odeling
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 1, pp.204-211 (2023) I\/I @P”ti"g

athematical
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For rectangular layered shallow cylindrical shells of irregular structure, the quasi-static
problem of unbound thermoelasticity is formulated. As a mathematical model, the equa-
tions of the shear theory of shallow shells of Timoshenko type are used. The closed solution
for the formulated problem is found by the methods of integral transformations. The dis-
tribution of temperature, displacements, forces and moments in a two-layer cylindrical
shell under local convective heating is analyzed numerically.

Keywords: shallow cylindrical shell; layered; irreqular structure; heat transfer; thermoe-
lasticity.
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1. Introduction

Shallow shells of layered structure are widely used in many branches of modern technology, in particular
in the aerospace and construction industries, to increase the strength and rigidity of structures, as well
as to protect them from low or high-temperature thermal effects. Therefore, the calculation of thermal
stresses in such structures is an important engineering task.

Elements of layered structure have been studied [1-6] by many scientists. The improved models [2-5]
that take into account the characteristic features of composite materials have been developed. The
exact solutions of thermoelasticity problems for layered shells based on three-dimensional equations
have been constructed [6,7]. Analytical solutions [8-11] have been obtained using the equations of
classical and various improved theories. Using the equation of interrelated thermoelasticity, the effect of
the association coefficient on the dynamic behavior of composite shells is analyzed [12]. The paper [13]
is focused on the thermoelectromechanical analysis of multilayer piezoelectric cylindrical shells of open
profiles. A more detailed review of various models and methods is given in [1,2]. In the paper [14],
local heating by heat sources of a functionally gradient isotropic cylindrical shell is considered. In
the paper [15], the stress-strain state of a layered cylindrical shell under local convective heating is
examined.

This paper investigates the stress-strain state of layered isotropic shallow cylindrical shells under
the unsteady temperature field.

2. Basic equations

Consider a rectangular shallow cylindrical shell of a x b dimensions with the middle surface radius R
and constant thickness 2h. The shell is made of isotropic material inhomogeneous in the transverse
direction. The points of the shell space are placed in the orthogonal coordinate system x,y, z, with
indices 1, 2, and 3 corresponding to these coordinates. Let the coefficients of the first quadratic form
be equal to unity, the main curvatures k; and ks being constant, and the lines of these curvatures
coinciding with the coordinate lines.

Let the shell be under the external force load and undergo heating by heat sources and the external
environment by convective heat transfer through the side surfaces z = +h. To investigate the ther-
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moelastic state of the shell, a two-dimensional mathematical shear model of the first order (a model
of Timoshenko type) is employed. The model is based on the assumption of linear dependence of the
tangential components of the displacement vector and temperature on the transverse coordinate [14].
For thermal stress problems, this model consists of two independent systems of equations, i.e. ones of
thermoelasticity and thermal conduction.

System of thermoelasticity equations. The kinematic relations for the deformation components e;;
of an arbitrary point of the shell are of the following form:

€11 = €11 + 2211, €2 = €92 + 222, €12 = €12 + 212, €13 = €13, €23 = £23. (1)
Here, the deformation components of the mean surface €;;, s;; are expressed through the generalized
displacements u;, w, v; of the surface points by the following formulas:
€11 = 81U1, E992 = 82U2 + w/R, £12 = 82U1 + 81u2,
e13 =7 t 0w, €3 =2+ dw, 31 =01,

s99 = Ooya, 312 = 0172 + Do (2)
The physical equations for stresses and strains are written as follows:
E(z E(z
011 = % [611 + V€ — (1 + V)at(z)t], 099 = % [622 + veil — (1 + V)at(z)t],
E(z) E(z) E(z)
_ - = ) 3
012 2(1—1—1/)612’ 013 2(1+y)613’ 023 2(1+y)€23 (3)

Here, v is Poisson’s ratio that is considered constant; E(z) and ay(z) are the elastic modulus and the
coefficient of thermal linear expansion that depend on the coordinate z; t(x,y, z, 7) is the temperature
field.

The physical equations for internal forces NV;, N2, @Q; and moments M;, Mis in the mean surface
of the shell are obtained from relations (3) by integrating them over the shell thickness [14],

Nl A Al B Bl 81U1 At Bt
Ny A1 A By B ag’LLQ—I—w/R _ At T _ Bt E
M, B B D D o Bt |t Dt | h”
M2 B1 B D1 D 62’72 Bt Dt
<N12>:<A6 BG><8IU2+82U1>
My Bs Dg 0172+ 01 )7
Q1 =K Ag (1 + 0w),
Qg = k‘/AG (’72 -+ 82?1}) . (4)
Here,
1 1%
{A7B7-D} = m{EhEZaEi}}a {A17B17D1} = 1 V2{E17E27E3}7
1
Ag,Bs, D¢} = ———{FE,,Fs. FE Al B! DIV = —
{4s, Bs, D } 2(1+1/){ 1, Eo, B3}, {A", B", D"} 1_1/{51752,53}7
R h
B = / O / B(2) an(2)5tdz (i =1,2,3), (5)
—h —h

T, = 25;,-1 fhtzi_l dz (i = 1,2), are the temperature characteristics integral over the thickness h of

the shell; 0, = 8%’ Op = 8%’ and &’ is the rate of shear [14].
The equilibrium equations have the following form:
O1N1 + N1z = —q1, 01 N12 + 2Na = —qg,
MQ1+ 02Q2 — No/R = —q3, My + Mz — Q1 = —my,
O1 My + 2 My — Q2 = —ma, (6)

where ¢;, m; are the surface load components [1,14].
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Using the above relations, the equilibrium equations (6) are written in the form of generalized
displacements

5
> LaYi=b (rk=12...5). (7)
k=1

Here, Y; = u;; Y3 = w; Yay; =5 (i = 1,2). The differential operators L,i (L, = Lg,) and free terms
b, have the following form
Ly = A9 + Ag02y, Lig = (Ay + Ag)0%, L1z = Ay/ROy, Ly = BO?| + Bs03y, Lis = (By + Bg)d%s,
Lyg = Agd} + AB2,, Loz = A/RDy, Loy = (By + Bg)d3y, Los = Bd? + B3,
Lsy = (B1/R— K A¢)0, L3z =K Ag(0%, + 03,) — A/R?, Lss = (B/R— kK Ag) 0s,
Lyy = DO}y + D3y — K A, Lus = (D1 + Dg)0%a, Lss = D0y + D3, — K Ag,
by = —q1 + A0 Ty + B'O\Ta/h, by = —qo + A'O.Ty + B'OuTo/h,
bs =gqs + (A'Ty + B'Ty/h) /R, by = —my+ B'oTy + D'o\Th/h,
by = —my + B'&, Ty + D'y Ty /h.

To achieve the uniqueness of the solution of system (7), it is necessary to set the appropriate
boundary conditions:

1) one value from each pair { N1, u1}, {Ni2,u2}, {Q1,w}, {M1,7v1}, {Mi2,¥2} with z =0, z = a on
the edges;

2) one value from each pair (Na,uz), (Ni2,u1), (Q2,w), (Ma,72), (Mi2,71) with y =0, y = b on
the edges.

These conditions along with the system of equations (7) constitute the boundary value problem of
the theory of thermal stresses for inhomogeneous isotropic shallow cylindrical panels in displacements.
Given the known displacements, the mean surface deformations and moments of a force are determined
using the relations (2) and (4) respectively, and the thermal stresses and deformations at any point of
the shell are calculated by formulas (1) and (3).

System of heat conduction equations. The integral characteristics of temperature 77 and T, which
are part of the free terms of the system (6), are to be determined from the corresponding equations of
heat conduction under boundary conditions set on the surfaces z = +h and at the ends of the shell.
For convective heat transfer on the surfaces z = +h, the system of heat conduction equations with
linear temperature dependence on the transverse coordinate has the form

A
AlTl — E’iTl + AQTQ + <ﬁ — Eé) T — 0187T1 = —flz,

Ay Ay .
ATy — €§T1 + ATy + <ﬁ — ﬁ — €t1> Ty — C30; Ty = —f2. (8)
Here,
h 2y i—1
M0y = [ Q@ (5)de (=129)
_h h
: 1 : bl 0
L= (ot — (=1)Ya” t2=— (tF — (=1)'t; W?z/ - dz (j=1,2 = o
= (af (), =5 - e), W= w(y) =12, 0 =g
A(2) is the heat conduction coefficient; ¢}, t; are ambient temperatures on surfaces z = h and z = —h

respectively; a™, o~ are heat transfer coefficients from these surfaces; c.(z2) is the specific heat capacity;
T is a time variable; w; is the density of heat sources.

To achieve the uniqueness of the solution of system (6) on each edge, x = 0, x = a and y = 0,
y = b, it is necessary to specify two combinations of values of the type

oT oT: oT oT:
arTy + asTy + a3— + ag—— + a5— + a6—27
ox ox oy oy

where a; = const; 17 and Ty are the values of temperature characteristics at the initial time.
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3. Problem solving method

Let the shell consist of a package of rigidly connected N homogeneous isotropic layers of different
thicknesses hy. It is assumed that the hypothesis about the temperature pattern along the thickness
of the shell applies to the entire package of layers. Then, according to the procedure described in [3],
the thermophysical characteristics of the layered shell as a whole are represented by asymmetric unit

functions Sy (z) of the form
N-1

9(z) =@+ Y (grs1 — ar) S+ (2 — 2).
k=1

Here, q(2) = {E(2),a4(2), A(2),ce(2)} ar = {EW, agk), AE), cgk)} are the physical and mechanical
characteristics of the k-th layer; z; is the distribution limit coordinate of the k-th and k-th layers, with

2 = —h+ an:l hm;
1, >0, 1, x>0,
S+(:”)_{ 0, <0, S—(x)_{ 0, z <O0.
Substituting the relation (5) with (4), the expressions of the integral characteristics E;, 8;, A,
C™ through the physical properties of the layers E*), agk), AF) cgk) are obtained. For FE;, they take
the following form:

N-1 N-1
By =2hEW + Y (E®) — EWY(h - z), By = % (BEHD — R (n2 - 22),
k=1 k=1
= lpwy 1 - (EO+D — B0 (13 - 23 )
3 3h? £~ k7

which is analogical for other integral characteristics.

Depending on the structure of layered constructions, the relations (9) may vary.

Let the edges of the shell be hinged and maintained at zero temperature. Then the boundary
conditions will be as follows:
when z =0 and z = a:

w=uz=7=0, N =»M=0, (10)
Ty =T, =0; (11)
when y = 0 and y = b:
w=uy=v=0, No=DM;=0, (12)
Th=T,=0. (13)
At the initial moment of time 7 = 0, the temperature characteristics are set
Ty(z,y,0) = T{(z,y), To(,y,0) = T3(z,y). (14)

Solution for the heat conduction problem. Equation (8) after applying the double finite Fourier
transform by the coordinates z, y according to the boundary conditions (11) and (13) takes the form

dTl mn

d + GlTlmn + G2T2mn = flzmnv (15)
T1
dT:

dj_rlrm + G3Tvmn + GaTomn = fopmn- (16)

Here, Gy = Ay (4, + p2) + Bir, G2 = Ag (2, + p2) — 6A1 + Biy, G = [Ay (42, + ) + Bis]C,
G3 = [A3 (Mgn +M$L) +B11+A1_5A2]O) Hm = ﬂfTh? Hn = %h) 0= %7 1 = %7—7 C= ga AZ = 2}/:;\07
eth

Bi; = 25 Ap is a characteristic heat conductivity coefficient;

. . h
flzmn = Blltfmn + B12t§mn + Wltmnm = Qfmn (l‘, y)Flz (T);
. . h \ =
f2zmn = <B12timn + Blltémn + W2tmn2—/\0> C= ngn(xv y)F;(T)
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The solution of the system of equations (16) is obtained by the integral Laplace transform using
the initial conditions (14) in the form

T 22: (pj — G4) Qi 21 (1) + G2Q3, Z2j () + [(pj — Ga) T + G215, ] exp(—p;T1)

9

=t Pj — Pk
k#j
T 2 (9 — G1) Q3 Z2j(7) + G3Q%,, 21 (T) + [(9j — G1) TS + G3TD,,] exp(—pjm1)
2mn — Z . ’
= Pj — Pk
kA

Here,

e, G G2
b — gﬂ_l) \/%+G2G37

-2 z 0 mm mn P
{Qmm, ]nm} ab/ / {Q T (z,y)sin " T sin byda:dy (j=1,2),

Zij = /OTlFZ-(u) exp (—p; (1 — w))du  (irj = 1, 2).

The temperature characteristics Ts (s = 1, 2) using Fourier coefficients T, (s = 1,2) are expressed
by the formulas

o o

T, Ty} = Tirrres Tomm } 80 2z sin 2y 17
{1, Tv} mz::lnz::l{ s Tomn } a by (17)
Solution for the thermoelasticity problem. The solution of the system of equilibrium equations (7),
which meets the boundary conditions (10), (12) with a known temperature field (17), is reached by
the method of finite double Fourier transform by coordinates z, y. As a result, a system of algebraic
equations for determining the Fourier coefficients Uimpn, Usmn, Winn, T'imn, Lomn of the unknown

generalized displacements is obtained and written in the matrix form

MU=VTimm+STomn. (18)

Here, U = {Ulmn7U2mnaWmnarlmnar2mn}T7 M = (mij)5><57 V= (Ui)5><17 S = (Si)5><1- The matrix
coefficients m;;, v; and s; are calculated on the basis of the expressions of differential operators of the
system (7).

The solution of system (18) is obtained in the form

Lo
where M| is the determinant of the matrix M, and M* is the adjoined matrix.
The generalized displacements through their Fourier coefficients are expressed by the formulas

{ur,m} = Z Z {Utmn, Timn } cos —x sm b y

m=1n=1
™
{u27'72} = Z Z {U2mnar2mn}51n 37 COS —/— b Y,
m=1n=1
w = Z Z Winn sin —w sin Ty (20)
m=1n=1

According to the known generalized displacements (20) and temperature characteristics (17) of the
stress and force, the moments in the shell are calculated by formulas (3) and (4) respectively.
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4. Analysis of numerical results

Numerical studies were performed for a two-layer cylindrical panel heated by the environment through
convective heat transfer. The temperature of the medium on the outer surface z = h is represented by
the function

th(z,y,7) =t*[S_(x — 20 + d1) — Sy (x — xg — dy)]

x [S—(y — yo +d2) = S4-(y — yo — d2)] (1 — exp(—5"7)),
where t*, * = const; xg, yo are the coordinates of the heating area center; 2d; x 2ds is the size of this
domain, which equals zero ¢ = 0 on the inner surface z = —h.

It is assumed that the coefficients of heat transfer from the surfaces of the shell are the same
at = a~ = a,, with no surface forces and heat sources and the temperature of the shell at the initial
moment equaling zero T} = T = 0.

The material of the shell layers is titanium alloy and aluminum alloy [2]. The bottom layer is made
of titanium alloy with the following physical and mechanical properties:

EM =110 GPa, M =032, olY =86-10°1/K, AD =219 W/mK, M =560 J/(kgK).

e

The top layer of the shell is made of aluminum alloy, for which:

E® =73GPa, v® =03, o?=25-1001/K, A =130 W/mK, & =897 J/(kgK).
The other parameters are as follows:

a/b: 1, h/R:0.05, hl/h2: 1, x():a/Q, y():b/Q,
di/a =025 dy/b=025 p*=1, kK =5/6, Bi=1.

! !
7] w
0.20 -

12
0.15 4

0.10 4

0.05

0.00

0.5 0.6 0.7 0.8 0.9 y/ 0.5 0.6 0.7 0.8 0.9 yl
Fig. 1. Fig. 2.
For the parameters given, the change in the dimensionless average temperature 7] = ?—j, deflection
! pr— —w / g 7]\[1 1 , = 7]\42 1 = 1
w = RO normal forces IV; a7 and bending moments M, O halr (1 = 1,2) with
the dimensionless coordinate ' = y/b (0.5 <y’ < 1) at the point 2’ = 2/a = 0.5 for the dimensionless

AW
e p2

The maximum values of the average temperature 7] and deflection w’ are recorded in the center of
the heating region, and when approaching the edges monotonically decrease to zero. The normal forces
N/ along the coordinate y are naturally oscillatory. First, they are tensile in the center of the heating
region and then (for Ni if 7/ > 0.7, and for N if 7/ > 1.2) compressive, with being always tensile
outside the heating region. The change of the bending moment M] is oscillating: from the maximum
negative values in the heating area center to positive values in the unheated area. Accordingly, the

time 7/ = equaling 0.5, 0.8, 1, and 1.5 is calculated and illustrated in Figs. 1-6.
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Fig. 5. Fig. 6.

moment M} monotonically decreases from the maximum negative values in the heating area center to
zero on the edge of the shell. Over time, the parameters of the stress-strain state mamnpykeno-m cran
increase and enter steady-state operating conditions when 7/ > 10.

5. Conclusions

The stress-strain state of a two-layered isotropic rectangular shallow cylindrical panel, which is heated
by the environment by convective heat exchange, is examined using the equations of the linear shear
theory of the first order. The closed solution is obtained by the methods of Fourier and Laplace
transforms. The figures illustrate the dependence of the temperature field, deflection and internal
forces and moments on geometric parameters and time. The results obtained can be used for analyzing
the stress-strain state of shallow-coated cylindrical shells.
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KsasictatuyHa 3apava TepMONpy>XHOCTI A5 LUapyBaTUX NOJIOrUX
UUIIHOPUYHUX 000/I0OHOK HEPErynsipHOl CTPYKTYpWU

Myciit P., 2Kumuk V., Bosommua M., Cugopuyk O., I'yk JI., Pax H.

Havionarvruti ynisepcumem “JIvsiscora nosimexnixa’,
eyn. C. Bandepu, 12, Jlveis, Ykpaina

s TpSIMOKYTHHMX B IUIAHI IMApyBATUX IOJOTUX IIIHIPUIHAX ODOJIOHOK HEPEeryJIsipHOT
CcTpyKTypu chOpPMYyJIbOBaHA KBa3iCTaTHYHA 3a/lada HE3B 3aHOI TEPMOIIPYKHOCTI. 3a Ma-
TEeMATUIHY MOJIe/Ib BUKOPUCTAHO PiBHAHHS 3CYBHOI TEOPil 0JI0rux 000JI0HOK THUILy Tumo-
IMeHKa. 3aMKHYTHUI PO3B’I30K ¢HOPMYIHOBAHOT 33/1a41 3HANIEHO METO/[AMU IHTerPAIbLHUX
IIepeTBOPEHb. UHCEIbHO MPOAHAII30BAHO PO3IOIIT TEMIIEPATYPH, NEePEMIEHb, 3yCHIb 1
MOMEHTIB Yy JIBOMIAPOBii MUIIHAPUIHIN OOOJIOHIN 3a JIOKAJHBHOTO KOHBEKTHBHOTO HArpi-
BaHHS.

Knto40Bi cnoBa: noio2a yusihdpuuna 060A0HKA; WaAPYEAMa; HEPELYAADHOL CIPYKMYPU;
MENAO0OMIH; MEPMONDYHCHICTND.
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