.

Theorem 3. Let (y∗, u∗) be an optimal solution of (4)–(7) and p is the solution of the dual sys-
tem (40); with y∗ and p ∈W 1,2([0, T,H(Ω)) and y∗i and pi ∈ L(T,Ω) for i = 1, . . . , 5, then u∗ is given
by,

u∗ = min

(
umax,max

(
0,
p1 − p5
ω3

y∗1

))
. (41)

Proof. We suppose u∗ is an optimal control and y∗ = (y∗1 , y
∗
2, y

∗
3 , y

∗
4 , y

∗
5) = (y1, y2, y3, y4, y5) (u∗) are

the corresponding state variables. Consider uε = u∗ + εh ∈ Uad and corresponding state solution
yε = (yε1, y

ε
2, y

ε
3, y

ε
4, y

ε
5) = (y1, y2, y3, y4, y5) (uε), we have

J ′(u∗)(h) = lim
ε→0

1

ε
(J(uε) − J(u∗))

= lim
ε→0

1

ε

(∫ T

0

∫

Ω
ω1(y

ε
2 − y∗2)(t, x) dx dt +

∫ T

0

∫

Ω
ω2(y

ε
3 − y∗3)(t, x) dx dt
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+
ω3

2

∫ T

0

∫

Ω

(
(uε)2 − (u∗)2

)
dx dt

)

= lim
ε→0

(∫ T

0

∫

Ω
ω1

(
yε2 − y∗2

ε

)
(t, x) dx dt +

∫ T

0

∫

Ω
ω2

(
yε3 − y∗3

ε

)
(t, x) dx dt

+
ω3

2

∫ T

0

∫

Ω
(εh2 + 2hu∗)(t, x) dx dt

)

=

∫ T

0

∫

Ω
ω1z2(t, x) dx dt +

∫ T

0

∫

Ω
ω2z3(t, x) dx dt +

∫ T

0

∫

Ω
ω3(hu

∗)(t, x) dx dt

=

∫ T

0
〈Dz,DW 〉H(Ω)dt+

∫ T

0
〈ω3u

∗, h〉L2(Ω)dt. (42)

Using (37) and (40), we get
∫ T

0
〈DW,Dz〉H(Ω)dt =

∫ T

0
〈D∗DW,Dz〉H(Ω)dt

=

∫ T

0

〈
−∂p
∂t

−Ap−H∗p, z

〉

H(Ω)

dt

=

∫ T

0

〈
p,
∂z

∂t
−Az −Hz

〉

H(Ω)

dt

=

∫ T

0
〈p,Kh〉H(Ω)dt

=

∫ T

0
〈K∗p, h〉L2(Ω)dt. (43)

Since J is Gateaux differentiable at u∗ and Uad is convex, as the minimum of the objective functional
is attained at u∗, it is seen that J ′(u∗)(u− u∗) > 0 for all u ∈ Uad.

We take h = u−u∗ and we use (42) and (43), then, J ′(u∗)(u−u∗) =
∫ T
0 〈K∗p+ω3u

∗, u−u∗〉L2(Ω)dt.

So, J ′(u∗)(u − u∗) > 0 is equivalent to
∫ T
0 〈K∗p + γu∗, u − u∗〉L2(Ω)dt > 0 for all u ∈ Uad. By

standard arguments varying u, we obtain ω3u
∗ = −K∗p, that is, u∗ = p1−p5

ω3
y∗1. As u∗ ∈ Uad, we get

u∗ = min
(
umax,max

(
0, p1−p5ω3

y∗1
))
. �

6. Numerical simulations

In this section, we present some numerical simulations using MATLAB to show the efficiency of the
vaccination strategy on reducing the number of patients infected with the COVID-19 virus in Morocco.
Based on the theoretical results obtained in the previous section, we solve numerically the optimality
system composed of the state system (4), the dual system (40) and the control characterisation given
by (41). As this system has initial conditions for the state variables and terminal conditions for the
dual system, we use an a discrete iterative scheme based on the explicit finite difference method. Given
an initial guess, the state system is solved forward in time. Then, the dual system is solved backward
in time according to the transversality conditions. Afterward, the optimal control value is updated
using values of the state and the adjoint variables obtained at the previous steps [23–27].

We assume that the habitat of the population under consideration is Ω = 30 km × 30 km. The
infection starts from the subdomain Ω0 = cell(15, 15), where S0

Ω0
= 4000, I0W.Ω0

= I0Ω0
= 200, H0

Ω0
= 86

and R0
Ω0

= 14. Outside Ω0, we assume that there is no infection and the population is homogeneously
distributed with 4500 individuals in each 1 km×1 km. The positive weights in the objective functional
are given by ω1 = ω2 = 1 and ω3 = 2 × 106.

Using parameters cited in Table 1, we show the evolving spatial pattern of the COVID-19 in Ω over
50 days with and without control.
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Table 1. Parameter values.

Parameter Description Value/Range Reference
µ Natural death rate 2.7 × 10−5 (per day) [2]
β1 Transmission rate from IW to S 0.15 (per day) [2]
β2 Transmission rate from I to S 0.4 (per day) [2]
k Incubation period 2 to 14 days [2]
p Percentage of infected without symptoms individuals that become hospitalized 65% [2]
σ Hospitalization rate of people in I 0.00001 (per day) [2]
θ1 Recovery rate of individuals in the compartment I 0.015 (per day) Assumed
θ2 Recovery rate of hospitalized individuals 0.035 (per day) [2]
dS , dIw , dI and dR Diffusion rate of S, IW , I and R 0.5 Assumed
dH Diffusion rate of H 0.25 Assumed

Fig. 2. (a) Infected individuals without symptoms per km2 without control. (b) Infected individuals without
symptoms per km2 with control.

Fig. 3. (a) Undiagnosed infectious individuals (I) per km2 without control. (b) Undiagnosed infectious indi-
viduals (I) per km2 with control.

In Figures 2a and b, we present the spatiotemporal evolution of the infected without symptoms
individuals with and without controls. We observe that in the absence of the vaccination effort, the
contagion moves from the centre and reaches the whole parts of the domain Ω within 50 days. The
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exposure cases increase dramatically after 20 days when no control is exerted. The explain of spraed
without strategy to protect people the SARS-COV-2 spread in all region in Morocco, as we said above
the spread of COVID-19 started in Casablanca city to other region. While, in the presence of the
control the vaccination as Astzenika and Senovar for protect Moroccan people, we see that the number
of infected without symptoms individuals increases during the first days to reach its maximum at
day 20, and then decreases significantly over the remaining period of control.

In Figures 3 and 4, we depict the evolution of the infected individuals in the compartments I and H,
respectively, in the uncontrolled case and when the vaccination strategy is implemented. The results
from these figures show that the vaccination strategy plays a significant in limiting the spread of the
COVID-19 epidemic over the domain Ω. Indeed, in the case where no intervention strategy is applied,
a severe and rapid growth of contagion will occur in the entire region, especially, during the last
20 days (see Figures 3a and 4a). However, with a vaccination program, our simulations demonstrate
an effective reduction in the number of infected individuals as well as the burden on the health system
(see Figures 3b and 4b).

Fig. 4. (a) Hospitalized individuals per km2 without control. (b) Hospitalized individuals per km2 with control.

The numerical results obtained in this section show that the vaccination strategy can effectively
control the spread of contagious diseases like COVID-19. Compared to the uncontrolled case, the
vaccination intervention notably reduces the number of infected individuals in Ω, with a decline of
92%, 80% and 81% for IW , I and H respectively at the end of the vaccination program.

7. Conclusion

In this work, we studied the spread of the COVID-19 pandemic in Morocco in space and time. Thus,
we proposed a SIWIHR spatial-temporal model, that describes the dynamics of the spread of COVID-
19 in spatial and time in Morocco. We divide the population denoted by N into five compartments:
the susceptible individuals in Morocco S, the infected without symptoms IW , the infected I, the
hospitalisation people H and the recovered R. According to the statistics of the Moroccan Ministry of
Health.

We also introduced a control that represents vaccination to protect the Moroccan people. We also
studied optimal control; the spread of the COVID-19 disease will be reduced, and thus the number of
infected individuals will be reduced. We applied the control theory results, and we managed to obtain
the characterizations of the optimal controls. The numerical simulation of the obtained results showed
the effectiveness of the proposed control strategies.
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Просторово-часове поширення пандемiї COVID-19 iз
оптимальною стратегiєю контролю вакцинацiї: приклад Марокко

Куiдере А.1, Елхiя М.2, Балатiф О.3

1Лабораторiя аналiзу, моделювання та симуляцiї (ЛАМС),
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3Лабораторiя фундаментальної математики та її застосункiв (ЛФМЗ), Кафедра математики,
Факультет наук Ель-Джадiда, Унiверситет Чуайба Дуккалi, Ель-Джадiда, Марокко

Станом на 2 березня 2020 року МОЗ Марокко оголосило про перший випадок захво-
рювання на COVID-19 у мiстi Касабланка у марокканського туриста, який прибув
з Iталiї. Вiрус SARS-COV-2 поширився по всьому Королiвству Марокко. У цiй стат-
тi дослiджується просторово-часова передача пандемiї COVID-19 у Королiвствi Ма-
рокко, застосовуючи SIWIHR диференцiальне рiвняння з частинними похiдними для
опису поширення пандемiї COVID-19 у Марокко як приклад. Основна мета статтi
— охарактеризувати оптимальний порядок контролю поширення пандемiї COVID-19
шляхом прийняття стратегiї вакцинацiї, метою якої є зменшення кiлькостi сприй-
нятливих та iнфiкованих осiб без щеплення та максимiзацiя кiлькостi одужаних осiб
шляхом зменшення вартостi вакцинацiї з використанням однiєї з вакцин, схвалених
Всесвiтньою органiзацiя охорони здоров’я. Для цього доводиться iснування пари керу-
вання. Дається опис оптимальних керувань у термiнах стану та допомiжних функцiй.
Накiнець, подано чисельне моделювання даних, якi пов’язанi з передачею пандемiї
COVID-19. Чисельнi результати подано для iлюстрацiї ефективностi прийнятого пiд-
ходу.

Ключовi слова: епiдемiологiчне моделювання; новий коронавiрус; ДРЧП; опти-
мальне керування; чисельне моделювання.
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